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Non-invasive and simple methods enabling easy identification of individuals

at high risk of cognitive decline are needed as preventive measures against

dementia. This pilot study aimed to explore protein biomarkers that can predict

cognitive decline using urine, which can be collected non-invasively. Study

subjects were selected from participants in a cohort study of middle-aged and

older community-dwelling adults who underwent cognitive testing using the

Mini-Mental State Examination and provided spot urine samples at two time points

with an interval of approximately 5 years. Seven participants whose cognitive

function declined 4 or more points from baseline (Group D) and 7 sex- and

age-matched participants whose cognitive function remained within the normal

range during the same period (Group M) were selected. Urinary proteomics

using mass spectrometry was performed and discriminant models were created

using orthogonal partial least squares-discriminant analysis (OPLS-DA). OPLS-DA

yielded two models that significantly discriminated between the two groups

at baseline and follow-up. Both models had ORM1, ORM2, and SERPINA3

in common. A further OPLS-DA model using baseline ORM1, ORM2, and

SERPINA3 data showed similar predictive performance for data at follow-up

as it did for baseline data (sensitivity: 0.85, specificity: 0.85), with the receiver

operating characteristic curve analysis yielding an area under the curve of 0.878.

This prospective study demonstrated the potential for using urine to identify

biomarkers of cognitive decline.

KEYWORDS

urine, cognitive decline, dementia, biomarker, proteomics

1. Introduction

With the aging of the population, the number of people with dementia has become
an important societal issue. Currently, more than 55 million people live with dementia
worldwide, and there are nearly 10million new cases every year (1). A recent study estimated
an increase in the number of people with dementia to 152 million by 2050 (2).

Dementia is a disorder in which a person’s previous level of cognition is
severely declined and interferes with occupational, family, and social functioning
(3). It is considered an acquired syndrome with multiple possible causes, such
Alzheimer’s disease (AD), brain cancer, and brain injury, and usually progresses slowly
and chronically (4).
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Studies have shown that intervention targeting a variety of
modifiable risk factors may prevent or delay the onset of dementia
(5–7). The identification of biomarkers that predict cognitive
decline through non-invasive and easily testable screeningmethods
is expected to enable effective approaches to identify high-risk
populations for dementia.

Urine is one of the preferable biological fluids as a source of
disease biomarkers because it can be collected easily and non-
invasively. A biomarker is defined as a laboratorymeasurement that
reflects the activity of a disease process (8). Approximately 30%
of the proteins in urine are normally derived from plasma, and
70% are produced in the kidneys (9). Substances removed from the
blood are excreted in the urine tomaintain homeostasis in the body.
Thus, urine can be a source of biomarkers that reflect changes in
the body more sensitively than other biofluids. This is especially
important in the early stages of disease, when the homeostatic
mechanisms that maintain a stable environment in the body are
still in effect and removing these harmful substances from the body
in a variety of ways (10).

Urine is also a suitable source for proteomics analysis using
mass spectrometry, which is currently the most common method
for the discovery and identification of candidate biomarkers (11).
The protein concentration in normal urine is very low. According
to a recent study (12), in pooled samples from healthy individuals,
the plasma protein concentration was 80 mg/ml while the urine
protein concentration was 0.03 mg/ml. Nevertheless, thousands
of proteins were identified in urine. The proportion of some
major proteins, most notably albumin, is lower in urine than
in plasma (13, 14), which also favors the identification of low-
abundance proteins.

A recent study comparing the proteomes of plasma,
cerebrospinal fluid (CSF), urine, and saliva revealed that the
urine proteome shares many proteins with the other four
body fluids (12). Interestingly, while the plasma proteome
is enriched in complement-related proteins and integrin
signaling-related proteins, the urine proteome was shown to
be enriched in a wider variety of proteins, including axon
guidance-related proteins, glycolytic system-related proteins,
and acute phase response-related proteins (12). Although
brain and urine appear to be far apart, urine may be a more
sensitive reflection of pathologies related to neurodegeneration
and inflammation.

Currently, studies on urine-based protein biomarkers of
dementia and cognitive decline are limited. AD-associated
neuronal thread protein (AD7c-NTP) has been reported to be
specifically found in the brains of AD patients (15). A recent
study demonstrated that urinary AD7cNTP concentrations in
AD, MCI, and healthy controls were found to shift in order
from high to low (16). Yao et al. found that urine from
AD patients had significantly decreased levels of osteopontin
and increased levels of gelsolin and insulin-like growth factor-
binding protein 7 compared to healthy elderly subjects (17). We
previously reported on the urinary proteome profiles of individuals
with AD compared with age- and sex-matched controls without
cognitive impairment (18, 19). However, these previous studies
were cross-sectional in design and thus cannot predict the onset of
AD or dementia.

Over the past 4 years, we have followed community-dwelling
elderly individuals, testing their cognitive function with the Mini-
Mental State Examination (MMSE) (20) and collecting urine
samples. The present study aimed to compare the urinary proteome
profiles of those with cognitive decline based on changes in MMSE
scores over the study period with those whose cognitive function
remained normal.

2. Materials and methods

2.1. Subjects

This study was approved by the human research ethics
committee of Niigata University (approval numbers: 1836, 2018-
0057, 2019-04545). All subjects were informed through a verbal
consent process (21).

Subjects were selected from a subcohort (Sekikawa cohort)
of the Murakami cohort, a population–based cohort study that
targeted individuals aged between 40 and 74 years living in
areas of northern Niigata Prefecture (Murakami region) (21), who
underwent the MMSE (MMSE-J: the Japanese version of MMSE)
(22) and provided a urine specimen at the baseline survey in 2014
or 2015 and at the follow-up surveys in 2019 and 2021 (18). At
the baseline survey, 415 subjects took the MMSE and provided
urine samples. Among these, 189 took the MMSE and provided
urine samples at the follow-up survey. The average follow-up was
4.7 ± 0.8 years. Demographic characteristics of subjects are shown
in Supplementary Table 1. Tombaugh et al. reported that a 4-point
decrease in MMSE score over 5 years is a significant change (p <

0.05) (23), and Stein et al. reported that a change of 2–3 points
in MMSE score over a time period of ∼4.5 years is significant
and reliable at the 90% confidence level (24). Therefore, subjects
whose MMSE score decreased by 4 or more points during the
study period and whose MMSE score was <24 (i.e., suspected
dementia) at follow-up were considered to have cognitive decline.
16 subjects had a decrease in MMSE scores of 4 or more points,
with baseline scores ranging from 26 to 30 points. Of these, 7 had
a score of <24, which is considered suspected dementia at follow-
up survey, and nine had a score in the range of 24 to 27, which is
considered suspected mild cognitive decline (22). Consequently, 7
subjects were included in the cognitive decline group (Group D).
MMSE scores for the Group D at baseline ranged from 26 to 30
points. For the control group (Group M), subjects who maintained
cognitive function (i.e., those with MMSE scores of 28 or higher at
both baseline and follow-up) were matched for sex and age with
the Group D. The flowchart of subject selection is shown in the
Supplementary Figure 1. MMSE scores for subjects of Group D and
M are shown in Supplementary Table 2.

2.2. Urine sample collection and laboratory
tests

Spot urine samples were obtained from subjects. No restrictions
on diet, drinking, or exercise were required prior to urine sampling.
Urine specimens were refrigerated in a cooler box immediately
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after collection and brought back to the laboratory within 8 h.
Samples were then centrifuged at 1,000 g for 15 mins and the
supernatant was stored at−20◦C until use. Urine samples that were
positive for urinary protein, sugar and/or occult blood by test strips
(Hema-Combistix-long, Siemens Healthcare Japan) were excluded.

2.3. Protein extraction from urine samples

Urine proteins were extracted according to a previously
reported sample preparation method for urine (25). In brief, 1ml
of urine was mixed with an equal volume of methanol with one
fourth chloroform and mixed well for 5 mins. The sample was then
centrifuged at 19,000 g at 25◦C for 15 mins and the supernatant was
discarded. Subsequently, 1ml of methanol was added to the sample,
which was mixed gently for 5 mins and then centrifuged at 19,000 g
at 25◦C for 15 mins. Finally, the supernatant was removed, and the
obtained proteins were dried by air.

After precipitation, proteins were dissolved in 50mM Tris-HCl
(pH 8.0) buffer containing 8M urea. For reduction and alkylation,
proteins were treated with dithiothreitol and iodoacetamide,
respectively, for 1 h. Following this, 1 µg of trypsin (Agilent, USA)
was added to the sample and the mixture was incubated at 37◦C
for 16 h with shaking. The digested sample was purified with a C18
spin column (GL Science, Japan) according to the manufacturer’s
instructions. The eluted sample was dried using a VEC-260 vacuum
dryer (Iwaki, Japan). The sample was then re-suspended in 0.1%
formic acid and the peptide concentration was measured using
a Nano drop 1,000 machine (Thermo). Samples were stored at
−80◦C until use.

2.4. Mass spectrometry analysis

The Fusion Tribird mass spectrometer was connected to an
EASY nLC1000 system (Thermo Fisher Scientific, Inc. Bremen,
Germany). Each sample (500 ng) was injected into the LC system
on a trap column (2 cm× 75µmAcclaim Pepmap 100 column) and
separation column (12.5 cm × 75µm NTCC-360) at 300 nL/min,
with a 115 mins multistep gradient. Peptides were separated with
5%B for 5 mins, 25%B for 100 mins, and 35%B for 115min with
mobile phase A: water with 0.1% formic acid; mobile phase B:
acetonitrile with 0.1% formic acid. The mass spectrometer was set
to the positive ion mode in scan ranges for MS and MS/MS of 350–
1,500 and 200–2,000 m/z, respectively. MS spectra were acquired
with high resolution (120,000) and a 3-sec cycle time.

2.5. Quantification analysis

The human Uniprot protein sequence database (v2015-08;
Homo sapiens 20,203 sequences) was searched with Proteome
Discoverer 2.2 (Thermo Fisher Scientific, Inc. Bremen, Germany)
directly using. RAW files with the SEQUEST algorithm. The
following settings were applied: trypsin with two missed cleavages,
mass tolerance of ± 10 ppm, fragment ion mass tolerance of ±
0.6 Da, and cysteine carbamidomethylation as a fixed modification.

False discovery rate (FDR) was set to 1% at the peptide level. Label-
free quantification (LFQ) was selected for quantification and the
analysis was performed using the default consensus workflow of
Proteome Discoverer.

2.6. DATA processing and bivariate analysis

Abundance of the master protein for each sample obtained
by Proteome Discoverer 2.2 was used as the quantitative value.
Samples from Groups D andM at the baseline survey were denoted
as D1 and M1, respectively, and samples from Groups D and
M at the follow-up survey as D5 and M5, respectively. Mass
spectrometry analysis identified 830 ± 222, 859 ± 135, 1,048 ±

100, and 1,074± 96 proteins with quantitative value in the D1, M1,
D5, and M5 samples, respectively. The 1,159 proteins identified in
4 or more samples in the D1, M1, D5, or M5 sample were included
in the statistical analysis. Missing values were filled with 1/5 of
the minimum value for each protein prior to statistical analysis.
Wilcoxon’s rank-sum test was used to compare levels of compounds
between Groups D and M. SAS software was used for statistical
analyses (release 9.13, SAS Institute Inc., Cary, NC, USA). P<0.05
was considered statistically significant.

2.7. Multivariate analysis

To identify proteins which can discriminate between Groups
D and M, principal component analysis (PCA) and orthogonal
partial least-squares discriminant analysis (OPLS-DA) was applied
using SIMCA software (version 17.0, Umetrics AB, Umea,
Sweden) (26). Before analyses, data that were not normally
distributed were logarithmically transformed accordingly with
the automatic transformation criteria of the software. Data were
then mean-centered and scaled to unit variance. First, PCA was
tested using baseline data and follow-up data respectively. The
resulting plots are shown in Supplementary Figure 2. OPLS-DA
was then performed. OPLS-DA provides supervised clustering
of subjects into two groups. The reliability of OPLS-DA models
was determined by analysis of variance testing of cross-validated
predictive residuals (CV-ANOVA). The cross validation was
performed 7 times. R2 is a parameter that measures the goodness
of fit while Q2 is another parameter that measures the predictive
ability of the model. In an ideal model, the R2 and Q2 should
be similar, meaning that each of the samples contributes equally
and uniformly to the observed group separation. In reality, Q2 is
always lower than R2; however, if Q2 is substantially lower than
R2, the robustness of the model is poor, implying overfitting (26).
Following the suggestion of Wheelock et al. (26). we reported
number of components, R2, Q2, and CV-ANOVA p-value as
model statistics of the final models. Variable importance in the
projection (VIP) provides the influence of every variable in the
model. A higher VIP value represents a stronger contribution to
discrimination among groups. Variables with VIP >1 made above-
average contributions to the model. Predictive VIP (VIPpred) is
the predictive component of VIP. Receiver operating characteristic
(ROC) curve analysis was performed with SIMCA software.
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3. Results

Baseline ages of subjects were 71.3 ± 5.5 and 71.9 ± 5.3 years
in Groups D andM, respectively. There were 4 males and 3 females
in both groups. MMSE scores for Groups D and M were 27.7± 1.4
and 29.0± 0.6 points, respectively, at baseline (p= 0.05, Welch’s t-
test), and 21.0± 1.5 and 29.3± 0.8 points, respectively, at follow-up
(p < 0.001, Welch’s t-test). Differences between MMSE scores (i.e.,
follow-up score minus baseline score) in Groups D and M were 6.7
± 1.4 and−0.3± 1.1 points, respectively (p< 0.001,Welch’s t-test).

Discriminant models using OPLS-DA were first created from
baseline data (i.e., D1 and M1 samples). The model using all
proteins failed to discriminate significantly between D1 and M1
samples (Model 1: p = 0.44, CV-ANOVA), but a significant
discriminant model was created with the top 20 proteins based
on the predictive VIP score of Model 1 (Figure 1A, Model 2: 2
components, R2 = 0.85, Q2 = 0.71, p = 0.016 (CV-ANOVA); the
list of proteins included in Model 2 are shown in Table 1).

OPLS-DA was then performed on follow-up data (D5 and M5
samples). The analysis using all proteins failed to discriminate
significantly between D5 and M5 samples (Model 3: p = 0.53, CV-
ANOVA). A further analysis using 54 proteins with a predictive
VIP score >1.9 in Model 3 significantly discriminated between D5
and M5 samples (Figure 1B, Model 4: 3 components, R2 = 0.99, Q2

= 0.91, p <0.001(CV-ANOVA); the list of 54 proteins is shown in
Supplementary Table 3).

Three proteins (ORM1, ORM2, and SERPINA3) were included
in bothD1M1 andD5M5 discriminantmodels (Model 2 andModel
4). ORM1, ORM2, and SERPINA3 were identified in all urine
samples, and their abundance was higher in GroupD than inGroup
M at baseline and follow-up (Figure 2). An OPLS-DA model was
created with these three proteins using baseline data as the test
set (Model 5, 1 component, R2 = 0.42, Q2 = 0.33, p = 0.11 (CV-
ANOVA)) and predictive analysis was performed with follow-up
data as the prediction set. The predictive performance evaluated
using ROC curve analysis showed an AUC of 0.878 (Figure 3A).
OPLS-DA scores for the test set and prediction set of Model 5
were similar (Figures 3B, C). The proportions of correctly classified
samples are shown in Supplementary Table 4, and the sensitivity
and specificity of Model 5 for urine samples at both baseline and
follow-up were 85.7 and 85.7%, respectively.

4. Discussion

We conducted cognitive function tests and collected urine
samples from elderly community residents at two time points
with an interval of ∼5-years, and analyzed the urinary proteome
prospectively and cross-sectionally between subjects with cognitive
decline (≥4-point decline in MMSE score) and age- and sex-
matched subjects who maintained normal cognitive function
(MMSE score of 28–30 points). Both the prospective (i.e.,
comparison of urine proteomes at baseline) and cross-sectional
(i.e., comparison of urine proteomes at follow-up) analyses
generated models that significantly discriminated between Groups
D andM.We identified 3 proteins (ORM1, ORM2, and SERPINA3)
that were shared in both models. The discriminative model based
on the 3 proteins, which was generated using proteomics data at

baseline, had an AUC of 0.878 based on ROC curve analysis and
showed similarly high sensitivity and specificity at both baseline
and follow-up.

Although this is a pilot study with a small sample size, to
our knowledge, it is the first prospective analysis of urinary
protein biomarkers that predict cognitive decline. Our findings
highlight the potential of urinary protein biomarkers that can
predict cognitive decline.

ORM, also known as alpha-1 acid glycoprotein (AGP), is an
acute-phase protein synthesized mainly in the liver and secreted in
plasma (27). ORM is a highly glycosylated protein, with amolecular
weight varying from 37 to 54 kDa depending on the degree of
glycosylation (27). ORM genes are clustered on chromosome 9, and
there are two paralogs in humans, ORM1 and ORM2 (27). ORM
constitutes 1–3% of plasma and the concentration of ORM1 is five-
fold higher than the level of ORM2 (27). Our urine proteomics data
revealed that ORM1 and ORM2 were also present in relatively high
concentrations in urine, with ORM1 being higher in abundance
than ORM2.

The concentration of plasma ORM is known to increase 2–6-
fold in most disease states, including inflammation and cancer (28).
Therefore, ORM has been studied as a potential blood biomarker
for many diseases (28–31). ORM has also been studied as a single or
combined urinary biomarker of inflammatory diseases and cancer,
including lupus nephritis, adult-onset Still’s disease, psoriasis,
rheumatoid arthritis, sepsis, Crohn’s disease, bladder cancer, and
hepatocellular carcinoma (32–38). In one cohort study, urinary
ORM showed a significant association with incident hypertension
at the 7-year follow-up (39). Hypertension, particularly in midlife,
is associated with a high risk of dementia, including Alzheimer’s
disease, although these associations are not fully elucidated (40).

SERPINA3, or alpha-1-antichymotrypsin, is a member of the
serine-protease inhibitor (SERPIN) superfamily. SERPINA3 is a
highly glycosylated protein with a molecular wight of roughly
46kDa (41). SERPINA3 is an acute-phase protein that is mainly
synthesized in the liver and secreted into the plasma. Altered
expression of SERPINA3 in plasma, organs, cerebrospinal fluid, and
urine is reportedly associated with various inflammatory diseases
and cancers (41).

Dysregulation of SERPINA3 has been reported to be associated
with Alzheimer’s disease (42). Overexpression of SERPINA3 in the
brain of AD patients correlates with tau hyperphosphorylation and
senile plaque deposition (42). Recently, Vanni et al. reported that
SERPINA3 expression in the brain is increased during aging and
highly upregulated in patients with neurodegenerative disorders
such as prion disease and Alzheimer’s disease (43, 44). Cognitive
decline is one of the most important signs preceding the onset of
Alzheimer’s disease. The increase in urinary SERPINA3 preceding
cognitive decline observed in the present study is consistent with
the findings of these previous studies.

All 3 proteins suggested as potential biomarkers of cognitive
decline in our study were acute phase proteins and are known to
be involved in various diseases such as cancer and inflammatory
diseases as described above. Systemic chronic inflammation is
one of the features associated with aging (45, 46). Hypertension
is a common condition in the elderly population (47), and the
prevalence of cancer and inflammation-related chronic diseases
increases with aging (46). Given the limited sample size of this
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FIGURE 1

Score plots of OPLS-DA models. (A) Model 2: Model 2 was generated using the top 20 proteins based on the predictive VIP score of the OPLS-DA

model using all proteins in the proteome data at baseline. (B) Model 4: Model 4 was generated with 54 proteins with predictive VIP >1.9 in the

OPLS-DA model using all proteins in the proteome data at follow-up. p values obtained from CV-ANOVA are shown.

study, it should be considered that individuals with such conditions
may not have been included in the control group. On the other
hand, studies have identified inflammation as a potential driver of
neurodegenerative brain changes and cognitive decline (48).

This study has some limitations worth noting. First, the urine
proteome varies intra- and inter-individually based on factors such
as age, sex, hormones, diet, and exercise (49). However, due to
the study setting, it was not possible to restrict the timing of, or
the conditions prior to, urine sampling. Therefore, inter-individual

variation may have been high. Second, in this study, a decline
of 4 or more points in MMSE score was considered a significant
decline in cognitive function. However, the decline in MMSE score
adopted in the study does not mean that the subjects have been
diagnosed with some form of dementia. Lack of clinical diagnosis
may result in a mixture of cognitive decline from different causes.
Third, ORM1 is known to interact with various drugs (50), but
no medication history was collected from subjects. Fourth, the
possibility of selection bias must be considered. In selecting the
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TABLE 1 Proteins included in Model 2.

Accession Gene name VIP pred in Model 1 Fold change in
median

P-value (Wilcoxon
rank sum test)

P13473 LAMP2 2.781 3.244 0.026

P36957 DLST 2.607 14.251 0.001

P22105 TNXB 2.518 3.309 0.026

P02763 ORM1 2.493 4.624 0.017

P19652 ORM2 2.469 9.870 0.011

P09668 CTSH 2.444 16.298 0.026

P40189 IL6ST 2.377 5.336 0.017

P01011 SERPINA3 2.372 2.579 0.097

Q99538 LGMN 2.334 5.000 0.070

P12273 PIP 2.283 8.060 0.072

P02751 FN1 2.280 1.823 0.053

P16112 ACAN 2.245 4.210 0.097

Q9UNZ2 NSFL1C 2.234 94.277 0.010

P54727 RAD23B 2.231 11.176 0.070

P52758 RIDA 2.197 32.259 0.005

O60888 CUTA 2.178 2.776 0.017

P05546 SERPIND1 2.173 9.924 0.002

Q9HC84 MUC5B 2.117 69.533 0.040

Q9BYE9 CDHR2 2.104 1.891 0.053

P04259 KRT6B 2.098 0.081 0.021

Top 20 proteins based on the predictive VIP (VIP pred) score in Model 1 using all proteins in the proteome data at baseline.

FIGURE 2

Abundance of ORM1, ORM2, and SERPINA3 by mass spectrometry. Solid circles: Group D, open circles: Group M. Bars and ranges represent median

and interquartile range. P-values were obtained using the Wilcoxon’s rank sum test.
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FIGURE 3

Predictive performance of ORM1, ORM2, and SERPINA3 with OPLS-DA. (A) Receiver operating curve (ROC) from the OPLS-DA model created with

ORM1, ORM2, and SERPINA3 using baseline data (Model 5). (B) Score plot of Model 5. Solid circles: Group D1, open circles: Group M1. (C) Plot of

predicted scores using follow-up data. Solid circles: Group D5, open circles: Group M5.

control group, sex and age were matched to group D, but not
MMSE score at baseline, and the control group was required to
have a MMSE score of at least 28 at baseline. Mean MMSE scores
at baseline tended to be statistically lower in group D. Finally,
although the study was prospective in design and had a follow-
up period of >4 years, the sample size was limited. However, to
the best of our knowledge, this is the first exploratory study of
urinary protein biomarkers of dementia using mass spectrometry
in a longitudinal setting.

Prospective studies with larger sample sizes of cognitively
normal elderly individuals, including those with urinary protein
patterns similar to those shown in this study, would be warranted
to explore urinary biomarkers that predict cognitive decline
and/or dementia.
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