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Sudden unexpected death in epilepsy (SUDEP) is defined as a sudden, unexpected,

non-traumatic, non-drowning death in a person with epilepsy. SUDEP is generally

considered to result from seizure-related cardiac dysfunction, respiratory depression,

autonomic nervous dysfunction, or brain dysfunction. Frequency of generalized tonic

clonic seizures (GTCS), prone posture, and refractory epilepsy are considered risk

factors. SUDEP has also been associated with inherited cardiac ion channel disease

and severe obstructive sleep apnea.Most previous studies of SUDEPmechanisms have

focused on cardiac and respiratory dysfunction and imbalance of the neural regulatory

system. Cardiac-related mechanisms include reduction in heart rate variability and

prolongation of QT interval, which can lead to arrhythmias. Laryngospasm and

amygdala activation may cause obstructive and central apnea, respectively. Neural

mechanisms include impairment of 5-HT and adenosine neuromodulation. The

research to date regarding molecular mechanisms of SUDEP is relatively limited. Most

studies have focused on p-glycoprotein, catecholamines, potassium channels, and

the renin-angiotensin system, all of which a�ect cardiac and respiratory function.
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Introduction

Sudden unexpected death in epilepsy (SUDEP) is defined as a sudden, unexpected,

non-traumatic, non-drowning death in a person with epilepsy, witnessed or unwitnessed, in

which an autopsy does not reveal an anatomical or toxicological cause of death (1). In a large

Chinese community cohort of 1,562 epileptic patients, 15 experienced suspected SUDEP during

the 5-year follow-up period; SUDEP incidence was 2.34 per 1,000 person-years (2). Sudden

epileptic death is believed to be related to cardiac dysfunction, respiratory depression, autonomic

nervous dysfunction, and brain dysfunction during seizure; however, the exact mechanism is

unclear (3–5). The purpose of this review is to summarize the current knowledge regarding

mechanisms of SUDEP.

SUDEP risk factors

The frequency of generalized tonic-clonic seizures (GTCS) is considered the most important

clinical risk factor for SUDEP (3, 6–8): the higher the GTCS frequency, the higher the risk of

SUDEP. Data from a pooled analysis of SUDEP risk factors indicate that patients who have one

to two GTCS per year are nearly three times as likely to experience SUDEP than patients who do

not have GTCS; patients who have more than 50 GTCS per year are more than 14 times as likely
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to experience SUDEP (8). Prone positioning during seizures is an

important risk factor for accidental death. Most instances of SUDEP

occur after a generalized seizure; patients are usually found in the

prone position (9, 10). In one study, 73.3% of SUDEP patients

died in the prone position and prone position was significantly

associated with SUDEP (11). Refractory epilepsy is also a risk

factor for SUDEP (12). SUDEP accounts for 5–30% of deaths in

all epileptic patients and up to 50% of deaths in patients with

refractory epilepsy (13). Furthermore, risk of SUDEP is also higher

in males, patients who have had epilepsy for many years, patients

with ion channel or arrhythmia-related gene mutations, patients with

neurological comorbidities, and patients taking multiple antiepileptic

agents (8, 14, 15, 17). The occurrence of SUDEP is also associated

with genes related to cardiac arrythmia and ion channels, especially

the mutation related to long QT syndrome (LQTS), which may

increase the risk of sudden death when combined with epilepsy

(16–18). Severe obstructive sleep apnea has also been associated

with increased risk of SUDEP (19). Seizure incidence is significantly

lower in obstructive sleep apnea patients who receive positive airway

pressure therapy than patients who are untreated (20). Structural

brain damage may also be a SUDEP risk factor. Changes in brain

structures and networks involved in central autonomic nerve and

respiratory control have been observed in SUDEP patients and

those at high-risk for SUDEP (21). These changes are mainly

changes in gray matter volume in the hippocampus, amygdala, and

thalamus (13, 22–24).

SUDEP mechanisms

Most studies which have examined the mechanisms underlying

SUDEP have focused on cardiac and respiratory dysfunction and

imbalance within the neural regulation system.

Cardiac dysfunction

Epilepsy may induce various transient cardiac effects, including

heart rate changes, heart rate variability (HRV), arrhythmia, cardiac

arrest and other electrocardiographic abnormalities (25). Acute

and adaptive changes in heart rhythm in epileptic patients is one

potential pathogenic SUDEP mechanism (18). To some extent,

HRV reflects the balance of the sympathetic and parasympathetic

autonomic nervous system divisions. An increase in HRV indicates

increased parasympathetic activity while a decrease in HRV indicates

a relative increase in sympathetic activity (26). In addition, HRV

in epileptic patients decreases in the interictal period, especially in

patients with temporal lobe epilepsy and drug resistant epilepsy

(27). Moreover, reduction in HRV is associated with higher risk

of SUDEP (28). Prolongation of the QT interval may be an

important cause of ventricular arrhythmias in epileptic patients

(29). Chahal et al. (17) reported that a prolonged QT interval

in epileptic patients was associated with increased mortality. In

particular, long QT syndrome, an inherited cardiac ion channel

disease, is characterized by prolonged ventricular repolarization and

ventricular arrhythmia, which may cause syncope or sudden cardiac

death (30). In a dog model of long QT syndrome, anticonvulsant

drugs can trigger torsade de pointes (31), which can progress to

ventricular fibrillation and sudden death (32). Repeated seizures

may also cause structural changes in the heart, which is another

potential SUDEP mechanism. Pansani et al. (33) reported that

repeated seizures in rats with epilepsy may damage the function

and structure of the heart through regulation of microRNA that

leads to myocardial cell hypertrophy and myocardial fibrosis. Similar

pathological changes have also been reported in autopsy studies of

SUDEP patients (34).

Respiratory dysfunction

Central and obstructive apnea and respiratory arrest have also

been suspected as mechanisms underlying SUDEP. Hypoxemia

caused by obstructive laryngospasm and subsequent respiratory

arrest may be a mechanism of accidental sudden death in epileptic

patients (35, 36). Tavee et al. (37) reported severe laryngospasm,

continuous inspiratory wheezing, and cyanosis during a GTCS in

a patient with refractory epilepsy. In animal studies, laryngospasm

has been associated with seizure-associated reflux of gastric acid into

the throat (35, 38) as well as seizure-associated increased recurrent

laryngeal nerve discharge (36). Reflux is probably the cause of

epilepsy-associated laryngeal spasm. In a rat epilepsy model, ST

segment elevation on electrocardiography, intermittent apnea, and

electroencephalography narrowing due to hypoxia were observed

after gastric reflux entered the throat (38). Another rat study reported

that blocking reflux into the esophagus could eliminate sudden

epileptic death (35).

Amygdala activation may cause central apnea and sudden

death in epileptic patients. Spread of seizure activity to the

amygdala induces central apnea and decreased oxygen saturation

(39–41). An area in the human amygdala that inhibits respiration

and elicits apnea has been identified in children with epilepsy

(42). Many patients with epilepsy are completely unaware of

their apnea and do not report dyspnea (41). In addition, in a

mouse model of SUDEP, electrolytic damage of the amygdala

significantly reduced the incidence of seizure-induced respiratory

arrest (S-IRA) and death (43). However, other studies have reported

that seizures involving the amygdala are not accompanied by

apnea/hypoventilation or that apnea/hypoventilation precedes the

seizure. These findings indicate that amygdala involvement may

not be important for induction of apnea/hypoventilation in all

seizures (44).

Pulmonary edema/congestion is the most common pathological

lung finding in SUDEP patients (34). In a forensic analysis of

nine SUDEP cases, all exhibited pulmonary edema, pulmonary

congestion, alveolar hemorrhage, and pulmonary small bronchiole

wall contraction (45). GTCS are associated with neurogenic

pulmonary edema (NPE). In post-ictal pulmonary edema, GTCS are

the most frequently reported type (46). In one post-ictal neurogenic

pulmonary edema study, five of 47 patients had symptoms of

pulmonary edema and all five had GTCS (47). Moreover, the presence

of an abnormality on chest radiography is significantly associated

with the duration of the preceding GTCS (48). In animal models of

epilepsy, pulmonary vascular pressure increases in proportion to the

duration of seizure. This induced hypertension discharges fluid from

the vascular compartment into the pulmonary parenchyma, causing

pulmonary edema (49). This may be the mechanism of neurogenic

pulmonary edema caused by epilepsy.
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Neurotransmitter dysfunction

5-hydroxytryptamine (5-HT) and adenosine may participate in

the pathophysiological mechanism of SUDEP (50). 5-HT plays a

neuroregulatory role in respiratory control. It provides tension and

excitability drive for multiple components of the respiratory network,

detects changes in tissue pH/CO2, and regulates ventilation by

affecting neurotransmitter release (51). In DBA/1 mice, S-IRA is

related to a defect in 5-HT neurotransmission in the dorsal raphe

nucleus (52). Light stimulation of 5-HT neurons in the dorsal raphe

nucleus and use of selective serotonin reuptake inhibitors and the

antiepileptic drug fenfluramine can enhance the effect of 5-HT and

reduce S-IRA incidence (52–54). 5-HT3 and 5-HT4 receptors may

be involved in the above mechanism (53, 54). In a rat epilepsy

model, seizures induced by pilocarpine can cause depletion of 5-HT

in the hippocampus and significantly damage serotonergic neurons

in the raphe nucleus (55). Adenosine signaling has a variety of

beneficial and harmful effects in the context of epilepsy. Inhibition

of adenosine, which leads to respiratory dysfunction during seizure,

may be an important SUDEP mechanism (56). In DBA/2 epileptic

mice, blockade of adenosine metabolism was significantly associated

with increased incidence of S-IRA, while adenosine A2 receptor

antagonists were significantly associated with lower incidence (57).

A1 receptor activation with specific agonists can inhibit drug-

resistant epileptic events in human temporal cortex slices from

drug-resistant patients (58). In patients with temporal lobe epilepsy

and hippocampal sclerosis, density of cortical A2A receptors was

significantly lower in those with a higher risk of SUDEP, which

suggests impaired neuroglial dysfunction and adenosine regulation

in these patients. In addition, amygdala A1 receptor density was

increased in the high-risk patients, which may contribute to peri-

ictal amygdala dysfunction in SUDEP (59). Adenosine is closely

associated with SUDEP and adenosine receptors may play an

important role.

Molecular mechanism

P-glycoprotein

P-glycoprotein (P-gp) may be involved in SUDEP, which is

the main cause of death in patients with refractory epilepsy

(60). Multidrug resistance in patients with refractory epilepsy is

primarily related to overexpression of ABC transporters such as P-

gp (61, 62). Regardless of metabolic biotransformation, the biological

distribution of antiseizure medications and their metabolites depends

on functional expression of ABC transporters in the blood–brain

barrier, intestine, liver, and kidney (61). However, high-frequency

uncontrolled seizures can induce expression of ABC transporters

such as P-gp in excretory organs and cells which normally do not

express them such as neurons and cardiomyocytes; this increases the

risk of refractory epilepsy (61). The expression of P-gp in neurons

and myocardial cells can significantly reduce the resting membrane

potential (−60 to −10mV) and affect function in a manner that

predisposes to epilepsy, malignant arrhythmia, and sudden accidental

death (61, 62). Auzmendi et al. (60) reported that repeated induction

of seizures inWistar rats causes P-gp expression, electrocardiography

changes, and increased mortality; these findings may be related to

depolarization caused by myocardial cell P-gp expression.

Catecholamines

Status epilepticus causes release of a large amount of

catecholamines (63), which can cause myocardial ischemia, calcium

ion overload, oxidative stress, and mitochondrial dysfunction

that lead to cardiac damage (64). In animal studies, repeated

induction of S-IRA in DBA/1 mice can cause ventricular calcification

necrosis; the incidence and lesion size depend on the total

number of S-IRA episodes (65). Verrier et al. (66) introduced

the concept of “epileptic heart,” which is “a heart and coronary

vasculature damaged by chronic epilepsy as a result of repeated

surges in catecholamines and hypoxemia leading to electrical and

mechanical dysfunction.”

K+ channel

Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium

channels and is widely expressed throughout the nervous system,

serving as a key regulator of neuronal excitability (67, 68). In wild-

type mice, Kv1.1 can be detected in brain nuclei associated with

heart and lung function including the basolateral amygdala nucleus,

dorsal respiratory group nuclei, dorsal motor nucleus of the vagus

nerve, nucleus ambiguus, ventral respiratory column nuclei, and the

pontine respiratory group nuclei. It is also found in the posterior

trapezoidal nucleus and central area nucleus, which are crucial for

chemical sensing (69). Neurons in the posterior trapezium nucleus

directly regulate respiration in response to CO2/hydrogen ion

changes in tissues and control respiration by integrating information

from several respiratory centers, including the raphe medulla (70).

Kv1.1 subunits control spontaneous excitatory synaptic activity of

pyramidal neurons in the basolateral amygdala (71). Kcna knockout

mice lack the Kv1.1 subunit and are used as a genetic model of

SUDEP (72). In these mice, the inhibitory control of interneurons

in the central lateral amygdala nucleus is reduced and abnormal

parasympathetic transmission leads to impaired neural control of

cardiac rhythm (69, 71, 73). With Kv1.1 deficiency, seizures may

cause proliferation of glial cells in the nuclei of the heart and lung

centers, which may cause abnormal breathing (69). Kv1.1 deficiency

also reduces the inhibitory control of interneurons in the central

lateral amygdala and the overexcitation related to seizure inhibition

(71). In Kv1.1-deficient mice, epileptic seizures cause abnormal

parasympathetic nerve transmission, which leads to impaired neural

control of heart rhythm and malignant arrhythmias (73).

In animals with chronic epilepsy, levels of the Kv4.2 myocardial

voltage-gated potassium channel are decreased (74). The Kv4.2

subunit contributes to the pore-forming region of channels that

express a transient A-type potassium ion current in hippocampal

CA1 pyramidal cell dendrites. It is the main medium of

hyperpolarized A-type current in the brain, plays an important

role in signal processing and synaptic integration, and is a key

regulator of neuronal excitability (75, 76). Compared with wild-type

mice, the latency to seizure and status epilepticus onset is lower

in Kv4.2 knockout mice (76). Silencing of Kv4.2 is mediated by

miR-324-5p (75, 77). In epileptic mice, increased Kv4.2 mRNA

silencing causes decreased Kv4.2 protein level and production of

type A current; its role in regulating neuronal excitability is also

limited (77). Inhibition of miR-324-5p can reduce the frequency
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of spontaneous seizures and epileptic spikes between seizures and

produce neuroprotective and antiepileptic effects (75, 77).

Renin-angiotensin system

The renin-angiotensin system has also been implicated in SUDEP

(78). Angiotensin II is the main peptide of the system. Various signal

pathways in the central nervous system are stimulated by angiotensin

II receptor-1 (ATR1) and angiotensin II receptor-2 (ATR2) (79).

Activation of ATR1 is pro-inflammatory and pro-epileptogenic (80).

Angiotensin converting enzyme and ATR1 are upregulated in the

brain of rats with repetitive seizures (81). We speculate that repeated

seizures will lead to upregulation of ATR1 in the brain, causing pro-

inflammatory and pro-epileptogenic effects that may lead to SUDEP.

Other renin-angiotensin system pathways in the nervous system

include angiotensin-(1–7) binding to the receptor Mas (82, 83).

Angiotensin-(1–7) participates in the learning and memory process

that takes place in the central marginal region of the brain. In

chronically stimulated epileptic rats, levels of thimet oligopeptidase

[the main enzyme involved in generation of angiotensin-(1–7)],

angiotensin-(1–7), and receptor Mas transcripts are elevated (82).

However, the effect of this on risk of SUDEP is unknown.

Other mechanisms

Oxygen-conserving reflexes (OCR), amygdala rapid kindling

(ARK), and central nervous system damage owing to repeated GTCS

may also be potential mechanisms of SUDEP. Biggs et al. (84)

reported that in epileptic rats, induction of OCR causes fluctuations

in heart rate and respiratory rate similar to human SUDEP. The

ability of the carotid body to stimulate respiratory restart appears

to be impaired during seizures (85). Totola et al. (86) reported

that in epileptic rats, the number of Fos-immunoreactive neurons

in the posterior trapezoidal nucleus, raphe magnus nucleus, and

nucleus tractus solitarius decreased after ARK; in addition, the

ventilatory volume decreased significantly. ARK damages respiratory

neurons in the brain stem, resulting in respiratory dysfunction.

After a single GTCS, the blood–brain barrier exhibits signs of

inflammation, neuronal damage, and transitory destruction (87).

Therefore, repeated GCS attacks may cause central nervous system

damage and SUDEP.

To sum up, catecholamine, P-gp and ATR1 may participate

in SUDEP as important molecular biomarkers. The gene

mutation related to potassium channel may also involve in its

occurrence (Figure 1).

Discussion

Among the various SUDEP risk factors, frequency of GTCS

appears to be the most important. Prone position, male sex,

chronic epilepsy, ion channel or arrhythmia-related gene mutations,

neurological comorbidities, polytherapy, long QT syndrome,

obstructive sleep apnea, and structural brain damage are other

potential factors.

Previous studies of SUDEP mechanisms have focused on

malignant arrhythmias, myocardial cell hypertrophy, myocardial

fibrosis, central and obstructive apnea, pulmonary edema, and

abnormal regulation of the neurotransmitters 5-HT and adenosine.

Research of underlying molecular mechanisms has been limited;

therefore, SUDEP is often difficult to distinguish from other causes

of sudden death (88).

There are many possible molecular mechanisms of SUDEP. First,

epileptic seizures induce the expression of P-gp in neurons and

myocardial cells, which reduces resting membrane potential and

FIGURE 1

Possible molecular mechanisms of sudden unexpected death in epilepsy.
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predisposes to development of epilepsy, malignant arrhythmias, and

sudden death. Second, after status epilepticus, a large amount of

catecholamines are released, which can cause myocardial ischemia,

calcium overload, oxidative stress, and mitochondrial dysfunction.

In turn, these may cause myocardial damage. Third, abnormal

potassium channels may increase the risk of cardiopulmonary

dysfunction during seizures. Fourth, repeated seizures lead to

upregulation of ATR1 in the brain, causing pro-inflammatory

and pro-epileptogenic effects. Finally, OCR, ARK, and central

nervous system damage caused by repeated GTCS may be involved

as well.

The mechanism of SUDEP is complex and most previous

studies have focused on cardiac and respiratory dysfunction and

imbalance of the neural regulatory system. Through a systematic

literature review, we speculate on the mechanism of certain

SUDEP cases as follows: (1) Repeated seizures cause chronic

structural damage to the brain, especially the respiratory and cardiac

centers. This cumulative damage causes cumulative increased risk

of sudden death. (2) During seizures, especially GTCS, sudden

neurological disorder and cardiac respiratory dysfunction may

cause sudden death. (3) Deletions in ion channel genes deletion

increase the risk of cardiopulmonary dysfunction during seizures.

Overall, this review summarizes the existing mechanisms and

molecular mechanisms of SUDEP, hoping to update the research

progress and provide useful reference for forensic scholars in

routine cases.
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