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Objective: This study was conducted to develop and validate a radiomics-clinics

combinedmodel-basedmagnetic resonance imaging (MRI) radiomics and clinical

features for the early prediction of radiation-induced temporal lobe injury (RTLI)

in patients with nasopharyngeal carcinoma (NPC).

Methods: This retrospective study was conducted using data from 130 patients

with NPC (80 patients with and 50 patients without RTLI) who received

radiotherapy. Cases were assigned randomly to training (n = 91) and testing

(n = 39) datasets. Data on 168 medial temporal lobe texture features were

extracted from T1WI, T2WI, and T1WI-CE MRI sequences obtained at the end of

radiotherapy courses. Clinics, radiomics, and radiomics–clinics combined models

(based on selected radiomics signatures and clinical factors) were constructed

using machine learning software. Univariate logistic regression analysis was

performed to identify independent clinical factors. The area under the ROC curve

(AUC) was performed to evaluate the performance of three models. A nomogram,

decision curves, and calibration curves were used to assess the performance of

the combined model.

Results: Six texture features and three independent clinical factors associated

significantly with RTLI were used to build the combined model. The AUCs for

the combined and radiomics models were 0.962 [95% confidence interval (CI),

0.9306–0.9939] and 0.904 (95% CI, 0.8431–0.9651), respectively, for the training

cohort and 0.947 (95% CI, 0.8841–1.0000) and 0.891 (95% CI, 0.7903–0.9930),

respectively, for the testing cohort. All of these values exceeded those for the

clinics model (AUC = 0.809 and 0.713 for the training and testing cohorts,

respectively). Decision curve analysis showed that the combined model had a

good corrective e�ect.

Conclusion: The radiomics–clinics combined model developed in this study

showed good performance for predicting RTLI in patients with NPC.

KEYWORDS

radiation-induced temporal lobe injury, nasopharyngeal carcinoma, radiomics, magnetic

resonance imaging, prediction
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Introduction

Most NPCs are highly sensitive to radiotherapy, and

radiotherapy has become the first choice for the treatment of

nasopharyngeal carcinoma (NPC) (1). Although radiotherapy

technology for patients with NPC has been greatly improved in

recent years, associated complications after the treatment are still

common in clinical practice, such as radiation-induced temporal

lobe injury (RTLI) (2, 3). Due to the anatomical location of NPC,

the target radiotherapy volume inevitably involves the medial

temporal lobe. RTLI is the most likely neurological complication

following radiotherapy for NPC (4), and its influence on patients’

quality of life far exceeds that of the tumor itself. The focus

of tumor treatment has expanded from the improvement of

the survival rate to the prevention and treatment of tumor-

related complications. The American Cancer Society Center has

emphasized that the prevention and treatment of complications

following comprehensive cancer treatment should be a top research

priority to maximize patients’ quality of life (5). The detection of

RTLI in the early stage enables its effective treatment. Therefore,

RTLI has received increasing attention, and the prediction of RTLI

early in the incubation period is of decisive significance in the

final prognosis.

According to the timing of clinical symptom onset after

radiotherapy, radiation brain injury is classified as an acute

reaction period, early-delayed period, and late-delayed period

(6). In the acute reaction period (a few days to a few weeks

after radiotherapy), patients may have no symptoms or only

elevated intracranial pressure. Pathological changes mainly include

increased vascular permeability, inflammatory cell infiltration,

brain tissue congestion, and edema. The early-delayed period (1–6

months after radiotherapy) is characterized by the demyelination

of glial cells and axonal edema. Complete recovery can be achieved

in these first two stages with active clinical treatment. In the late-

delayed period (6 months to several years after radiotherapy), the

pathological manifestation is radiation necrosis, namely, radiation

encephalopathy (REP). Brain tissue damage has been progressive

and is irreversible at this stage (7).

Currently, RTLI is mainly diagnosed by imaging examination,

with auxiliary cognitive function assessment (8, 9). Computed

tomography (CT) and conventional MRI are the main modalities

used, but their diagnostic ability is not ideal (10). They enable the

diagnosis and staging of brain injury in the late reaction stage,

when it is often severe and cannot be treated effectively, which

greatly affects patients’ survival and quality of life. The study

of the pre-symptomatic phase is clinically more important than

the study of the symptomatic or clinical phase. More-sensitive

imaging and analytical techniques enable the detection of early

tissue changes and the prediction of outcomes, enabling the

implementation of adequate neuroprotective or other preventive

treatments (11). In recent years, functional imaging techniques

such as magnetic resonance spectroscopy (MRS), diffusion-

weighted imaging (DWI), diffusion tensor imaging (DTI), and

dynamic contrast enhancement (DCE) have been used to

complement routine MRI and provide functional and metabolic

information (12–15). However, the inclusion of functional MRI in

routine scanning protocols is often not possible due to the high

equipment requirement. In addition, the selection of the same

voxel sites for analysis in the same patient on repeat examination

cannot be guaranteed with the use of these modalities. Given spatial

resolution limitations, the detection of subtle changes in white

matter structure via the application of regional spatial statistics is

difficult (16). Thus, an effective method for the early prediction of

RTLI development is needed.

Radiomics is the process by which medical images are

transformed into high-dimensional measurable data through the

high-throughput extraction of quantitative features, which are then

analyzed to support decision-making (17). The analysis of these

features is of great value for the classification, efficacious evaluation,

and prediction of the prognosis of many diseases, including RTLI.

Radiomics can provide information about microstructural changes

in the temporal lobe that are invisible to the naked eye, which may

serve as biomarkers for the early prediction of RTLI. Zhang et al.

(16) developed three radiomics models to predict RTLI based on

follow-up MRI scan [T1-weighted imaging (T1WI-CE) and T2-

weighted imaging (T2WI) sequences] in the last 3 years before

RTLI confirmation based onMRI scan. They found that these three

radiomics models enable the early dynamic prediction of RTLI.

Due to the regional characteristics of NPC, few large-scale

comprehensive studies of early brain changes and RTLI prediction

in patients with the disease have been performed. The purpose

of this study was to investigate the role of the radiomics–

clinics combined model-based magnetic resonance imaging (MRI)

radiomics and clinical features for the early prediction of RTLI in

patients with NPC and to provide a basis for clinician decision-

making to prevent or slow the deterioration of RTLI.

Materials and methods

Patients

The Ethics Committee of the First Affiliated Hospital of Guanxi

Medical University, China, approved this retrospective study (no.

2022-E416-01) and waived the requirement for informed consent.

Data from 130 patients with NPC (80 patients with and 50 patients

without RTLI) who received radiotherapy between January 2010

and July 2022 were included. The inclusion criteria were as follows:

(1) pathological confirmation of NPC; (2) receipt of intensity-

modulated radiation therapy (IMRT); (3) MRI examination before

treatment and within 1 week after the end of radiotherapy course;

(4) patients with RTLI, confirmation of RTLI based on MRI; and

5) patients without RTLI, with follow-up time >108 months and

confirmation based on MRI. The exclusion criteria of our study

were as follows: (1) with primary temporal lobe invasion, other

intracranial tumors, or cerebrovascular disease; (2) without regular

follow-up; (3) incomplete MRI and clinical data; (4) poor MRI

image quality.

Intensity-modulated radiation therapy (IMRT) was planned

and implemented using the Eclipse system (Varian Medical

Systems, Palo Alto, CA, USA). The target area and dose design of

IMRT for NPCwere based on the expert consensus of the Radiation

Treatment Oncology Organization (RTOG). The radiation doses

of Nasopharynx gross tumor volume (GTVnx), lymph node gross
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tumor volume (GTVnd), clinical target volume-1 (CTV-1), and

clinical target volume-2 (CTV-2) were 70–72, 64–72, 62–64, and

54–56Gy, respectively, 30–33 f, five times a week for 6–7 weeks.

Clinical data collected were the patient’s age and gender, WHO

pathological type, clinical stage, TN stage, radiation dose, and

chemotherapy receipt.

Diagnostic criteria and follow-up of RTLI

Radiation-induced temporal lobe injury (RTLI) was diagnosed

when at least one of the following threemanifestations was detected

on MRI: (1) white matter lesions [(WMLs) homogeneously high

signal intensity on T2WI and low signal intensity on T1-weighted

imaging (T1WI)], (2) contrast-enhanced lesions (high signal

intensity on T2WI and postcontrast enhancement on T1WI), and

(3) cysts (round lesions with thin or imperceptible walls and very

high signal intensity on T2WI) (18). Differential diagnosis was

performed to ensure that these features were not caused by other

factors, such as tumor metastasis.

According to the guidelines of the National Comprehensive

Cancer Network, patients underwent follow-up assessment

(physical and MRI examination) every 3 months for the first year

after the completion of radiotherapy, every 6 months for the second

year, and annually thereafter until RTLI was detected (19). Two

radiologists independently examined the patients’ clinical records

and MR images, with any disagreement on the data recorded

resolved through discussion.

MRI acquisition

All patients underwent an MRI examination with a 1.5 Tesla

scanner (GE Signa Echospeed; GE Medical Systems, Milwaukee,

WI, USA). T1WI, T2WI, and T1WI-CE were performed with the

same geometric parameters. The main parameters included: field

of view = 240mm × 230mm; spacing between slices = 1mm;

slice thickness = 5mm; matrix = 232 × 219; spatial resolution =

0.25mm× 0.25mm× 5.0mm; and repetition time (TR)/echo time

(TE) = 660/14ms for T1WI, 6000/70ms for T2WI, and 550/12ms

for T1WI-CE. Gadolinium-diethylenetriamine penta-acetic acid

(0.1 mmol/kg body weight, Magnevist; Schering Diagnostics AG,

Berlin, Germany) was used as the contrast agent and injected at a

rate of 2 mL/s.

MR image segmentation and radiomics
feature extraction

We exported the MR images from the PACS system to the

ITK-SNAP software (version 3.6.0; www.itksnap.org) for image

segmentation. These were key points for image segmentation:

regions of interest (ROIs) were drawn transversely along the

borders of each layer in the mid-inferior level of the temporal lobe

(extending from the level of the cerebral peduncles to the level at

which the temporal lobe disappeared, including white and gray

matter) while avoiding sulci and fissures. Cases of RTLI that first

occurred unilaterally were outlined on the affected side and those

developed bilaterally were outlined on the left side.

A radiologist with 10 years of experience in the diagnosis

of head and neck disease delineated three-dimensional volume

of interest (VOI) in the mid-inferior temporal lobe layer by

layer on T2W images; a senior physician with more than 20

years of experience confirmed the VOIs. Both professionals

were blinded to the patient’s clinical data. The texture

features were extracted from the sequences of T1WI, T2WI,

and T1WI-CE using FeAture Explorer Pro (FAE, version

0.5.1) in Python (version 3.7.6) (20). These features included

the original shape, first order, and gray-level co-occurrence

matrix (GLCM).

Feature selection and radiomics signature
building

In total, 168 radiomics features were extracted for each

patient. Clinical features included the age and gender of patients,

WHO pathological type, clinical stage, TN stage, radiation dose,

and chemotherapy receipt. We developed clinics, radiomics,

and radiomics–clinics combined models for RTLI prediction in

the training and testing cohort, including all clinical factors,

168 radiomics features, and selected radiomics signatures and

clinical factors, respectively. We labeled the RTLI-negative group

as 0 and the RTLI-positive group as 1. Computer-generated

random numbers were used to assign 70% of the cases (n =

91; 56/35 = positive/negative) to the training dataset and the

remaining cases (n = 39, 24/15 = positive/negative) to the

testing dataset.

To remove the unbalance of the training dataset, we up-samples

by repeating random cases to make positive/negative samples

balance. To build the scout model, we applied normalization

to the feature matrix. The Eigenvector was subtracted from the

mean value of the vector and divided by its length. Due to the

high dimensionality of the feature spaces and the need to obtain

independent features, Pearson correlation coefficient (PCC) values

were calculated between all feature pairs. If the PCC value between

two features was >0.99, one of them was removed. After this

process, the dimension of the feature space was reduced, and each

feature was independent of each other.

To determine the best number of features to be retained

in the model, three feature selectors were compared: recursive

feature elimination (RFE), analysis of variance (ANOVA), and the

Kruskal–Wallis test (KW). For the classifier, we compared the

performance of the linear support vector machine (SVM) and

logistic regression (LR). To find the best model for each subgroup,

we tested different combinations of feature selectors and classifiers

and selected the combination with the best cross-validation area

under the receiver operating characteristic (ROC) curve (AUC)

(21, 22). We used 5-fold cross-validation to determine the hyper-

parameter, which was set according to the model performance with

the validation dataset. Model discrimination results were obtained

by bootstrap.

Finally, we found that the radiomics model developed

by logistic regression analysis based on six features can get
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FIGURE 1

Flowchart of MRI-based predictive model construction for the occurrence of RTLI in patients with NPC.

the highest AUC on the validation dataset. These six features

were most significantly related to RTLI. Incorporating the

above-selected radiomics signatures and three independent

clinical factors (gender, N stage, and T stage) by logistic

regression analysis, a radiomics–clinics combined model

was built using the logistic regression method (21). The

combined model was visualized as a radiomics nomogram.

All procedures, illustrated in Figure 1, were performed using FAE

and R software.

Statistical analysis

The statistical analyses were conducted with R software

(version 4.1.0; https://www.r-project.org) and SPSS (version 20.0;

IBM Corporation, Armonk, NY, USA). Differences in continuous

and categorial clinical variables between the RTLI-positive and

RTLI-negative groups were examined using the independent t-

test and chi-square test, respectively. Univariate logistic regression

analysis was performed to identify independent predictors

among all the clinical variables. Intra-class correlation coefficients

with 95% confidence intervals (CIs) were calculated to assess

measure reproducibility.

The predictive ability of the models was assessed using AUCs,

accuracy, specificity, and sensitivity values, and positive predictive

value (PPV) and negative predictive value (NPV) from the ROC

curve analysis.We also estimated 95% of CIs via bootstrapping with

1,000 samples. Differences among models were assessed using the

DeLong test. Decision curve analysis was performed to evaluate the

clinical significance of the individual predictive models.

Results

Patient characteristics

The sample comprised 130 patients: 80 patients with RTLI

(26 bilateral and 54 unilateral; 64 men and 16 women, mean

age 50.30 ± 8.86 years) and 50 patients without RTLI (31 men

and 19 women, mean age 41.82 ± 9.42 years). The patient’s

gender and T, N, and clinical stages differed significantly between

groups (P < 0.05; Table 1). The training and testing cohorts

comprised 91 cases (56/35 = positive/negative) and 39 cases

(24/15= positive/negative), respectively. There were no significant

differences in age, gender, T or N stage, pathological tumor type,

radiation dose, and chemotherapy receipt between the training and

testing cohorts. Univariate logistic regression analysis showed that

the gender, N stage, and T stage were identified as independent

clinical factors for RTLI (P = 0.026, 0.009, and 0.039, respectively).

Predictive performance of models

Six texture features and three independent clinical factors

(gender, N stage, and T stage) most significantly associated with
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TABLE 1 Sample characteristics.

Variable RTLI-positive
group
(n = 80)

RTLI-
negative
group
(n = 50)

P

Age (mean±

sd), years

50.30± 8.86 41.82± 9.42 0.798

Gender 0.040

Male 64 31

Female 16 19

WHO pathological type 0.089

I 0 0

IIa 10 1

IIb 67 48

III 3 1

T stage 0.009

T1 1 1

T2 5 4

T3 26 30

T4 48 15

N stage <0.001

N0 8 2

N1 15 15

N2 50 13

N3 7 20

Clinical stage 0.014

II 1 2

III 29 20

IVA 50 23

IVB 0 5

Radiotherapy

dose

7,103.96± 136.53 7,093.24± 147.66 0.653

Differences between RTLI-positive and RTLI-negative groups were determined using the t-

test (age) or chi-square test (classification variables).
∗P < 0.05.

early RTLI were used for building a combined model (Table 2).

We demonstrated the power and potential advantages of the three

models to predict the occurrence of RTLI and verified its reliability

and stability. The details of the performance analysis of the three

models are shown in Table 3, and the ROC curve is shown in

Figure 2.

Among the three models, the combined model showed the

best predictive performance with the training and testing cohorts.

AUCs for the combined and radiomics models were 0.962 (95% CI,

0.9306–0.9939) and 0.904 (95% CI, 0.8431–0.9651), respectively,

for the training cohort and 0.947 (95% CI, 0.8841–1.0000) and

0.891 (95% CI, 0.7903–0.9930), respectively, for the testing cohort.

These values were higher than those for the clinics model (AUC =

0.809 and 0.713 for the training and testing cohorts, respectively).

TABLE 2 The coe�cients of selected features in the radiomics model.

Features Coef in model

T1WI_original_firstorder_TotalEnergy 4.901

T1WI-CE_original_firstorder_TotalEnergy 5.081

T2WI_original_firstorder_TotalEnergy 13.506

T2WI_original_shape_Maximum2DDiameterRow 3.937

T2WI_original_shape_Sphericity −5.918

T2WI_original_shape_SurfaceArea 2.728

The combined model detected RTLI-positive in the testing cohort

with greater accuracy than the clinical model did (0.897 vs.

0.717). It also performed better than the radiomics model (0.897

vs. 0.871).

The nomogram that was constructed by the previously

mentioned independent predictors and radiomics features is

presented in Figure 3. The combined model calibration curve

showed good calibration to the training and testing cohorts

(Figure 4), indicating that it had good predictive power for RTLI

occurrence after radiotherapy. The decision curve analysis showed

that the ability of the combined model and radiomics model for

predicting the occurrence of RTLI was better than that of the clinic

model (Figure 5).

Discussion

In this study, we developed and validated clinics, radiomics,

and combined models for the early prediction of RTLI based

on MRI data obtained at the end of IMRT courses from 130

patients with NPC with or without RTLI. The combined and

radiomics models showed better predictive performance than

the clinics model did for the training and testing cohorts with

greater accuracy.

Few studies have examined the ability of MRI-based radiomics

models to predict RTLI in the early stage. Zhang et al. (16)

were the first to use MRI radiomics technology to predict RTLI.

They developed three radiomics models with the AUCs of 0.872

(95% CI, 0.862–0.881), 0.836 (95% CI, 0.823–0.849), and 0.780

(95% CI, 0.759–0.800), respectively. Their findings suggest that

these three radiomics models can dynamically predict RTLI in

advance. However, the models did not include clinical factors

related closely to RTLI, especially radiation dose parameters.

Unlike the previous study, we developed the combined model

for the early prediction based on the six texture features most

significantly correlated with RTLI and three independent clinical

factors (gender, N stage, and T stage) in our study. The combined

model showed great performance in predicting RTLI with the

AUC of 0.962 (95% CI, 0.9306–0.9939) and 0.947 (95% CI,

0.8841–1.0000) for the training and testing cohorts, respectively.

Hou et al. (18) developed a nomogram model based on clinical

factors and radiomics features for RTLI prediction; this model

showed better predictive performance than radiomics and clinical

factor models did. It was constructed with only texture features
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TABLE 3 Model performance for the prediction of RTLI occurrence in patients with NPC.

Model AUC Accuracy Sen Spe PPV NPV

Clinics

Train 0.809 (95%CI: 0.7164–0.9015) 0.780 0.785 0.771 0.846 0.692

Test 0.713 (95%CI: 0.5419–0.8831) 0.717 0.791 0.0.60 0.760 0.642

Radiomics

Train 0.904 (95%CI: 0.8431–0.9651) 0.857 0.892 0.800 0.877 0.823

Test 0.891 (95%CI: 0.7903–0.9930) 0.871 0.833 0.933 0.952 0.777

Combined

Train 0.962 (95%CI: 0.9306–0.9939) 0.890 0.892 0.885 0.925 0.837

Test 0.947 (95%CI: 0.8841–1.0000) 0.897 0.875 0.933 0.954 0.823

FIGURE 2

Performance analysis. The ROC analyses of the clinics (A), radiomics (B), and radiomics–clinics combined (C) models in training cohort and testing

cohort.

FIGURE 3

Nomogram model for the prediction of RTLI in patients with NPC.
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FIGURE 4

Calibration curves of the combined model developed in the training (A) and validation (B) cohorts.

FIGURE 5

Decision curve analysis for the clinics, radiomics, and radiomics–clinics combined models for the prediction of RTLI in patients with NPC.

extracted from T2WI. In a recent study, Bao et al. (23) found

that a radiomics–clinics model combining clinical T staging and

radiomics features extracted from T2-weighted fat-suppressed and

T1WI-CE showed a better predictive capability in RTLI than

T staging alone and a single radiomics model. In this study,

the texture features constructed radiomics and radiomics-clinics

combined models were extracted from T1WI, T2WI, and T1WI-

CE sequences.

In our study, the retaining six features that most significantly

correlated with early RTLI comprised one feature extracted from

T1WI sequences, one extracted from T1WI-CE sequences, and

four features extracted from T2WI sequences. Some of them

had greater weight than others and may reflect the brain tissue

heterogeneity after radiotherapy, which may be related to the

occurrence of RTLI, although the exact mechanism underlying this

association is not clear. The majority of the features were extracted

from T2WI sequences, in line with recent studies showing that

such features have better predictive performance (16). Preclinical

findings suggest that WMLs are the earliest occurring radiation

injury, as the white matter is more sensitive than the gray matter
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to radiotherapy (24). Early pathological characteristics include

increased vascular permeability, inflammatory cell infiltration,

brain tissue congestion and edema, glial cell demyelination, and

axonal edema. WMLs were detected best with T2WI sequences;

a homogeneous increase in white matter signal intensity on these

sequences is believed to represent demyelination, gliosis, and

edema (25). During the development of RTLI, cerebrovascular

injury and remodeling inevitably occur. T1WI-CE images reflect

heterogeneity and architecture related to radiation necrosis,

which in turn has been reported to correspond to focal

disruption of the blood–brain barrier (24). In addition, T1WI–

CE better visualizes radiation-induced hyaline degeneration in

blood vessel walls, intimal reactive hyperplasia, and increased

vascular permeability (26). The consideration of a combination of

these texture features may, thus, improve predictive performance

for RTLI.

The patient’s gender, T stage, and N stage were identified as

independent clinical factors for RTLI in this study. As we all know,

radiotherapy planning is based on primary tumors and subclinical

lesions. The temporal lobe is inevitably exposed to higher doses of

radiation during treatment in patients with advanced T stage and N

stage. Some scholars reported the more advanced the T grade, the

greater the risk of RTLI (27). In this study, the radiation dose did

not differ between RTLI-positive group and RTLI-negative group.

In contrast, radiation doses were significantly higher in RTLI-

positive than in RTLI-negative groups in previous studies (28–30).

This difference may reflect the relationship of RTLI occurrence not

only to the radiation dose but also to other factors, such as the

sensitivity of the brain tissue to radiation therapy. A recent genome-

wide association study implicated the genetic susceptibility gene

CEP128 in RTLI development (31). In the study by Bao et al. (23),

they found that T classification was the only independent clinical

factor for the prediction of RTLI.

Patients with RTLI may suffer long-term headaches, insanity,

dizziness, memory loss, personality changes, and seizures (32).

These symptoms may greatly affect the quality of life of patients

with NPC. In addition, a larger volume of the temporal lobe

increased the severity of cognitive function impairment. Early

detection of RTLI is helpful to reduce the incidence of temporal

lobe necrosis and its related complications, such as damage to

memory, language, andmobility. Recent studies have indicated that

RT-induced brain injury begins in the acute period (33). A study

of radiation-induced structural and functional brain abnormalities

showed that early increased local brain functional activity was

predictive of later severe temporal lobe necrosis (11). Thus, our

attention is currently focused on early-stage RTLI. In this study,

we used MRI data obtained at the end of IMRT to establish a

model for the accurate and early prediction of RTLI in patients with

NPC. At this point, the exogenous damage that can cause RTLI has

peaked and is no longer increasing, and the brain tissue damage

from the previously applied radiation may be detectable (18). Thus,

our early prediction models aimed at providing a strong basis for

clinicians’ implementation of effective measures to prevent or slow

the worsening of RTLI. Bao et al. (23) also developed a radiomics

model based on MR images after the completion of radiotherapy

for the prediction of RTLI and showed great performance in

predicting RTLI. In addition, in the other study by Bao et al. (34),

they reported that the radiomics model derived from pretreatment

MRI of the temporal lobe performed well in the prediction of

RTLI in patients with NPC. This is also a good starting point for

predicting RTLI.

This study has several limitations. First, the RTLI-negative

sample was relatively small because of the strict inclusion

criteria of patients without RTLI. Second, the single-center

nature of the study may limit the applicability of our findings

to patients at other institutions. To extend their applicability,

further external validation study is needed. Third, the temporal

lobe VOIs were delineated manually. With the development of

artificial intelligence (AI), automatic segmentation may become a

superior approach.

Conclusion

In conclusion, the radiomics–clinics combined model

developed in this study performed well in the prediction of RTLI in

patients with NPC. It may be a noninvasive and effective method

for the early prediction of RTLI in patients with NPC and provide

a decision-making basis for the early detection and preventive

treatment of RTLI.
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