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Background: Brain–computer interface (BCI) has been widely used for 
functional recovery after stroke. Understanding the brain mechanisms 
following BCI intervention to optimize BCI strategies is crucial for the benefit 
of stroke patients.

Methods: Forty-six patients with upper limb motor dysfunction after stroke 
were recruited and randomly divided into the control group or the BCI group. 
The primary outcome was measured by the assessment of Fugl–Meyer 
Assessment of Upper Extremity (FMA-UE). Meanwhile, we performed resting-
state functional magnetic resonance imaging (rs-fMRI) in all patients, followed 
by independent component analysis (ICA) to identify functionally connected 
brain networks. Finally, we assessed the topological efficiency of both groups 
using graph-theoretic analysis in these brain subnetworks.

Results: The FMA-UE score of the BCI group was significantly higher than that of 
the control group after treatment (p = 0.035). From the network topology analysis, 
we  first identified seven subnetworks from the rs-fMRI data. In the following 
analysis of subnetwork properties, small-world properties including γ (p = 0.035) 
and σ (p = 0.031) within the visual network (VN) decreased in the BCI group. For the 
analysis of the dorsal attention network (DAN), significant differences were found 
in assortativity (p = 0.045) between the groups. Additionally, the improvement in 
FMA-UE was positively correlated with the assortativity of the dorsal attention 
network (R = 0.498, p = 0.011).

Conclusion: Brain–computer interface can promote the recovery of upper 
limbs after stroke by regulating VN and DAN. The correlation trend of weak 
intensity proves that functional recovery in stroke patients is likely to be related 
to the brain’s visuospatial processing ability, which can be used to optimize BCI 
strategies.
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Clinical Trial Registration: The trial is registered in the Chinese Clinical Trial 
Registry, number ChiCTR2000034848. Registered 21 July 2020.
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1. Introduction

Stroke is ranked as the second leading cause of death and the third 
most common cause of disability worldwide (1). Deficiencies that 
include loss of motor function, cognition, speech, or mood regulation 
lead to a severe burden after stroke and result in poor quality of life. 
Especially, recovery from upper extremity dysfunction is often 
inadequate and unsatisfactory from exercise rehabilitation, due to the 
severity of the injury and the limited time for treatment focused on upper 
extremity recovery (2). Therefore, there is an urgent need for innovative 
tools that can facilitate the successful recovery of motor function. Brain–
computer interfaces (BCIs) represent a promising rehabilitation strategy, 
which can control external devices by modulating their sensorimotor 
rhythms (SMRs) generated by neuronal units of the sensorimotor gyrus. 
During motor attempts or imagery, the amplitude of the SMR declined, 
a modulation called event-related desynchronization (ERD), which can 
be translated into control commands from external devices. There was 
no actual physical movement necessary for controlling BCI-based 
devices, even stroke survivors can modulate or manipulate with severe 
chronic motor deficits. The generated control commands during motor 
attempts or imagery are independent of residual motor function (3), 
providing favorable conditions for the rehabilitation of patients with 
moderate-to-severe disabilities in the upper limbs.

Motor imagery (MI, the mental representation of action without 
actual movement) is a therapy-relevant technique that promotes 
motor recovery after neurological disorders (4, 5). MI shares 
psychological and neural foundations with physical exercises (6, 7). 
Neurophysiological recordings yielded specific changes in cerebral 
activations during MI, resembling movements actually performed and 
affecting neural representations of movements (8, 9). Numerous 
studies have shown that neural processes associated with motor 

imagery are attributed to the activation of the premotor and parietal 
areas, primary sensory-motor cortex, and subcortical regions such as 
basal ganglia and the cerebellum, as well as corticospinal pathways (9, 
10). Therefore, MI has been widely used in BCI systems for 
neurorehabilitation applications, ranging from individuals with motor 
disabilities, severe muscular disorders, and paralysis to the restoration 
of limb movements. Due to the bidirectional interaction between the 
brain and the computer, MI-BCI systems are used to alter the brain 
functions of stroke patients through reorganizational processes.

Research has shown that BCI systems can help stroke patients 
(11–13). Such systems can induce the input–output properties of spinal 
cord circuits in real time, which can promote integrated neuroplasticity 
of affected corticospinal connections, effectively closing the loop to 
efferent brain signals coupled to afferent inputs (14, 15) and facilitate 
voluntary motor control (16). As demonstrated using BCIs to increase 
motor evoked potentials (MEPs) in stroke survivors, neural 
components are activated associatively, thus strengthening intra-
cortical synaptic connections (17, 18). Furthermore, the real-time 
visualization of neurofeedback BCI embodied improves the ability of 
the disabled brain area, so that more participation of the ipsilateral 
hemisphere was engaged and motor function was improved compared 
to the random feedback (19). In addition to altering neuroplasticity by 
affecting neurophysiological parameters, BCI applications have also 
been shown to induce functional improvements (20–23).

However, fMRI brain mechanisms involved in BCI remain sparse. 
fMRI analysis suggested that an integrated BCI-guided robotic hand 
training intervention may contribute to neuroplasticity in stroke 
patients, with interhemispheric asymmetry significantly associated 
with training effects and the integrity of the M1-M1 anatomical 
connection (24). Li et al. found that the motor performance and the 
cortical motor induction of cortical MEPs had improved significantly, 
but the fractional anisotropy (FA) value of the lesion area was not 
significantly improved after 4 weeks of treatment with a brain–
computer interface-operated lower limb rehabilitation robot (17). 
Although BCI-based approaches appear promising for limb 
rehabilitation, sufficient evidence for widely used clinical application 
is still lacking and more debate on its research is needed.

Substantial systematic reviews have examined the effects of BCIs on 
limb motor rehabilitation after stroke (25, 26). It is generally accepted 
that there is considerable heterogeneity in the models and 
implementation methods (especially the duration of treatment) of BCIs 
in clinical applications (27) and that the effects of BCI training vary from 
person to person (28). The lack of a control group (28) and random 
assignment in clinical studies prevented us from performing a valid 
analysis. Furthermore, a limited number of studies do not support the 
long-term follow-up effects of BCI training (29, 30). In addition, how 
BCI promotes patients’ motor function and what breakthroughs can 
be  made in its further optimization still need deep research and 
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demonstration. The study of mathematical models of complex networks, 
such as graph theory, provides excellent tools for understanding the 
organizational characteristics of brain networks after the BCI 
intervention. In the present study, we explored the effect of MI-based 
BCI on functional recovery and analyzed the network metric of 
functional networks by constructing functional brain networks to 
represent changes at the network level. A better understanding of the 
mechanism of application-induced neuroplasticity based on BCI can 
help to optimize the standardized application protocol of brain–
computer interface with multiple feedback, making it a more practical 
and effective method for the treatment of upper extremity hemiplegia in 
the future.

2. Materials and methods

A total of 187 patients were screened in the outpatient clinic and 
inpatient of the Department of Neurology, Rehabilitation Medicine, 
and Acupuncture in a tertiary healthcare hospital in Shanghai. Stroke 
diagnosis was established clinically in all the patients. The study was 
approved by the local ethics committee, and the study protocol was 
registered in the Chinese Clinical Trial Registry (ChiCTR2000034848). 
All participants signed informed consent forms before enrollment 
according to the Helsinki Declaration.

2.1. Study design

A single-center, equal randomization (1:1 for two groups), single-
blind, controlled, parallel-group study was designed which included 
pre- and post-intervention. Once enrolled, patients were randomly 
assigned to either control or BCI groups. The random allocation 
schedule was computer-generated through a simple randomization 
method that generates a random allocation sequence. Patients were 
instructed to enter the appropriate groups sequentially in a predefined 
sequence. After randomization, visits were scheduled pre- and post-
intervention. Randomization, assessments, and data analysis were 
performed by a different individual not involved in the intervention.

2.2. Patients enrollment

Participants were selected based on the following inclusion 
criteria: age between 30 and 75 years old; duration of hemorrhagic or 
ischemic stroke ≥1 month and ≤ 12 months; a significant decrease in 
unilateral upper extremity motor function; clear consciousness, 
NIHSS (National Institute of Health stroke scale) ≥ 6 points (moderate 
stroke severity and above); no cognitive impairment, with the ability 
to understand instructions (score above 22 on the mini-mental state 
examination (MMSE)); agree to participate in this study and sign 
informed consent. An abbreviated list of exclusion criteria includes 
the following: other diseases or factors affecting limb movement; post-
stroke patients with complex regional pain syndrome with significant 
pain and swelling; contraindications to an investigation by magnetic 
resonance; complicated with serious heart, liver, kidney, and blood 
system diseases, or infectious diseases; have participated in other 
studies or are participating in other clinical studies 6 months before 
enrollment (see Figure 1).

2.3. Intervention protocol

The two groups received conventional physical therapy and 
occupational therapy, including limb dominance exercise, muscle 
tension, and limb control training to improve functionality, balance, 
and daily activities, 5 times a week, for 10 times. In addition, the BCI 
group underwent additional BCI therapy for 40 min of individual 
sessions per day (5 days a week for 2 weeks) using the MI-based BCI 
system. Both groups continued to receive an appropriate clinical 
standard practice of medication, including aspirin or other antiplatelet 
or antithrombotic drugs, serum lipid-lowering agents, 
antihypertensive drugs, and hypoglycemic agents throughout the 
study as prescribed by the neurologist. All therapy sessions were 
delivered to patients by trained and experienced physiotherapists. One 
occupational therapist performing the assessments and data analysis 
was blinded to the intervention.

2.4. MI-based BCI system

A set of brain–computer interface-assisted upper limb 
rehabilitation training systems based on motor imagery was used in 
this study. The system uses human–computer interaction to help 
patients participate in different activities of the upper limb for 
rehabilitation training. A 16-channel EEG acquisition device was used 
to collect EEG signals in the sensorimotor areas of the brain. The BCI 
performs online real-time processing of EEG signals for a single-
trained online classification of μ-wave probabilistic models for 
imagining left-hand and right-hand movements. This method 
performs temporary Morlet wavelet filtering on the source signal 
adjusted by the subject, selects the appropriate time–frequency signal, 
and then classifies and processes the EEG signal according to the 
time–frequency algorithm. The signal acquisition is the characteristic 
motion signal of the amplitude-modulated μ rhythm in the range of 
8 Hz–12 Hz measured at C3 and C4 and used to estimate its probability 
model. The error rate of this algorithm is not higher than 10%. 
Through the analysis of the real-time online characteristic signals of 
the electroencephalography (EEG) signal, the external devices are 
controlled to carry out corresponding activities. The device for the 
rehabilitation of the hand is RHB-II-L/RHB-II-R (registration 
certificate number: Yueji Note 20,182,190,967; see Figure 2).

During the task, the patient is placed in a dedicated chair in front 
of a personal computer (PC) monitor and left 40 cm away, with the 
paralyzed hand immobilized in the exoskeleton, while the intact hand 
rests flat on a table. Lessons on a stable platform with biofeedback take 
the form of game tasks based on using visual and auditory channels 
to support responses. On a monitor screen, the patient was given 
mental commands: to relax and to imagine the state of the muscles as 
the right or left-hand stretches or contracts. The patient imagines the 
functional activities of the paralyzed hand through the task prompts 
on the screen and the voice prompts synchronized with the speakers. 
Corresponding results emerged after identifying the classifier correctly 
performing the mental task, where only the paralyzed hand is involved 
in arm activity. Each working program of the task consisted of 3- to 
8-min sessions with a 1- to 3-min break between each session 
depending on the tolerance of the patient; the number of performed 
programs was 3–4. Each movement process has a maximum of three 
chances. The task will prompt you to be awesome and give a passing 
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grade or above; meanwhile, the exoskeleton extended or flexed its 
fingers. If the task fails to complete, a reminder that it is still a little bit 
close, please continue to work hard will be received. The duration of 
such training is determined individually in each case according to the 
patient’s abilities and subjective tolerance and is on average 40 min. 
The whole process of treatment is accompanied and guided by one 
professional doctor.

Usually, in the formal treatment stage, patients will receive 2–3 
times of training to familiarize themselves with the experimental 
procedures. Patients are instructed to perform the imagery tasks based 
on a computer screen and voice prompts and to avoid blinking, 
coughing, chewing, and head and body movements (31).

2.5. Data collection

To detect an improvement in FMA-UE, which is in agreement 
with the study of Wang et al. (32) with a two-sided 5% significance 
level and a power of 90%, a sample size of 23 patients per group was 
necessary, given an anticipated dropout rate of 10%. The study started 
in March 2020 and stopped in January 2021. In total, 23 participants 
were allocated to the control group (three dropped out), and 23 were 
allocated to the BCI group (three dropped out). All patients went 
through motor function, related neuropsychological assessment, and 

BOLD function assessment pre- and post-intervention. Each one of 
the assessment times had an approximate duration of 120 min.

The upper extremity motor performance of stroke patients was 
evaluated using the Fugl–Meyer Assessment of Upper Extremity 
(FMA-UE) test pre- and post-intervention. The FMA-UE was our 
primary outcome measure in this study, which is a test based on the 
concept of sequential stages of motor return (33), including reflexes, 
the synergy of the upper extremities, and hand function. Each item is 
scored on an ordinal 3-point scale to represent a maximum motor 
score for the affected side, with a total score ranging from 0 (standing 
for hemiplegia) to 66 (standing for normal) (34). We also assessed 
clinical characteristics of patients at baseline, including FMA-LE 
(Fugl–Meyer Assessment of Lower Extremity), FMA (Fugl–Meyer 
Assessment), MMSE (mini-mental state examination), MBI (Modified 
Barthel Index), and the motor imagery ability assessed by the 
Kinesthetic and Visual Imagery Questionnaire (KVIQ) (35). The 
clinical characteristics of the patients studied are described in Table 1.

2.6. MRI acquisition and preprocessing

All participants underwent a whole-brain scan of resting-state 
fMRI (rs-fMRI) with a 3.0 Tesla scanner (SIEMENS AG, 
MAGNETOM Verio) using an 8-channel head coil. The complete 

FIGURE 1

Protocol of the intervention.
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fMRI scan lasts about 10 min, and patients were warned to close their 
eyes and remain still. All subjects suppressed the unexpected 
movement, and all were compliant during the fMRI scan. In the 
resting-state session, the following parameters were listed: interleaved 
scanning order, slice number = 43, repetition time (TR) = 3,000 ms, 
field of view (FOV) = 240 × 240 mm2, flip angle (FA) = 90 degrees, 
interslice space = 3 mm, with no interval, number of acquisitions = 200.

The preprocessing and analysis of fMRI data were performed 
using SPM12 (Wellcome Trust Centre for Neuroimaging, London; 
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) on the MATLAB 
2014a platform, and the graph-theoretical network analysis was 
developed on the GRaph thEoreTical Network Analysis (GRETNA) 
(http://www.nitrc.org/projects/gretna/) toolbox (36). To ensure 
consistency on both sides of the patient and the establishment of 
standardized parameters, the brain images of patients with right-sided 
lesions were flipped to the midsagittal plane so that the affected 
hemispheres of all patients corresponded to the left-sided brain.

After discarding the first 10 volumes of each fMRI run, slice 
timing was performed to correct for inconsistencies in time collection 
in the preprocessing step. The point-to-point head motion and mean 
head motion were then estimated for the subjects to control for the 
motion-induced artifacts. Next, the data were normalized to the 
stereotactic Montreal Neurological Institute (MNI) space using the T1 
SPM template and resulted in voxels of 3 × 3 × 3 mm3. Normalized 

images were smoothed with a 6 mm full width at a half-maximum 
isotropic Gaussian kernel.

2.7. Node and edge definition

The topological analysis of functional subnetworks was performed 
using GIFT software (Group ICA of fMRI Toolbox, version 4.0, http://
icatb.sourceforge.net). We constructed subnetworks by decomposing 
preprocessed rs-fMRI data into independent components (ICs). 
Generally, group ICA for such multi-subject analysis uses a 
concatenated approach coupled with back reconstruction (37). The 
images were first dimensionally reduced using principal component 
analysis (PCA) and then temporally concatenated and reduced using 
an expectation–maximization algorithm at the group level to extract 
40 spatial components. Furthermore, the infomax ICA algorithm was 
performed in ICASSO for 100 repetitions to verify its robustness (38).

After estimating the aggregated spatial maps, subject-specific 
spatial patterns and temporal courses were extracted through the 
back-reconstruction approach. Spatial weight maps and the temporal 
course were generated for all subjects, which revealed the likelihood 
that a voxel belongs to one particular component. Then, 
we thresholded these maps at the group level after a Z-transformation 
of the spatial weight map.

We selected meaningful ICs from resting-state networks (RSNs) 
described in previous studies by spatial ordering and visual inspection 
(39). Seven ICs of interest were identified in this study: the auditory 
network (AUN), default mode network (DMN), dorsal attention 
network (DAN), ventral attention network (VAN), frontoparietal 
network (FPN), sensorimotor network (SMN), and visual network 
(VN; Figure 3) (40). For these subnetworks, we designated each voxel 
as the node and the voxel-voxel functional connectivity as an edge. In 
addition, we resampled the data and resized the voxel size to 2x or 3x 
smaller to reduce the large scale of the connectivity matrix, which 
significantly reduced the computational effort.

Then, we computed the network metrics of the subnetworks using 
a pre-selected sparse value (the ratio of the actual number of edges 
divided by the maximum possible number of edges in the network) to 
ensure the relative network organization after the functional 
connectivity matrices were obtained. In particular, the topological 
organization of networks was analyzed over a wide range of network 
sparsity (0.05–0.4) (41), where the small-world metrics were also 
analyzed (42). Network density was applied to each adjacent matrix in 
increments of 0.01 to reduce the computational dimension.

2.8. Global properties of subnetworks 
(secondary outcomes)

Graph theory analysis is a suitable and appreciable method for 
characterizing the topological properties of brain networks (43, 44). 
Commonly used network metrics, including small-world properties 
(clustering coefficient Cp, characteristic path length Lp, normalized 
clustering coefficient γ, normalized characteristic path length λ, and 
small-worldness σ), network efficiency properties (local efficiency Elocal 
and global efficiency Eglobal), assortativity r, hierarchy β, and 
synchronization S, were calculated in this study. All network metrics 
were performed with GRETNA (36, 45).

FIGURE 2

MI-based BCI training system and experimental setup. The Figureure 
panel presents the experimental setup with a patient sitting in front 
of a computer screen wearing an EEG cap. The patient performs the 
motor imagery of the corresponding activities that appear on the 
screen, such as reaching out to grab or place a spoon, a bowl, and a 
ball. Real-time online EEG signals can be presented on the right 
display and are decoded to control the neurostimulator of the 
robotic assistive arm. Robot-assisted arm training improves upper 
limb and arm function through passive movements of the person’s 
arm. The device displays experimental instructions through visual 
and auditory cues, and the patient simultaneously performs motor 
imagery according to the instructions, and then, the device provides 
feedback. Encouragement pictures such as “You’re amazing!” and 
“Just a little bit, keep working hard” will appear on the screen, and 
the small speaker will send out corresponding verbal rewards. At the 
same time, the robotic arm will help the disabled arm to perform 
passive flexion and extension activities. The device increases or 
decreases the difficulty of the task based on the patient’s 
participation in the task. Patients who are exposed to the equipment 
for the first time need to be trained so that they are familiar with and 
can participate in the entire experiment.
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The small-world parameters take into account modularized/
specialized and distributed/ integrated information processing, greatly 
improving the efficiency of information transmission at a low cost. 
Therefore, small-world networks have a shorter Lp than regular 
networks (high Cp and long Lp) but have a larger Elocal than random 
networks (low Cp and short Lp). To characterize the small-world 
property of the target network, we computed its corresponding values 
of Cp and Lp from the average of 100 random networks with equal 
node size and degree distribution (46). Compared with random 
networks, small-world networks have relatively high normalized 
clustering coefficients γ (Cp/Cprand) >1 and a relatively lower normalized 
characteristic path length λ (Lp / Lprand) ≈ 1 (47).

Global efficiency measures the efficiency of information transfer 
at the network level, which is the reciprocal of the harmonic mean of 
the minimum path length (48). While the local efficiency of a network 
measures fault tolerance in the network, it shows how efficiently 
communications can be exchanged when a given node’s first neighbor 
is eliminated (48).

Additionally, we evaluated the hierarchical nature of networks 
using the β parameter (49), which defines the magnitude of the 
power–law relationship between the clustering coefficient (Cp) and 
degree (k): Cp ≈ −k β  (50). In a network with hierarchy organizations, 
some highly correlated related nodes form a densely connected cluster. 
These generated clusters act as elements at the next level of the 
network and merge into a larger-scale interconnected cluster (51). 
We calculated the parameter β for the network using the log (C) versus 
log (k) plot fitted to the regression line.

Furthermore, assortativity reflects the tendency of nodes to 
associate these nodes with a similar number of edges, and it measures 

the correlation between the degree of a node and the average degree 
of its neighbors (52). A positive correlation means that closely 
connected nodes are more likely to be associated with other nodes of 
the same degree. Synchronization, the ratio of the next-smallest 
eigenvalue to the largest eigenvalue of the network coupling matrix, 
measures the likelihood of fluctuations occurring at all nodes in the 
same wave pattern.

2.9. Statistical analyses

The statistical analyses were conducted using SPSS software 
(version 22; SPSS Inc., Chicago, IL), and the significance level was set 
at a p-value of < 0.05. Demographic and neurological characteristics 
were compared between the groups using the independent-sample 
t-test for continuous variables and χ2 test or Fisher’s exact test for 
categorical variables. Comparison of the primary outcome of FMA-UE 
before and after treatment in both groups was analyzed by repeated 
measures analysis of variance (ANOVA) and Tukey’s honest significant 
difference post-hoc tests where applicable, at a significance level of the 
p-value of < 0.05.

The area under the curve (AUC) over the sparsity range was used 
to conduct group comparisons of the metric. Statistical tests of 
topological measures between the groups were performed using an 
independent-sample t-test to assess alterations of the total topological 
parameter variation for each topological parameter over a wide range 
of connection densities. Continually, the value of p of <0.05 
(uncorrected) was considered statistically significant. Finally, 
correlation analysis was performed on the clinical scale (FMA-UE) 

TABLE 1 Comparison of demographic data and clinical characteristics.

Control group 
(n = 20)

BCI group 
(n = 20)

Statistics (t/Z) p-value

Generalized characteristics

Age 58.30 ± 11.23 50.90 ± 12.64 1.479 0.058

Time since stroke (months) 6.45 ± 3.38 5.90 ± 2.99 0.841 0.589

Gender Male 15 16 0 1

Female 5 4

Etiology Ischemic 19 14 2.771 0.096

Hemorrhagic 1 6

Paralysis side Left 9 9 0 1

Right 11 11

Clinical Characteristics

MMSE 26.20 ± 3.50 26.20 ± 3.09 0 1

FMA-UE 20.75 ± 10.77 20.80 ± 11.21 −0.014 0.989

FMA-LE 21.25 ± 6.58 18.55 ± 8.06 1.161 0.253

FMA 55.25 ± 20.59 47.35 ± 17.26 1.314 0.196

MBI 73.50 ± 23.83 59.60 ± 22.97 1.692 0.099

VIQ 66.85 ± 11.52 66.10 ± 12.42 0.198 0.844

KIQ 59.00 ± 15.68 59.25 ± 12.96 −0.055 0.956

MMSE, mini-mental state examination; FMA-UE, Fugl–Meyer Assessment of Upper Extremity; FMA-LE, Fugl–Meyer Assessment of Lower Extremity; FMA, Fugl–Meyer Assessment; MBI, 
modified Barthel Index; Kinesthetic and Visual Imagery Questionnaire (KVIQ); including Kinesthetic Imagery Questionnaire (KIQ), and Visual Imagery Questionnaire (VIQ). 
*p < 0.05.
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and network attribute indicators in the control group and the BCI 
group with a significance level of the p-value of < 0.05.

3. Results

3.1. Demographic and clinical characteristics

A total of 40 patients with post-stroke upper extremity 
hemiparalysis were identified and analyzed in this study. There were 
no adverse events during the intervention. The patients in the BCI 
group (five female patients; age: 58.30 ± 11.23 years) and the control 
group (four female patients; age: 50.90 ± 12.64 years) were included 
in the statistical analysis. Information on demographic and 
neurological characteristics is shown in Table  1. No significant 
differences were observed between the BCI and the control group 
for variables that included age (p = 0.058), sex (p = 1.000), duration 

from stroke onset (p = 0.589), etiology (p = 0.096), lesion laterality 
(p = 1.000), baseline motor function and ability to participate in 
activities of daily living (p = 0.099), and motor imagination ability 
(VIQ, p = 0.844; KIQ, p = 0.956). Both BCI (mean difference, 9.1; 
p = 0.001) and the control group (mean difference, 1.65; p < 0.001) 
showed significant improvement within the group in the Fugl–
Meyer Assessment of Upper Extremity scores. After the intervention, 
patients in the BCI group showed higher scores of the FMA-UE than 
the control group (p = 0.0035; Table 2).

3.2. Alterations In subnetwork organization 
of The functional connectome

We identified seven subnetworks from the resting-state data 
after the ICA procedure (see Figure  3): the auditory network 
(AUN), default mode network (DMN), dorsal attention network 
(DAN), ventral attention network (VAN), frontoparietal network 

FIGURE 3

Spatial distribution pattern of seven potential subnetworks extracted from resting-data by ICA. Seven components resemble the RSNs described in a 
previous study (39) and consist of regions known to be involved in the auditory network (AUN), default mode network (DMN), dorsal attention network 
(DAN), ventral attention network (VAN), frontoparietal network (FPN), sensorimotor network (SMN), and visual network (VN). Images (axial views) are 
t-statistics overlayed on the average high-resolution scan transformed into MNI152. ICA, independent component analysis; RSNs, resting-state 
networks; MNI, Montreal Neurological Institute.
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(FPN), sensorimotor network (SMN), and visual network (VN). 
A comparison of the subnetwork of VN between groups revealed 
that γ (p = 0.035) and σ (p = 0.031) within the VN progressively 
decreased in the BCI group (see Figure 4). For component DAN, 
significant differences were found in assortativity (p = 0.045) 
between the groups (see Figure  5). Comparisons of other 
components found a non-significant difference between 
the groups.

3.3. Correlation analysis

The assortativity of the dorsal attention network was positively 
correlated with the gain of the FMA-UE after treatment, the 
correlation coefficient was 0.498, and the p-value was less  
than 0.05, which was considered statistically significant (see 
Figure 6).

4. Discussion

This study demonstrates the results of a clinical study investigating 
the efficacy of BCI compared to conventional therapy for upper 
extremity stroke rehabilitation. In terms of FMA-UE clinical scale 
scores, improvements in upper extremity motor function were found 
in both groups after 10 interventions. The motor function 
improvement in the BCI group was significantly greater than in the 
control group. This result is consistent with previous studies on the 
effectiveness of BCI interventions for upper limb motor function 
recovery in stroke patients (53). However, Li et  al. (54) hold that 
apparent effects of the BCI intervention can occur at follow-up weeks 
for post-stroke patients. Add-on therapy of BCI training with 
conventional therapy may enhance upper extremity motor and brain 
function recovery in post-stroke patients (55).

After focal brain injury in stroke patients, not only the lesion is 
affected but also the structure and functional anatomy will 

TABLE 2 Statistical description of FMA-UE changes (X ± S, score).

Group Sample Pre-intervention Post-intervention F p

Control group 20 20.75 ± 10.77 22.40 ± 10.58 16.399 0.001*

BCI group 20 20.80 ± 11.21 29.90 ± 11.08 22.860 <0.001*

F – 0 4.794 – –

P – 0.989 0.035* – –

*p < 0.05.

FIGURE 4

Properties of the functional brain network of the VN with a bin-width sparsity of 0.01. The area under the curve (AUC) displayed no significant 
differences in Cp, Lp, γ, λ, Eglobal, Elocal, assortativity, hierarchy, or synchronization between the groups. BCI group: red symbols and lines; control 
group: gray symbols and lines.
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be remodeled and reorganized to compensate for the lesion itself and 
the long-distance effects. New advances in the analysis of functional 
neuroimaging data allow us to assess in vivo the specific contribution 
of individual brain regions to functional recovery and the effect of 
treatment on cortical reorganization. Connectivity analysis and 
network topology studies are important for investigating the effect of 
stroke on brain networks and helping us understand why some patients 
recover better than others. Therefore, our study uses graph theory to 
clarify the impact of BCI on the pathological network configuration of 
stroke patients, so as to optimize the BCI strategy. It led us to switch 

attention from motor-related networks to attentional networks, thereby 
opening the way for the patient’s response to intervention (56).

In the present study, a significant difference in VN and DAN was 
found after 10-time BCI interventions. Neuroimaging studies have 
shown that components of multisensory input involve multiple 
cortical regions that interact with the world through the integration 
of information from multiple senses (57). Moreover, there was a 
positive trend between the motor function of FMA-UE and the 
assortativity of DAN. However, the correlation coefficient of 0.498 is 
a low correlation. This positive and weak trend is consistent with the 
study cited in (58), which showed that activation of the dorsal 
attentional network, increasing patient cognitive engagement and 
thereby activating the injured cortex at the network level, could 
facilitate motor-related tasks in subacute stroke patients (59).

The dorsal attention network (DAN) is also called the visuospatial 
attention network (visuospatial attention network), and the main 
brain areas include bilateral parietal internal sulcus, central anterior 
sulcus, and suprafrontal sulcus (frontal eye Active area), which are 
mainly responsible for providing the top-down attention orientation, 
participating in exogenous tasks, and continuing activities when 
prompting clues about when and where to react. The understanding 
of upper limb and hand movements is mostly considered to consist of 
two integrated movements, namely reaching and grasping. Each 
movement is mediated by different neural pathways from the visual to 
the motor cortex. Milner and Goodale (60) proposed the coexistence 
of the ventral circuit for object recognition and the dorsal circuit from 
the visual cortex through the posterior parietal lobe to the premotor 

FIGURE 5

Properties of the functional brain network of the DAN with a bin-width sparsity of 0.01. The area under the curve (AUC) displayed no significant 
differences in Cp, Lp, γ, λ, Eglobal, Elocal, assortativity, hierarchy, or synchronization between the groups. BCI group: yellow symbols and lines; control 
group: gray symbols and lines.

FIGURE 6

Correlation analysis between DAN network attributes and FMA-UE gains.
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and motor areas to visually guide the actions of the object. The latest 
view based on macaque models and human neuroimaging studies 
believes that two specialized dorsal parietal and frontal circuits control 
perception, both of which include the projection of MI. In humans, 
the dorsolateral circuit connects the anterior intraparietal sulcus 
(aIPS) and the inferior parietal lobules (IPL) to the ventral anterior 
motor cortex (PMv) to produce purposeful hand movements.

Neuronal reorganization may occur in brain regions including the 
ipsilesional and contralesional hemispheres or networks even between 
network activation during recovery to regain motor function. Therefore, 
neural circuit modulation is often discussed (61). Meanwhile, this 
network pattern provides a possible method to control the BCI system 
for stroke rehabilitation through DAN-based information fusion (58). 
Therefore, regulation of affected brain regions based on brain networks 
or connections between networks may play an important role in motor 
recovery following stroke (62). There is an opinion that modulation of 
the loop may promote the reorganization of the damaged hemisphere, 
which may have a positive effect on recovery. Based on this perspective, 
a restoration model was proposed that links the integrity of the loop 
pathway and functional restoration to structural reverse.

5. Conclusion

Several highlights distinguish this study from former studies. First, 
we revealed the clinical efficacy of an MI-based BCI system for post-
stroke rehabilitation. The BCI system presented patients with a more 
vivid training experience through auditory cues, motion observations, 
and multisensory (robotic, auditory, and visual) feedback, allowing 
subjects to deeply engage in training. Second, we speculated that DAN 
network participation and the positive correlation between combined 
inhibition and clinical scores are the ‘priming state’ of motor recovery 
in patients. Third, we provided a potential BCI optimization procedure 
(training attention and integration of visual stimulation integration) or 
neuromodulation stimulation of DAN/VN, which may contribute to a 
full picture of the key goals of the prescription.

6. Limitations

Some limitations of our study merit further discussion. First, for 
the experimental part of the research, the control group should 
be  treated with an additional equal amount of treatment with 
reference to the randomized controlled trial to improve the reliability 
of the experimental results. Second, this study cannot provide real-
time EEG signals and offline EEG data to better clarify the treatment 
effect and brain plasticity of MI-BCI. Third, the number of training 
sessions was small, yet there was generally no significant change in 
treatment for 2 weeks. However, we  were unable to increase the 
number of sessions and take a follow-up study due to the limited 
hospital stay of participants. Furthermore, the device for the 
rehabilitation of the hand is only used to drive wrist and finger 
dorsiflexion. They can also be placed in other muscle groups to aid in 
the motor rehabilitation of other body parts (e.g., elbows and 
shoulders). Their rehabilitation effect is still unknown, pending 
further research. Last but not least, the small sample of subjects and 
a wide range of post-stroke delays, stroke types, and lesion locations 
limited the further investigation of efficacy.
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