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Background: Intracerebral hemorrhage (ICH) is one of the most serious

complications in patients with chronic kidney disease undergoing long-term

hemodialysis. It has high mortality and disability rates and imposes a serious

economic burden on the patient’s family and society. An early prediction of ICH

is essential for timely intervention and improving prognosis. This study aims to

build an interpretable machine learning-based model to predict the risk of ICH in

patients undergoing hemodialysis.

Methods: The clinical data of 393 patients with end-stage kidney disease

undergoing hemodialysis at three di�erent centers between August 2014 and

August 2022 were retrospectively analyzed. A total of 70% of the samples were

randomly selected as the training set, and the remaining 30% were used as the

validation set. Five machine learning (ML) algorithms, namely, support vector

machine (SVM), extreme gradient boosting (XGB), complement Naïve Bayes (CNB),

K-nearest neighbor (KNN), and logistic regression (LR), were used to develop a

model to predict the risk of ICH in patients with uremia undergoing long-term

hemodialysis. In addition, the area under the curve (AUC) values were evaluated

to compare the performance of each algorithmic model. Global and individual

interpretive analyses of the model were performed using importance ranking and

Shapley additive explanations (SHAP) in the training set.

Results: A total of 73 patients undergoing hemodialysis developed spontaneous

ICH among the 393 patients included in the study. The AUC of SVM, CNB, KNN,

LR, and XGB models in the validation dataset were 0.725 (95% CI: 0.610 ∼ 0.841),

0.797 (95% CI: 0.690 ∼ 0.905), 0.675 (95% CI: 0.560 ∼ 0.789), 0.922 (95% CI:

0.862 ∼ 0.981), and 0.979 (95% CI: 0.953 ∼ 1.000), respectively. Therefore, the

XGBoost model had the best performance among the five algorithms. SHAP

analysis revealed that the levels of LDL, HDL, CRP, and HGB and pre-hemodialysis

blood pressure were the most important factors.

Conclusion: The XGB model developed in this study can e�ciently predict the

risk of a cerebral hemorrhage in patients with uremia undergoing long-term

hemodialysis and can help clinicians to make more individualized and rational

clinical decisions. ICH events in patients undergoing maintenance hemodialysis

(MHD) are associated with serum LDL, HDL, CRP, HGB, and pre-hemodialysis

SBP levels.
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1. Introduction

Maintenance hemodialysis (MHD) is the primary renal

replacement therapy for patients with uremia (1). Intracerebral

hemorrhage (ICH), defined as non-traumatic hemorrhage in the

brain parenchyma with or without ventricles, accounts for 10–

15% of all stroke cases and is an important cause of disability and

death globally (2). ICH is one of the most serious complications

among patients undergoing MHD. Various factors have an

important impact on the occurrence and development of ICH.

Recent studies have attempted to identify relevant risk factors,

and lipid metabolism and inflammatory responses have been

reported as important factors regulating the progression of ICH

and subsequent brain injury and brain function repair. Despite

the continuous development of hemodialysis technology and the

gradual improvement of nursing levels, the risk of a cerebral

hemorrhage in patients undergoing MHD is approximately six

times higher than that in healthy individuals (3), and the mortality

rate is as high as 41–47% (4). Most patients require admission to

the intensive care unit (ICU) for monitoring and treatment, which

imposes a serious economic burden on the family and society.

ICH often has no identifiable warning signs or symptoms.

Although optimal strategies for the medical and surgical

management of ICH have been investigated, survival and

functional outcomes have not been significantly improved

(5). Therefore, establishing risk prediction models to identify

high-risk patients undergoing MHD is important for the early

implementation of targeted interventions. To date, only a few

studies have attempted to develop such models.

Machine learning (ML), an artificial intelligence method,

uses computers to statistically learn from datasets and build

corresponding models to identify relationships between various

factors. In the field of medicine, ML is increasingly used through

statistical learning methods to overcome possible obstacles in

clinical practice (6, 7). In recent years, although ML has been

used to analyze clinical data to predict the complications and

adverse outcomes of critical illnesses (8–10), few efforts have

been made to develop strategies for predicting the prognosis of

patients with uremia undergoing dialysis, especially for predicting

the risk of cerebral hemorrhage, a serious complication of

dialysis. ML has shown good performance in previous studies;

however, because of its “black box” nature, the effects of each

feature on the final results remain unknown, and it is difficult

to explain the factors that lead to a given prediction. This

lack of interpretability limits the widespread application of ML

methods in medical research (11, 12). Shapley additive explanation

(SHAP) is a method inspired by the classical game theory that

assigns a predicted value to each feature and evaluates the

contribution of each feature to the results of ML models to

achieve a balance between the accuracy and interpretability of the

model (13).

To analyze complex variables that may be related to a

cerebral hemorrhage after regular hemodialysis, we integrated the

demographic data, laboratory test results, hemodialysis indicators,

and other information of patients to construct a model for

predicting the risk of a cerebral hemorrhage. To make the model

more applicable for the diagnosis of chronic kidney disease with

intracerebral hemorrhage, overcome the “black box” nature of ML,

TABLE 1 Baseline features of patients.

Variables Non-ICH
(n = 320)

ICH
(n = 73)

P-value

Age (years) 57.000 (46.000,

66.000)

54.000 (48.000,

63.000)

0.384

Sex (%) 0.697

Female 108 (33.7) 27 (37.0)

Male 212 (66.3) 46 (63.0)

Hypertension

(%)

<0.001

No 141 (44.1) 13 (17.8)

Yes 179 (55.9) 60 (82.2)

Diabetes

mellitus (%)

0.001

No 196 (61.2) 60 (82.2)

Yes 124 (38.8) 13 (17.8)

Polycystic

kidney (%)

0.001

No 311 (97.2) 64 (87.7)

Yes 9 (2.8) 9 (12.3)

Duration of

dialysis

(months)

41.84 (19.27,

67.99)

34.17 (18.67,

43.97)

0.014

WBCs (109/L) 5.60 (4.58,

6.82)

6.60 (4.91, 8.85) <0.001

PLTs (109/L) 165.00 (131.75,

204.25)

145.00 (117.00,

180.00)

0.009

HGB (g/L) 106.55 (16.77) 92.43 (13.26) <0.001

NE (109/L) 3.82 (3.02,

4.91)

5.16 (3.51, 7.47) <0.001

LY (109/L) 1.00 (0.80,

1.30)

0.82 (0.60, 1.10) <0.001

HCT (%) 33.27 (5.71) 31.87 (6.07) 0.061

CRP (mg/L) 5.16 (3.16,

7.20)

12.00 (4.79, 31.48) <0.001

NLR 3.74 (2.775,

5.185)

5.40 (3.27, 12.26) <0.001

PLR 165.79

(129.983,

214.580)

188.89 (117.00,

250.00)

0.156

ALT (U/L) 9.00 (6.00,

14.00)

10.00 (7.00, 15.00) 0.136

AST (U/L) 12.00 (9.00,

15.00)

13.00 (10.00,

17.00)

0.069

TP (g/L) 66.60 (62.80,

70.53)

70.30 (64.10,

74.60)

<0.001

ALB (g/L) 40.20 (37.58,

42.70)

41.00 (37.50,

43.80)

0.329

BUN

(mmol/L)

23.54 (18.07,

29.03)

20.12 (14.87,

26.48)

0.003

Scr (umol/L) 787.15 (650.45,

1,010.25)

746.00 (587.00,

905.00)

0.071

CysC mg/L) 5.29 (4.58,

5.91)

4.76 (3.78, 5.38) <0.001

(Continued)

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1139096
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2023.1139096

TABLE 1 (Continued)

Variables Non-ICH
(n = 320)

ICH
(n = 73)

P-value

UA (umol/L) 368.00 (296.50,

431.75)

365.00 (325.70,

409.00)

0.817

TG (mmol/L) 1.29 (0.91,

2.00)

1.53 (1.14, 2.49) <0.001

TC (mmol/L) 3.67 (3.07,

4.25)

3.55 (3.31, 4.04) 0.933

LDL (mmol/L) 1.77 (1.51,

1.89)

1.31 (1.21, 1.44) <0.001

HDL

(mmol/L)

1.78 (1.25,

2.38)

1.09 (0.86, 1.47) <0.001

K (mmol/L) 4.80 (4.26,

5.37)

4.77 (4.24, 5.25) 0.971

NA (mmol/L) 137.60 (135.40,

140.00)

136.70 (134.90,

138.30)

0.053

Ca (mmol/L) 2.155 (2.01,

2.27)

2.180 (2.00, 2.43) 0.288

P (mmol/L) 1.775 (1.41,

2.13)

1.650 (1.32, 2.16) 0.503

Calcium–

phosphorus

product

(mg/dL)

46.90 (36.45,

57.742)

44.02 (33.97,

63.88)

0.498

eGFR

(mL/min)

5.60 (4.42,

7.36)

6.10 (4.84, 8.33) 0.095

Hemodialysis

vascular access

(%)

0.302

Arteriovenous

fistula

256 (80.00) 62 (84.93)

Artificial blood

vessel

9 (2.81) 0 (0.00)

Central venous

catheter

55 (17.19) 11 (15.07)

Total

anticoagulant

(IU)

4,500.00

(4,000.00,

5,000.00)

4,500.00

(4,000.00,

5,000.00)

0.421

Blood flow rate

(ml/min)

240.00 (220.00,

250.00)

250.00 (230.00,

260.00)

<0.001

Pre-

hemodialysis

SBP (mmHg)

142.00 (130.00,

155.00)

160.00 (148.00,

173.00)

<0.001

Pre-

hemodialysis

DBP (mmHg)

80.00 (75.00,

88.00)

82.00 (77.00,

89.00)

0.237

Post-

hemodialysis

SBP (mmHg)

139.52± 18.03 151.41± 20.82 <0.001

Post-

hemodialysis

DBP (mmHg)

80.29± 8.72 78.44± 9.51 0.108

WBCs, white blood cells; PLTs, platelets; HGB, hemoglobin; Ne, neutrophil; Ly, lymphocyte;

HCT, hematocrit; CRP, C-reactive protein; NLR, neutrophil-to-lymphocyte ratio; PLR,

platelet-to-lymphocyte ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase;

TP, serum total protein; ALB, serum albumin; BUN, blood urea nitrogen; Scr, serum

creatinine; CysC, cystatin C; eGFR, estimated glomerular filtration rate; UA, uric acid;

TG, triglyceride; TC, total cholesterol; LDL, low-density lipoprotein; HDL, high-density

lipoprotein; K, blood potassium; Na, blood sodium; Ca, blood calcium; P, blood phosphorus.

and explore the relationship between each feature and its clinical

significance, we used the extreme gradient boosting (XGBoost)

algorithm to develop the model (14). SHAP was used to provide

a more intuitive global and local explanation of the model to

understand the prediction of the model and improve the clinical

understanding of the risk of a cerebral hemorrhage in patients

with hemodialysis.

2. Materials and methods

2.1. Study population and data source

Patients with end-stage kidney disease undergoing

hemodialysis from August 2014 to August 2022 at the Affiliated

Hospital of Xuzhou Medical University, Xuzhou Central Hospital,

and the Second Affiliated Hospital of Xuzhou Medical University

were recruited for the study. According to the occurrence of ICH,

the patients were divided into ICH and non-ICH groups.

2.2. Data collection

The inclusion criteria were as follows: (a) patients diagnosed

with uremia according to chronic kidney disease (CKD) staging

and recommendations or the Kidney Disease Outcomes Quality

Initiative (KDOQI) guidelines formulated by the American Kidney

Foundation, that is, patients with estimated glomerular filtration

rate (eGFR) of <15 ml/(min·1.73 m2) diagnosed with CKD stage 5,

which is the uremia stage (15); (b) patients receiving hemodialysis

regularly, those aged ≥18 years, those with dialysis age of ≥3

months, and dialysis frequency of three times per week and

4 h per dialysis; and (c) patients with ICH confirmed via a CT

examination of the head. The exclusion criteria were as follows: (a)

patients with severe failure of the heart, lung, and other organs,

blood system diseases, autoimmune diseases, and malignant

tumors; (b) patients with primary subarachnoid hemorrhage,

secondary cerebral hemorrhage, such as trauma, intracranial

tumors, ICH caused by hemorrhage after an ischemic stroke,

and severe coagulation dysfunction; (c) patients on antiplatelet

drugs, hormones, immunosuppressants, and antibacterial agents

in the past 1 month; and (d) patients with missing clinical data.

Based on the diagnosis and inclusion and exclusion criteria, 393

patients with end-stage kidney disease complicated with cerebral

hemorrhage owing to long-term hemodialysis were included.

Of these 393 patients, 73 patients were included in the ICH

group, whereas 320 patients were included in the non-ICH

group. Because this study had a retrospective design, there

was no security-related risk. The present study was approved

by the Ethics Committee of the Affiliated Hospital of Xuzhou

Medical University.

2.3. Inclusion of observed variables

The clinical data of patients were collected with reference to

clinical experience, reported literature, and medical records in

the electronic medical record systems of the three centers. Data
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regarding the following five aspects were collected: (1) demographic

data (sex and age); (2) vascular risk factors (hypertension,

diabetes, polycystic kidney disease, and duration of dialysis);

(3) baseline blood pressure (systolic blood pressure [SBP] and

diastolic blood pressure [DBP] before and after dialysis); (4)

treatment during hemodialysis (including anticoagulant dosage,

dialysis access, and blood flow velocity); and (5) laboratory

tests (white blood cells [WBCs], platelets [PLTs], hemoglobin

[HGB], neutrophils [Nes], lymphocytes [Lys], hematocrit [HCT],

C-reactive protein [CRP], neutrophil-to-lymphocyte ratio [NLR],

platelet-to-lymphocyte ratio [PLR], alanine aminotransferase

[ALT], aspartate aminotransferase [AST], serum total protein

[TP], serum albumin [ALB], blood urea nitrogen [BUN], serum

creatinine [Scr], cystatin C [CysC], eGFR, uric acid [UA],

triglyceride [TG], total cholesterol [TC], low-density lipoprotein

[LDL], high-density lipoprotein [HDL], blood potassium [K],

FIGURE 1

Heat map of the correlation of patient’s clinical features.

TABLE 2 Comparison of the predictive performance of five machine learning algorithms in the validation set.

Di�erent algorithms Accuracy
(95%CI)

Precision
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

F1–score
(95%CI)

SVM 0.631 (0.546–0.715) 0.309 (0.272–0.345) 0.753 (0.603–0.902) 0.645 (0.485–0.806) 0.422 (0.377–0.466)

CNB 0.784 (0.741–0.827) 0.457 (0.399–0.514) 0.733 (0.652–0.815) 0.786 (0.716–0.857) 0.556 (0.502–0.610)

KNN 0.785 (0.766–0.803) 0.342 (0.248–0.437) 0.652 (0.599–0.706) 0.695 (0.657–0.733) 0.427 (0.336–0.518)

LR 0.835 (0.813–0.857) 0.539 (0.509–0.568) 0.861 (0.807–0.916) 0.853 (0.799–0.907) 0.659 (0.637–0.682)

XGboost 0.939 (0.926–0.952) 0.949 (0.910–0.988) 0.932 (0.913–0.951) 0.952 (0.930–0.973) 0.938 (0.921–0.956)

SVM, support vector machine; CNB, complement naive Bayes; KNN, k nearest neighbors; LR, logistic regression; XGBoost, extreme gradient boost.
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blood sodium [Na], blood calcium [Ca], calcium–phosphorus

product, and blood phosphorus [P]).

2.4. Selection of machine learning models

Before constructing ML models, the original clinical data were

normalized. Normalization can improve the speed of gradient

descent to find the optimal solution, and the algorithm for

Euclidean distance can effectively improve the accuracy. In this

study, the min–max normalization method was used to normalize

the characteristic values of clinical data to the range of (0,1).

Approximately 70% of the samples in the dataset were

randomly selected as the training set, whereas the remaining

30% of the samples were used as the validation set. The dataset

is represented as D = {(xi, yi), i = 1, 2, . . . ,N}, where

xi is [xi1, xi2, xi3, . . . , xip], which is a row vector with input

variables (or features) of real value as its elements, and yi ∈ {0, 1}

is a scalar with the output of an integer value as its element.

The task in hand was a binary classification problem, that is, the

generation of a model (y = f [x]) in the training set. The model was

subsequently verified in the validation set to predict ŷk = f (xk).

The predicted output ŷk should be similar to the actual output. All

models were tested using Python.

We applied five ML algorithms to model the data: logistic

regression (LR), support vector machine (SVM), K-nearest

neighbor (KNN), complement Naive Bayes (CNB), and XGBoost.

To be able to ensure that the training samples selected for multiple-

model training were consistent, we generalized the performance

of each model over multiple training sessions using a resampling

training/validation mechanism. The XGBoost (version 1.2.1),

lightGBM (version 3.2.1), and sklearn (version 0.22.1) packages

were used for developing the ML models. For the RF algorithm,

“ntree” was set to 100, and “mtree” was set to 3. To avoid overfitting

and enhance interpretability, the maximum tree depth was set to

eight nodes in the XGBoost algorithm. In addition, to evaluate

the predictive accuracy of various ML models, accuracy, precision,

sensitivity, specificity, F1 score, and the area under the receiver

operating characteristic curve (ROC) were evaluated.

SHAP is a “model interpretation” package developed based on

Python. To understand the results of the model output, the SHAP

package was used to interpret and sort the features of the trained

model and examine the contribution of each element in the features

to the model.

2.5. Statistical analysis

The R software (version 4.02) was used for data processing and

statistical analysis. Categorical variables were expressed in terms of

quantity and percentage and were compared using Fisher’s exact

test or the chi-square test. For continuous variables, the Shapiro–

Wilk test was initially used to determine whether the variables

conformed to a normal distribution, and the independent sample

t-test (conforming to a normal distribution) was subsequently

used for comparing the data, which were expressed as mean

± standard deviation. The Mann–Whitney U-test was used to

FIGURE 2

ROC curve demonstrating the performance of ML models in

predicting ICH in patients undergoing MHD.

compare data with non-normal distribution, which were expressed

as the median (first and third quartiles). A P <0.05 was considered

statistically significant.

3. Results

3.1. Baseline patient characteristics

A total of 393 patients were included in this study, and the

baseline characteristics of the ICH and non-ICH groups are shown

in Table 1. In terms of demographic characteristics, no significant

differences were observed in the sex and age of patients between the

two groups. The history of diabetes and polycystic kidney disease

was a significant variable in terms of underlying diseases. The

blood flow rate and SBP before and after dialysis were important

variables in terms of dialysis indicators. Laboratory indices, such

as the levels of CRP, LDL, and HDL, were significantly different

between the two groups. We further constructed a heat map

demonstrating Spearman correlation coefficients to visualize the

correlation between variables with differences (Figure 1).

3.2. Comparison of the predictive
performance of all models

Five ML algorithms were used to construct predictive

models. The training set was used to create and train the

models. All ML models were tested in the test set, and their

accuracy, precision, sensitivity, specificity, and F1 score were

compared. The XGBoost model had the highest accuracy,

precision, sensitivity, specificity, and F1 score (0.939, 0.949,
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FIGURE 3

Characteristic ranking of important variables in the model.

0.932, 0.952, and 0.938, respectively) (Table 2). Figure 2 shows

a ROC curve demonstrating the predictive performance

of all models. The XGBoost model (AUC = 0.979; 95%

CI, 0.953–1.000) demonstrated optimal performance in the

validation set. Therefore, the XGBoost model can be considered

an ideal model for predicting the risk of ICH in patients

undergoing MHD.

3.3. Explainable analysis of overall features

XGboost was used to rank the importance of features.

Figure 3 shows the ranking of the most important

variables in the model. The top five variables were

LDL, HDL, CRP, pre-dialysis SBP, and HGB. The

interpretation of the impact of these features is roughly

consistent with that reported in previous studies and

clinician perception.

Figure 4 shows a characteristic density scatter plot, which

demonstrates the effects of the main features in the dataset on

the predictive performance of the model. The abscissa represents

the SHAP value, which represents the contribution of a feature in

the model to the overall output. SHAP values <0, equal to 0, and

>0 represent negative, no, and positive contributions, respectively.

The left ordinate represents the features sorted by importance. The

color of the right ordinate, from blue to red, represents the feature

values from low to high. Lower LDL levels, higher CRP levels, lower

HDL levels, lower HGB levels, and higher pre-dialysis SBP have

higher SHAP values, indicating a higher likelihood of developing

ICH.
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FIGURE 4

SHAP summary plot of the XGBoost model demonstrates the relationship between each feature in the optimal model (XGboost) and SHAP values.

The higher the SHAP value of each feature, the higher the risk of ICH in patients undergoing MHD.

3.4. Explainable analysis of individual
features

As shown in Figure 5, the SHAP dependence plot demonstrates

the effects of a single feature on the final output of the XGboost

model and can be used to select the most significant features of the

model. CRP levels and pre-dialysis SBP were positively correlated

with SHAP values, that is, the larger the values, the higher the

risk of bleeding. However, the levels of LDL, HDL, and HGB

were negatively correlated with SHAP values, indicating that the

smaller the values, the higher the risk of bleeding (Figure 5A). We

selected LDL as a feature to determine the effects of HDL. The

red and blue dots represent high and low HDL levels, respectively.

After the data were normalized, it was found that when LDL was

less than the critical value of 0.3, regardless of HDL levels, the

SHAP value of LDL was always greater than zero. In addition,

when HDL was greater than the critical value, the SHAP value

of HDL was always less than zero (Figure 5B). The cutoff level of

LDL is 1.572 mmol/L in actual clinical practice. If this threshold

is exceeded, the possibility of ICH decreases. However, if this

threshold is not exceeded, the possibility of ICH increases. In

addition, the values of all main features are distributed differently

in different ranges and vary greatly in some regions. It remains

unclear whether these conditions have some specific significance,

which may have important implications for clinical outcomes. The

feature dependence plot provides information within a given range,

showing the trend of possible results. However, it is noteworthy

that the plot suggests correlation and not causality. Therefore, it

is necessary to integrate the results with clinical experience and

specific conditions to determine whether they can be used to

develop adjunctive intervention strategies.

In addition, SHAP can be used to analyze the influencing

factors of a cerebral hemorrhage in each patient. Figure 6 shows

the interpretation of the XGBoost model for the prediction of two

cases. Specifically, the arrows show the effects of each factor on

prediction. Features that increase the risk of developing ICH are

shown in red, and those that reduce the risk are shown in blue. The

stripe length of each feature indicates the importance of the feature

when making predictions. The longer the stripes, the greater the

contribution of the feature to the prediction. After combining the

influence of all factors, the corresponding prediction score of each

factor was calculated. Figure 6A demonstrates the contribution of

different features to prediction in a patient correctly predicted to

have ICH. CRP, LDL, and HGB had the largest contribution (red),

indicating that they were themain causes of cerebral hemorrhage in

the patient. The second patient was accurately predicted to have no

ICH (Figure 6B), with LDL, CRP, and pre-dialysis SBP identified

as protective factors. Although there were some risk factors, the

patient had no cerebral hemorrhage.

4. Discussion

Intracerebral hemorrhage is characterized by a high rate of

disability and death, which greatly increases the economic burden

on families and society, so it is essential to investigate the

factors influencing the complications of ICH events in MHD

patients. Many scholars have identified the risk factors of ICH and

hematoma expansion in patients undergoing MHD and screened

variables, such as serum calcium, serum creatinine, and serum

antiplatelet agents, via multivariate logistic regression (16, 17).

Unlike many previous studies, the present study innovatively
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FIGURE 5

SHAP dependence plot of main indicators. (A) The SHAP dependence plot demonstrates the e�ects of a single feature on the final output of the

XGboost model. (B) The SHAP dependence plot selects LDL as a feature to determine the e�ects of HDL.

used ML algorithms to screen for variables, and to the best of

our knowledge, this is the first study to report the development

of an ML-based predictive model to evaluate the probability of

concurrent ICH events in patients undergoing MHD. In addition,

we also applied four mainstreammachine learning models, namely,

LR, SVM, KNN, and CNB, to compare the predictive performance

of the XGBoost algorithm with these machine learning methods.

XGBoost is a lifting algorithm based on tree models. Since

its establishment in 2016, it has been used to deal with non-

linear relationships and complex interactions between variables

owing to its higher prediction accuracy and faster operation

speed (14). The XGBoost algorithm has been widely used

in the medical field, especially for the prediction of critical

illnesses. Po-Yu Tseng et al. used the combination of RF and

XGboost to predict the risk of acute kidney injury after cardiac

surgery, and the final AUC value was 0.843 (8). Pan et al.

used XGBoost to predict the mortality of critically ill patients

with COVID-19 admitted to the ICU. The AUC values of the

training and validation sets were 0.86 and 0.92, respectively (18).

The findings of the present study suggest that XGBoost can

effectively improve the prediction of ICH in patients undergoing

MHD. In this study, the predictors considered to be related

to ICH in actual clinical practice and literature were included;

patient information was collected as comprehensively as possible;

abnormal indicators of various metabolic disorders were refined;

ML algorithms were used to analyze variables; and finally, the

ROC-AUC value of the optimal model (XGBoost) was as high

as 0.979 (Figure 2), with the highest prediction accuracy and

significantly better performance than other mainstream machine

learning models.
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FIGURE 6

Interpretation of the SHAP model for the prediction of two cases. The red stripe feature is conducive to the prediction of a cerebral hemorrhage in

patients undergoing dialysis, whereas the blue stripe feature is conducive to the prediction of no cerebral hemorrhage. (A) The contribution of

di�erent features to prediction in a patient correctly predicted to have ICH. (B) The contribution of di�erent features to prediction in a patient

correctly predicted to have no ICH.

In addition, in this study, we used SHAP to interpret the

results of ML models. Emphasis is placed on features that have

the greatest impact on outcome measures, thus helping clinicians

to realize the rationale behind predicted outcomes early enough to

initiate prompt intervention. The results showed that changes in

LDL, HDL, CRP, SBP, and HGB levels were the main predictors

of ICH in patients undergoing MHD, which was consistent with

clinical studies.

Lipid is an indispensable neutral fat in the human body. To

date, numerous studies have investigated the relationship between

lipid metabolism and ICH. Lipid metabolism disorders in patients

undergoing long-term hemodialysis are closely related to the

occurrence of a cerebral hemorrhage (19, 20), which is consistent

with the results of this study. The Genetic and Environmental

Risk Factors for Hemorrhagic Stroke (GERFHS) reported a 33%

reduction in the risk of a cerebral hemorrhage in patients with

higher cholesterol levels, and a retrospective study (21) reported

a significantly increased risk of hemorrhagic stroke in patients

with lower HDL levels. The mechanism may be explored because

lower LDL-C levels are closely associated with an increased number

of cerebral microbleeds (CMBs) (22). Lobar CMBs are mainly

associated with cerebral amyloid angiopathy (CAA) (23). The ε

4 allele variation of apolipoprotein E (APOE) is a known genetic

risk factor for CAA. Genetic studies have shown a higher rate of

reduction in LDL-C concentrations with the APOE ε 4 genotype

vector (24). Recent studies have also shown that higher LDL-

C genetic risk scores are associated with a higher prevalence of

multiple lobar microbleeds (25). CMBs are independent risk factors

for ICH and strong predictors of future cerebral hemorrhage

(26). In addition, cholesterol is related to physiological processes

such as vascular wall construction. Extremely low cholesterol

levels may destroy the integrity of intracranial vascular endothelial

cells, aggravate vascular endothelial damage, and increase the

risk of cerebral hemorrhage (27). HDL is considered a protective

factor for atherosclerosis (28), and low HDL levels can aggravate

the progression of atherosclerosis, thus increasing the risk of a

cerebral hemorrhage.

CRP is an important part of the immune system and one

of the signs of acute inflammation (29). In this study, CRP

levels were significantly different between the ICH and non-

ICH groups, and CRP was highly correlated with ICH, which is

consistent with the findings of previous studies (30–32). Patients

undergoing MHD often have comorbid inflammation, which may

lead to endothelial damage and atherosclerosis (33, 34), thereby

increasing the morbidity and mortality of cerebrovascular diseases

(35). Genetic studies have shown that the significantly reduced

expression of haplotype H5 in the CRP genotype is closely

associated with hemorrhagic stroke (36). CRP induces endothelial

dysfunction by directly destroying the blood–brain barrier (BBB)

and induces monocytes to release proinflammatory cytokines,

leading to increased vascular permeability and cerebral hemorrhage

(37, 38).

According to the model results of this study, the SBP

before daily hemodialysis in the cerebral hemorrhage group was

higher than that in the control group, which is consistent with

the conclusion that hypertension is a risk factor for cerebral

hemorrhage in MHD patients as reported in previous studies.

Hypertension is a known traditional risk factor for ICH (39). In

patients with chronic kidney disease, renal function and excretion

are impaired, blood volume is increased, renin–angiotensin–

aldosterone system is activated in a feedback manner, and water

and sodium retention is aggravated. In this study, the higher

SBP before dialysis in patients with ICH may be related to

inadequate dialysis. In addition, during hemodialysis, the greater

hemodynamic changes and the excretion of antihypertensive drugs

will aggravate hypertension, resulting in increased pressure on

cerebral arteries. When the pressure on the vascular wall exceeds

the pressure, the cerebral vessels rupture and bleed, causing

cerebral hemorrhage.

Patients undergoing MHD are predisposed to anemia owing

to factors such as reduced erythropoietin synthesis (40). HGB is

the main indicator reflecting the anemic status of humans. Recent

studies have reported that the HGB level of patients with MHD

is negatively correlated with the risk of a cerebral hemorrhage

(41–43), which is consistent with the results of this study. The

underlying mechanisms may include vasoconstriction (44), platelet

aggregation (45, 46), and cytotoxic reaction caused by chronic

hypoxia (44), leading to brain dysfunction or damage.
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This study has some limitations. First, although this study had

a multicenter design, it only includes patients from three hospitals

in Xuzhou, China. In future studies, we will include datasets from

different regions and hospitals for external testing to improve the

generalization ability of the model. Second, the number of patients

with and without ICH was not well-balanced, which may have led

to impaired prediction. Considering that deep learning has been

widely used in the medical community in recent years, we will use

deep learning models to incorporate a wider range of data in future

studies. Overall, compared with traditional models, the prediction

model developed in this study contains more information and

has better predictive accuracy. In addition, the visualization of

results based on SHAP can, to a great extent, alleviate the “black

box” problem.

5. Conclusion

A predictive ML model was developed based on XGBoost, and

SHAP was used to explain the clinical significance of each risk

factor in predicting the occurrence of ICH in patients undergoing

MHD. ICH events in patients undergoing MHD are associated

with serum LDL, HDL, CRP, HGB, and pre-hemodialysis SBP

levels. The combination of the XGBoost algorithm and SHAP can

provide a clear explanation for risk prediction, which has great

application value in future clinical research. This combination can

help clinicians to implement early clinical interventions, provide

more comprehensive information for the long-term management

of patients undergoing MHD, and prevent and reduce the risk

of ICH.
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