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Objectives: To explore changes in brain apparent diffusion coefficient (ADC) in 
normal fetuses and fetuses with complex congenital heart disease (CHD) during 
the second and early third trimesters.

Methods: This single-center prospective study was conducted from May 2019 
through October 2021. We  measured and compared the mean ADC values 
between 23 fetuses with CHD and 27 gestational age (GA)-matched controls using 
covariance analyses. ADC density plots and histograms were used to compare brain 
characteristics. False-discovery rates (FDR, α = 0.05) correction was used for multiple 
testing.

Results: The mean ADC in the frontal white matter, temporal white matter, 
parietal white matter, occipital white matter, cerebellar hemisphere, central 
area of the centrum semiovale, basal ganglia region, thalamus, and pons were 
not significantly different (all p > 0.05). Based on histogram analysis, there were 
no significant differences between the controls and fetuses with CHD after FDR 
correction. However, the ADC density plots showed significant heterogeneity 
between the controls and fetuses with CHD.

Conclusion: The mean ADC values and ADC histogram analysis did not differ 
between the CHD and normal groups. The ADC density plots may provide 
supplementary information and improve the sensitivity for detecting early brain 
changes in fetuses with CHD.
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Introduction

Brain injury associated with complex congenital heart diseases 
(CHD) has been detected at an early stage before corrective surgery in 
neonates (1–4). Recent evidence suggests a high prevalence of 
structural brain anomalies (SBAs) in fetuses with different types of 
CHD (5). SBA rates were similar in the second and third trimesters of 
pregnancy (5). Dovjak et al. concluded that brainstem and cerebellar 
volumes on magnetic resonance imaging (MRI) are smaller in fetuses 
with CHD at 20–37 weeks of gestation (6). Some findings indicate that 
a small fetal brain volume may be a significant imaging biomarker of 
future neurodevelopmental risk in CHD (7).

Moreover, specific CHD lesions can cause abnormal cerebral 
blood flow (8–10) and chronic cerebral hypoxemia (11–14). 
Furthermore, they may influence neurogenesis and interneuron 
migration and cause delayed brain maturation and cortical 
development (15). However, the effects of volume changes, abnormal 
cerebral blood flow, and chronic cerebral hypoxemia on fetal brain 
diffusion are unclear during the second and early third trimesters.

Previous studies have shown that diffusion-weighted imaging 
(DWI) and apparent diffusion coefficient (ADC) images, based on 
microscopic water diffusion, can help quantify fetal brain 
maturation and reveal diffuse white matter abnormalities (16–18). 
For example, Miller et al. found abnormally high diffusion in the 
neonatal brain before corrective heart surgery (19). Other case 
reports have shown that ADC values in the periarterial white 
matter and thalamus were higher in fetuses with CHD during the 
late third trimester (20). However, the published studies only 
included a small sample size and the brain ADC changes in fetuses 
with CHD during the second and early third trimesters in utero 
remain unclear (20). In addition, no study has applied ADC 
density plots and ADC histograms to explore brain diffusion 
changes in fetuses with CHD. Therefore, exploration of brain 
diffusion changes during the early stages in utero is essential.

In this study, we  explored brain ADC changes in normal 
fetuses and fetuses with complex CHD during the second and 
early third trimesters. We hypothesize that complex CHD affects 
fetal brain development at an early stage in utero, resulting in 
delayed brain maturation, structural abnormalities, and high 
ADCs compared to healthy gestational age (GA)-matched 
control fetuses.

Materials and methods

Participants

This prospective study was conducted from May 2019 through 
October 2021 in a single center. It was approved by our institutional 
review board and all participants provided written informed consent. 
We enrolled pregnant women with single fetuses showing complex 
CHD between 20 and 31 weeks of pregnancy and normal healthy 
fetuses between 20 and 40 weeks of pregnancy. All pregnant women 
underwent fetal brain DWI and no sedation or exogenous contrast 
agent was administered. The inclusion criteria for the normal group 
were routine pregnancy screening evaluations and no clinical or 
ultrasound evidence of other abnormalities. Our inclusion criterion 
for the CHD group was fetal echocardiogram confirmation of CHD 

according to established guidelines (21). The exclusion criteria for the 
normal and CHD groups were (a) maternal gestational diabetes 
mellitus, hypertensive disorder complicating pregnancy, (b) multiple 
pregnancies, (c) fetal chromosomal or genetic abnormalities 
diagnosed by amniocentesis, and (d) poor image quality due to fetal 
or maternal motion artifacts.

MRI acquisition

All participants underwent prenatal brain MRI on a 3.0-T MR 
scanner (MAGNETOM Skyra, Siemens Healthcare, Erlangen, 
Germany) with an 18-channel body coil. DWI was performed using a 
single-shot echo-planar sequence and diffusion was measured in three 
orthogonal directions at two values of b (0 s/mm2 and 1,000 s/mm2). 
The parameters were as follows: repetition time (TR) = 4,900 ms; echo 
time (TE) = 87 ms; slice thickness = 4 mm without a slice gap; voxel size 
= 1 7 1 7 4 0. . .× × mm ; and acquisition time = 2 min 12 s.

Image analysis

Regions of interest (ROIs) were drawn on ADC maps in the 
frontal white matter (FWM), temporal white matter (TWM), 
parietal white matter (PWM), occipital white matter (OWM), 
cerebellar hemisphere (CH), central area of the centrum semiovale, 
basal ganglia region (BGR), thalamus (TH), and the pons 
(Figure 1). ROIs were placed by a pediatric neuroradiologist with 
3 years of experience in fetal brain MR imaging. The 
neuroradiologist, who was blinded to group allocation, underwent 
a training session before placing the ROIs. The manually drawn 
ROIs varied in shape and size, depending on the specific brain 
region and fetal brain size. ADC values from both sides of the brain 
were averaged for each anatomic location.

Histogram analysis

Single-slice ADC histograms were generated using Mazda software. 
Nine histogram parameters were obtained and statistically analyzed. The 
histogram shows the pixel frequency for each ADC value. The ADC map 
slice was chosen at this level and a single axial brain slice was selected 
because CHD can preferentially affect the basal ganglia and thalamus 
(20), as illustrated in Supplementary Figure S1A.

Statistical analyses

Linear regression and polynomial quadratic nonlinear analyses 
were used to reveal the correlation between GA and ADCs in 
various brain regions. Density plots of ADCs in the nine ROIs for 
each GA were calculated using R version 4.0.2 (R Foundation, 
Vienna, Austria). These graphs represent the distribution of ADCs 
for each structure. With gestational age (GA) as a covariate, 
we conducted an analysis of covariance to compare ADC values in 
various brain regions between the CHD group and the normal 
control group. Histograms of ADCs in the whole brain for each GA 
were calculated. With gestational age (GA) as a covariate, 
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we  conducted an analysis of covariance to compare histogram 
parameters between the CHD group and GA-matched controls. 
False-discovery rates (FDR, α = 0.05) correction was used for 
multiple testing. Statistical analysis was performed using GraphPad 
Prism 9.0.0 (GraphPad Software, San Diego, CA, United States). 
Statistical significance was set at p < 0.05.

Results

Characteristics of the cohort

In this study, 23 pregnant women with a confirmed diagnosis of 
fetal complex CHD and 64 pregnant women with normal healthy 
fetuses were enrolled. In addition, we selected 27 GA-matched normal 
controls to compare ADCs with those obtained in CHD fetuses using 
covariance analysis. No significant difference was observed in GA 
between the CHD and the normal control groups (p = 0.38). The CHD 
structural lesions included complete transposition of great arteries 
(TGA), hypoplastic left heart syndrome (HLHS), coarctation of aorta 
(COA), tetralogy of Fallot (TOF), severe pulmonary stenosis or atresia 
(PS/PA), single ventricle (SV), and total anomalous pulmonary venous 
connection (TAPVC). The clinical characteristics of our cohort are 
shown in Table 1.

Relationship between ADCs and GA in the 
normal group

Figure 2 shows the relationship between ADCs and GA in the 
normal group (GA: 20–40 weeks) and their corresponding fitting 

curves. A significant negative linear correlation was found in the 
CH (R2 = 0.582, p < 0.001), pons (R2 = 0.538, p < 0.001), and TH 
(R2 = 0.425, p < 0.001). A significant quadratic polynomial 
correlation was found in the FWM (R2 = 0.352, p < 0.001), PWM 
(R2 = 0.265, p < 0.001), OWM (R2 = 0.263, p < 0.001), TWM 
(R2 = 0.212, p = 0.001), BGR (R2 = 0.252, p < 0.001), and centrum 
semiovale (R2 = 0.190, p = 0.002).

The ADCs of each ROI showed significant heterogeneity and unique 
developmental trajectories, as depicted in Supplementary Figure S2. ADC 
density plots for GA 20–40 weeks in the nine representative ROIs in the 
normal group are summarized in Supplementary Figure S3. Figure 3 
shows that the ADCs in the pons were the lowest, followed by TH and 
BGR, while those in PWM were the highest.

Relationship between ADCs and GA in the 
CHD and GA-matched controls

Figure 4 shows the relationship between ADCs and GA in the 
CHD and GA-matched normal groups and their corresponding fitting 
curves. In the GA-matched normal group, the ADCs of the FWM, 
centrum semiovale, and BGR increased significantly across GA 
(p = 0.001, 0.001, and 0.041, respectively), and the ADCs of the TH 
decreased significantly across GA (p = 0.001). However, in the CHD 
group, the ADCs of the PWM, OWM, and centrum semiovale 
increased significantly across GA (p = 0.011, 0.005, and 0.006, 
respectively).

Comparison of ADCs in various brain 
regions in fetuses with CHD and 
GA-matched controls

Figure 5 shows the density plots of the nine representative ROIs 
in the GA-matched controls and CHD group, which also showed 
significant heterogeneity. Figure 6 shows a comparison of ADCs in the 
CHD group and GA-matched controls. ADCs were not significantly 
different between the FWM, TWM, PWM, OWM, CH, centrum 
semiovale, BGR, TH, and pons (p > 0.05).

TABLE 1 Clinical characteristics in the CHD and GA-matcher groups.

Control CHD p value

Maternal 

age(year)
29.78 ± 4.77 28.14 ± 3.43 0.18

GA (week) 26.81 ± 2.17 27.32 ± 1.87 0.38

Structural lesion

TGA NA 6 (26.1%)

HLHS NA 4 (17.4%)

COA NA 4 (17.4%)

TOF NA 5 (21.7%)

PS/PA NA 1 (4.3%)

SV NA 2 (8.6%)

TAPVC NA 1 (4.3%)

NA indicates not applicable.

FIGURE 1

The ADC map of fetuses aged 30.71 weeks shows ROIs in the 
(A) centrum semiovale and parietal white matter (PWM); (B) frontal 
white matter (FWM), basal ganglia region (BGR), thalamus (TH), and 
occipital white matter (OWM); (C) temporal white matter (TWM) and 
pons; (D) cerebellar hemisphere.

https://doi.org/10.3389/fneur.2023.1136633
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Song et al. 10.3389/fneur.2023.1136633

Frontiers in Neurology 04 frontiersin.org

ADC histogram analysis in the CHD group 
and GA-matched controls

Table 2 shows a comparison of all histogram features between the 
two groups. Among the characteristics of the nine parameters 
extracted from the histogram, the difference in the 10th percentiles 

between the two groups was significant (p = 0.046). However, it 
showed no statistical significance after FDR correction. In addition, 
the mean, skewness, kurtosis, variance, minimum and maximum 
values, and 50th, 90th, and 99th percentiles showed no differences (all 
p > 0.05). Representative cases of histogram features are shown in 
Supplementary Figures S1B,C.

Discussion

Our results show that ADCs of healthy fetuses acquired with a 
3.0-T scanner align with those reported in previous studies (22–25). 
In addition, this in vivo study suggests that the mean ADCs in the 
CHD group did not differ significantly from those in the GA-matched 
normal fetuses during the second and early third trimesters. In 
addition, we applied ADC histogram analysis for the first time in the 
brains of fetuses with CHD at GA 20–30 weeks.

Our results demonstrate that regional brain ADC measurements 
using 3.0-T scanners are feasible. With the widespread application 
of 3.0-T MRI in the fetal brain, establishing normal ADC references 
to evaluate normal and abnormal brain development quantitatively 
has gained importance. In our study, the ADCs differed among 
various brain regions, consistent with previously reported values for 
1.5-T scanners (22, 23, 26). Regional ADC differences can reflect 

FIGURE 2

The relationship between ADCs and GA in the normal group (GA: 20–40 weeks) and their corresponding fitting curve. FWM (A), PWM (B), OWM (C), 
TWM (D), BGR (E), Centrum semiovale (F), TH (G), CH (H), Pons (I).

FIGURE 3

Regional brain ADCs in the normal group during the second and 
third trimesters.
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cellularity density, neuronal maturation, and myelination during 
gestation in brain development. For example, in most deep white 
matter areas, the primary increase before the 30th gestational week 
could be  due to the cellular structure and intermediate zone 
containing migrating cells (27). The subsequent decline results from 
the disappearance of the intermediate zone, a decrease in water 
content, and maturation.

In contrast, the pons showed the lowest ADC, followed by TH, 
BGR, and CH. This may be because these regions are composed of 
more densely packed cells than non-myelinated white matter, contain 
larger interstitial water, and undergo much earlier maturation (26). In 
addition, the process of maturation and myelination of deep brain 
white matter in a normal fetal brain is from the inferior to the superior 
and from the posterior to the anterior (28, 29).

In contrast to earlier findings (20, 30), no difference was detected 
in the mean ADCs of the FWM, TWM, PWM, OWM, CH, centrum 
semiovale, BGR, TH, and pons between the CHD and GA-matched 
controls. Although this finding is inconsistent with our hypothesis, it 
can be explained in several ways. First, the fetuses with CHD that 

we included were between the second and early third trimesters; this 
early period may include fetal brain sparing and autoregulation (10). 
Second, the CHD types we included were heterogeneous, and different 
types of CHDs may have varied effects on brain maturation. Third, 
ROI placements are usually over a small brain area, which may 
introduce a subjective component to image measurements and 
analysis as well as some bias.

We utilized ADC histograms to compare brain characteristics 
between fetuses with CHD and normal fetuses. After applying the FDR 
correction, the ADC histogram analysis did not reveal any information 
in early-stage fetuses with CHD. In contrast to histograms, density 
plots offer a smoother representation and exhibit less sensitivity to bin 
size and quantity. When outliers exist, their proportion in the sample 
can be easily visualized through the corresponding area under the 
curve in the density plot. This feature is advantageous when addressing 
bimodal or multimodal distributions, which may indicate a 
heterogeneous sample (31). ADC density plots primarily focus on data 
distribution, making them less prone to SNR and other scanning-
related issues. When we introduced density maps to compare brain 

FIGURE 4

The relationship between ADCs and GA in the CHD and GA-matched control groups and their corresponding fitting curve. FWM (A), PWM (B), OWM 
(C), TWM (D), Centrum semiovale (E), BGR (F), TH (G), CH (H), Pons (I).
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characteristics between fetuses with CHD and normal fetuses, 
we observed significant heterogeneity between the CHD and normal 
control groups. These results suggest that ADC density plots can 
provide more comprehensive differentiation information, enhancing 
the sensitivity in detecting early fetal changes in fetuses with CHD.

This study has some limitations. First, our research was a single-
center study and the sample size of the CHD group was relatively 
small. Second, we  did not classify complex CHD into subgroups 
because of the small number of cases and could not obtain a specific 
conclusion in each category. Third, in this study, we only aimed to 
explore the brain diffusion changes in fetuses with CHD at 
20–31 weeks of gestation. Lastly, we did not include fetal sex as a 
covariate in our analysis, even though no current literature suggests 
that fetal sex has an impact on intracranial ADC values. In the future, 

we will include more late-pregnancy fetuses, neonates, and infants to 
explore brain development in a longitudinal study.

Conclusion

We used DWI to quantify the ADCs in fetuses across GA during 
the second and third trimesters. The mean ADCs and histogram 
analysis in the complex CHD group were not significantly different 
from those in GA-matched normal fetuses during the second and 
early third trimesters. However, the ADC density plots showed 
significant heterogeneity between controls and fetuses with CHD, and 
thus, may provide supplementary information and improve the 
sensitivity for detecting early brain changes in fetuses with CHD.

FIGURE 5

Density plots of the nine representative ROIs in the CHD and GA-matched control groups. FWM (A), PWM (B), OWM (C), TWM (D), Centrum semiovale 
(E), BGR (F), TH (G), CH (H), Pons (I).
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FIGURE 6

Comparison of ADCs in the CHD and normal GA-matched control groups. FWM (A), PWM (B), OWM (C), TWM (D), Centrum semiovale (E), BGR (F), TH 
(G), CH (H), Pons (I).

TABLE 2 Comparison of all histogram features between the two groups.

Control CHD p value

Mean (10−6 mm2/s) 1604.77 ± 57.22 1618.4 ± 138.32 0.102

Skewness 1.0688 ± 0.3280 0.8503 ± 0.4432 0.091

Kurtosis 2.2688 ± 1.0661 1.6106 ± 0.9521 0.064

pera1 (10−6 mm2/s) 1144.22 ± 76.97 1144.50 ± 146.56 0.065

pera10 (10−6 mm2/s) 1313.52 ± 64.04 1330.10 ± 134.05 0.046

Pera50 (10−6 mm2/s) 1568.87 ± 58.25 1588.50 ± 131.42 0.057

Pera90 (10−6 mm2/s) 1922.13 ± 84.44 1932.10 ± 184.19 0.510

Pera99 (10−6 mm2/s) 2485.91 ± 196.77 2424.95 ± 340.60 0.486

Variance 71043.48 ± 21746.55 70410.75 ± 34286.30 0.177

Min 987.04 ± 113.56 897.90 ± 167.77 0.176

Max 2800.30 ± 253.22 2704.40 ± 305.40 0.405

SD 261.60 ± 41.87 256.05 ± 60.99 0.328
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SUPPLEMENTARY FIGURE S1

Representative cases of histogram features. (A) The ROI of the histogram; 
(B) A case of CHD at the gestaional age of 25w + 4; (C) A case of normal fetus 
at the gestaional age of 25w + 2.

SUPPLEMENTARY FIGURE S2

Density plots of the nine representative ROIs of ADCs across gestational ages 
(20-40 weeks). ADC = apparent diffusion coefficient. 

SUPPLEMENTARY FIGURE S3

Density plots of ADCs at different gestational ages in the normal group’s nine 
representative ROIs. (A) FWM, (B) PWM, (C) OWM,(D) TWM, (E) Centrum 
semiovale, (F) BGR,(G) TH,(H) CH, (I) Pons.
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