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Texture analysis of apparent 
diffusion coefficient maps in 
predicting the clinical functional 
outcomes of acute ischemic 
stroke
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Purpose: To investigate texture analysis (TA) based on apparent diffusion 
coefficient (ADC) map in predicting acute ischemic stroke (AIS) prognosis and 
discriminating TA features in stroke subtypes.

Methods: This retrospective study included patients with AIS between January 
2018 and April 2021. The patients were assigned to the favorable [modified 
Rankin Scale (mRS) score ≤ 2] and unfavorable (mRS score > 2) outcome groups. All 
patients underwent stroke subtyping according to the Trial of Org 10,172 in Acute 
Stroke Treatment (TOAST) classification. The TA features were extracted from 
infarction lesions on the ADC map. The demographic characteristics, clinical 
characteristics, and texture features were used to construct prediction models 
with recurrent neural network (RNN). The receiver operating characteristic (ROC) 
curves were implemented to evaluate the performance of the predictive models.

Results: A total of 1,003 patients (682 male; mean age 65.90 ± 12.44) with AIS 
having documented the 90-day mRS score were identified, including 840 with 
favorable outcomes. In the validation set, the area under the curve (AUC) of the 
predictive model using only clinical characteristics achieved an AUC of 0.56, 
texture model 0.77, the model combining both clinical and texture features 
showed better with an AUC of 0.78. The texture feature profiles differed between 
large artery atherosclerosis (LAA) and small artery occlusion (SAO) subtypes (all 
p < 0.05). The AUC of combined prediction models for LAA and SAO subtypes was 
0.80 and 0.81.

Conclusion: Texture analysis based on ADC map could be useful as an adjunctive 
tool for predicting ischemic stroke prognosis.
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Introduction

Stroke remains the second-leading cause of death and the third-leading cause of death and 
disability combined globally (1). The burden of stroke has increased substantially over the past 
few decades due to an increasing and aging population as well as the increased prevalence of 
modifiable stroke risk factors, particularly in low-and middle-income countries (2). More than 12 
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million people worldwide suffer a stroke each year, and approximately 
70–80% of stroke cases are attributed to ischemic stroke (3, 4). The 
distribution of ischemic stroke subtypes varies among different racial 
or ethnic groups (5). Since accurate clinical strategies can improve the 
outcomes in patients with acute ischemic stroke (AIS), the obtainability 
of robust and validated prognostic biomarkers is essential to optimize 
early individualized therapy and rehabilitation strategies.

Texture analysis (TA) is an effective quantitative image analysis 
tool to explore the microstructural changes that cannot be explored by 
humans visually. TA defines the measure of voxel intensities, voxel 
inter-relationships, and the gray-level patterns in the image. TA has 
been successfully used for characterizing multiple sclerosis (6–8), small 
vessel disease (9), and dementia with Lewy bodies (10). It has been 
demonstrated that TA is an effective tool for image analysis. In the field 
of ischemic stroke, TA based on magnetic resonance imaging (MRI) 
has been reported to be applied to the early identification of ischemic 
lesions (11), stroke severity classification (12), post-stroke cognitive 
impairment (13) and detecting the effects of stroke therapy (14).

Diffusion-weighted imaging (DWI) is the most important and 
commonly used part of routine clinical stroke neuroimaging protocols 
as it facilitates the identification of stroke lesions. The apparent diffusion 
coefficient (ADC) yielded by DWI is sensitive to the initial cell swelling 
of a cytotoxic edema. ADC maps have been found to reveal the early 
indications and progression of cerebral ischemic infarction (15). Each 
voxel intensity of ADC maps is determined partly by intracellular water 
and partly by extracellular water. The changes in the distribution of 
extracellular water entering cells after infarction may possibly be reflected 
in the texture features. Previous studies demonstrated that the texture 
features based on DWI and ADC maps could evaluate ischemic stroke 
severity (12, 16). ADC changes in motor structures have also been 
shown to be predictors of acute stroke outcomes (17). A recent study 
reported that radiomics features based on DWI and ADC could predict 
stroke outcomes (18). However, the information on whether the texture 
features of infarct lesions correlate with the prognosis of AIS is limited.

We hypothesized that the ADC-based texture features might differ 
between patients with AIS having favorable and unfavorable clinical 
outcomes. Thus, this study aimed to explore the role of texture features 
in predicting AIS prognosis. We further investigated the characteristics 
difference of texture features in different stroke subtypes.

Materials and methods

Study population

Between January 2018 and April 2021, all participants, aged 
>18 years, presenting to our stroke center with signs and symptoms of 
AIS were enrolled in this retrospective study. The study had approval 
from the institutional ethics committee of our hospital (approval 
number: 2022–013-01 K). Patients with confirmed acute DWI lesions 
on brain MRI scans performed within 72 h of symptom onset were 
included in this analysis. Of 1,580 participants, we  excluded 
participants with cerebral hemorrhage (n = 21), traumatic brain injury 
(n = 7), previous neurological or psychiatric disorder (n = 163), severe 
MRI artifacts (n = 17), contradiction to MR examination (n = 9), 
feature extraction failure (n = 80), or loss to follow-up (n = 280). The 
flowchart is shown in Figure 1. The requirement for informed consent 
was waived because of the retrospective nature of the study.

Clinical variables

Age, sex, National Institutes of Health Stroke Scale (NIHSS) score, 
antecedent hypertension, diabetes mellitus, hyperlipidemia, atrial 
fibrillation, tobacco or alcohol use, low-density lipoprotein cholesterol 
(LDL-C), and discharge medications were abstracted from the medical 
record. The AIS subtypes were assigned according to the Trial of Org 
10,172 in Acute Stroke Treatment (TOAST) classification (19).

Clinical outcome assessment

Patients or their caregivers were interviewed in person or by 
telephone at 90 days after stroke to assess the functional outcomes 
using the modified Rankin Scale (mRS) score. The patients were 
assigned to the favorable (mRS score ≤ 2) and unfavorable (mRS 
score > 2) outcome groups (20).

MRI examination

All MRI examinations were performed on a 1.5-T MRI scanner (GE 
Healthcare, WI, United States) or a 3.0-T MRI scanner (United Imaging 
Healthcare, Shanghai, China). The scan parameters for the 1.5-T 
scanner were axial DWI based on a single-shot echo planar imaging 
(SSEPI) sequence, with repetition time (TR)/echo time 
(TE) = 3,203 ms/83.9 ms, slice thickness/gap = 5 mm/1.5 mm, 
FOV = 240 × 240 mm2, b values = 0 and 1,000 s/mm2, and matrix = 96 × 96. 
The scan parameters for the 3.0-T scanner were axial DWI based on the 
SSEPI sequence, with TR/TE = 2,800 ms/75.4 ms, slice thickness/
gap = 5 mm/1.5 mm, FOV = 230 × 220 mm2, b values = 0 and 1,000 s/
mm2, and matrix = 128 × 128.

Segmentation of infarction lesions

A total of 100 patients were randomly selected for manual 
segmentation by ITK-SNAP 3.8.1 The volume of interest (VOI) was 
sketched by slice-by-slice stacking on DWI. The 100 VOIs were brought 
into a 2D U-Net network for automatic segmentation (21). Then, the 
trained segmentation network model was used to segment the remaining 
cases. For automatic segmentation assessment, 100 random cases from 
the testing set were chosen to calculated the DICE coefficient. Image 
intensity parameters were normalized to 0–1 using window width and 
window level before the process of automatic image segmentation. The 
region of VOI on DWI was copied to the corresponding ADC maps. The 
mask matrix based on DWI and ADC maps was used for further texture 
extraction. The framework of the proposed method is given in Figure 2.

Texture features extraction and analysis

Texture features extraction were performed on the MATLAB 
2019a (The MathWorks Inc., Natick, MA, USA). Based on the 

1 www.itk-snap.org
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extraction results of texture features and clinical characteristics, 
we  use sparse representation for feature selection to reduce the 
redundant information in features and improve classification model 
accuracy. Specifically, we use sample features for sparse representation 
in sample labeling, so the highest label correlated feature subsets are 
selected. Meanwhile, the sparsity constraints on the model effectively 
removed the correlation and redundancy in the features of the feature 
subsets. Following is the model: w l Fw w

w

^ argmin= − +   

2

2

0
η  

(22). l R∈ m being the training sample label, m  being the size of the 
training sample, F = f f f R1 2

2,  m
T m K[ ] ∈ ×  being feature set of 

training sample, ?being the sparse representation parameter, the 
absolute value of factors in sparse representation coefficient, w  is the 
importance of the features. When w  is computed, key features can 
be selected by simply comparing the thresholds.

The following features were extracted: eight gray-level 
co-occurrence matrix (GLCM) features, thirteen gray-level run-length 
matrix (GLRLM) features, thirteen gray-level size zone matrix 
(GLSZM) features, and five neighborhood gray-tone difference matrix 
(NGTDM) features. Additional information on TA features is 
provided in Supplementary Table S1.

Model classification and data distribution

Based on the selected feature subsets, we  established our 
classification prediction models based on recurrent neural 
network (RNN) (23). Weighted cross-entropy loss function was 
used to optimize the network. In network training, we used an 

Adam optimizer with a learning rate of 0.0001 and a batch 
size of 10.

The patients were randomly divided into the training and 
validation sets by stratified sampling. Due to the imbalance of 
sample number in our study, we used under-sampling method to 
build the dataset. The unfavorable-outcome group was randomly 
divided into training and validation sets at the ratio of 2:1. Then, 
the patients in the favorable-outcome group were randomly 
assorted into the training set 1.5 times the number in the training 
set with an unfavorable outcome. The remaining patients were 
included in the validation set to validate the reliability and 
robustness of the models.

Statistical analysis

The continuous variables with normal distribution were 
reported as mean ± standard deviation, non-normally distributed 
variables as median (interquartile range), and classification 
variables as frequency (%). We used the independent-samples 
t-test or Mann–Whitney U test for continuous variables and the 
chi-square for categorical dependent variables between favorable-
outcome and unfavorable-outcome groups, as appropriate. The 
receiver operating characteristic (ROC) curve was generated to 
evaluate the performances of the predictive models. All statistical 
analyses were carried out using SPSS (version 26.0, SPSS Inc., 
Chicago, IL, United States). All the reported p values were based 
on the two-tailed tests, and p values less than 0.05 indicated a 
statistically significant difference.

FIGURE 1

Flowchart of case selection for analysis.
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Results

Demographic and clinical characteristics

We included 1,003 patients with AIS having a 90-day mRS 
score available for this analysis. Of these, 682 (68.0%) were men, 
and the mean age was 65.90 years (SD 12.44 years). Table  1 
summarizes the demographic and clinical features of the study 
population and comparisons between the groups. In 
reproducibility analysis, the manually drawn results and the 
network’s automatic segmentation exhibited excellent agreement 
(DICE coefficient = 0.886).

Functional outcomes in the entire cohort

Of 1,003 patients, 840 (83.7%) showed functional independence 
(mRS ≤ 2) at 90 days. Further, 163 participants (16.3%) had unfavorable 
outcomes (74 patients with mRS = 3, 47 with mRS = 4, 28 with mRS = 5, 
and 14 with mRS = 6). Strokes with favorable outcomes had a lower 
admission NIHSS score and smaller stroke volume (both p < 0.001). The 
stroke subtype showed a significant difference between the two groups 
(p = 0.012). The patients with unfavorable outcomes were less likely to 
receive antiplatelet therapy after discharge (p = 0.030) (Table 1).

Eleven texture features, including five GLRLM features, five 
GLSZM features, and one NGTDM feature demonstrated statistically 

FIGURE 2

Pipeline of texture analysis for clinical outcome prediction.
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significant differences. The information of the 11 features is provided 
in Table 2.

Based on RNN, all the clinical models and texture models were 
constructed, the clinical characteristics and texture feature selection was 
shown in the Supplementary Table S2. According to the above clinical 
characteristics and texture features, the combined model was constructed. 
In the validation set, the area under the ROC curve (AUC) of the 
combined prediction model was 0.78, and the accuracy, sensitivity, and 
specificity were 0.81, 0.74, and 0.82, respectively (Table 3). The AUC of 
the texture model was 0.77. The model using only the clinical 
characteristics achieved a low AUC of 0.56  in the validation cohort 
(Figure 3A).

Functional outcomes in the large artery 
atherosclerosis type

A summary of the demographic and clinical features of the 
patients with large artery atherosclerosis (LAA) having different 

clinical outcomes is shown in Table  4. The patients resulting in 
favorable 90-day outcomes had a lower NIHSS score at admission and 
smaller stroke volume than those with unfavorable outcomes (both 
p < 0.001). The proportion of statin after discharge in the unfavorable-
outcome group was higher than that in the favorable group 
(p = 0.045).

Thirteen texture features, including five GLRLM features, seven 
GLSZM features, and one NGTDM feature demonstrated statistically 
significant differences. The information of the 13 features is provided 
in Table 5.

The clinical model, including stroke volume, NIHSS score, 
discharge statin, discharge anticoagulant and LDL-C, exhibited an 
AUC of 0.58 with accuracy, sensitivity and specificity of 0.61, 0.55 and 
0.61, respectively, in the validation cohort. The effectiveness of clinical 
model was lower than the texture model (AUC: 0.80) and the 
combined model (AUC: 0.80) (Table 3 and Figure 3B).

Functional outcomes in the small artery 
occlusion type

A total of 298 patients, including 262 with favorable outcomes and 
36 with unfavorable outcomes, were classified into the small artery 
occlusion (SAO) type. No significant differences were found in 
demographic and clinical data (Table 4).

Three GLCM texture features were significantly different in these 
two outcome groups. GLCM dissimilarity (p = 0.022) and contrast 
(p = 0.022) were higher in the unfavorable-outcome group, whereas 
homogeneity was higher in the favorable-outcome group (p = 0.048) 
(Figure 4).

In the validation set, the AUC of clinical-texture model was 0.81, 
and the accuracy, sensitivity and specificity were 0.84, 0.75, and 0.84, 
respectively. The texture model showed an AUC of 0.74 with accuracy, 
sensitivity and specificity of 0.84, 0.67, and 0.85, while the AUC of 
clinical model was 0.64, and the accuracy, sensitivity and specificity 
were 0.79, 0.50, and 0.81 (Table 3 and Figure 3C).

TABLE 1 Demographic and clinical characteristics of AIS patients with 
favorable and unfavorable outcome.

Characteristics Functional outcome p-value

Favorable 
outcome 
(n = 840)

Unfavorable 
outcome 
(n = 163)

Age, y 66.02 ± 12.21 65.33 ± 13.57 0.516

Men, n (%) 578 (68.8%) 104 (63.8%) 0.210

Smoking, n (%) 318 (37.9%) 60 (36.8%) 0.801

Drinking, n (%) 114 (13.6%) 20 (12.3%) 0.655

Hypertension, n (%) 563 (67.0%) 113 (69.3%) 0.566

Hyperlipidemia, n (%) 229 (27.3%) 48 (29.4%) 0.568

Diabetes Mellitus, n (%) 292 (34.8%) 58 (35.6%) 0.841

Atrial fibrillation, n (%) 92 (11.0%) 21 (12.9%) 0.475

Stroke subtype (TOAST), 

n (%)

0.012

LAA 445 (53.0%) 99 (60.7%)

CE 66 (7.9%) 14 (8.6%)

SAO 262 (31.2%) 36 (22.1%)

Other 7 (0.8%) 6 (3.7%)

Undetermined 60 (7.1%) 8 (4.9%)

Discharge statin, n (%) 526 (62.6%) 108 (66.3%) 0.378

Discharge antiplatelet, n 

(%)

759 (90.4%) 138 (84.7%) 0.030

Discharge anticoagulant, 

n (%)

39 (4.6%) 6 (3.7%) 0.587

LDL-C mmol/L 3.01 ± 0.93 3.09 ± 1.13 0.314

Admission NIHSS score 3 (1–4) 4 (2–7) <0.001

Stroke volume, ml 1.68 (0.70–

7.12)

2.35 (0.78–13.41) <0.001

LAA, large artery atherosclerosis; CE, cardioembolism; SAO, small artery occlusion; HbA1c, 
glycosylated hemoglobin; LDL-C, low-density lipoprotein cholesterol; NIHSS, National 
Institutes of Health Stroke Scale. The bold values indicate the value of p less than 0.05.

TABLE 2 Texture features analysis (p < 0.05) in AIS patients with and 
without favorable outcome.

Method Texture features p-value

GLRLM (gray-level 

run-length matrix)

Short run emphasis (SRE) 0.008

Long run emphasis (LRE) 0.006

Gray-level nonuniformity (GLN) <0.001

Run-length nonuniformity (RLN) <0.001

Run percentage (RP) 0.007

GLSZM (gray-level 

size zone matrix)

Gray-level nonuniformity (GLN) <0.001

Zone-size nonuniformity (ZSN) <0.001

Zone percentage (ZP) 0.003

High gray-level zone emphasis (HGZE) 0.043

Large zone low gray-level emphasis 

(LZLGE)

0.004

NGTDM 

(neighborhood 

gray-tone difference 

matrix)

Busyness <0.001

https://doi.org/10.3389/fneur.2023.1132318
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Sun et al. 10.3389/fneur.2023.1132318

Frontiers in Neurology 06 frontiersin.org

FIGURE 3

Receiver operator characteristic curves for (A) total stroke, (B) large artery atherosclerosis type, and (C) small artery occlusion type by clinical 
characteristics, texture features and combined models in predicting of stroke outcomes.

FIGURE 4

Texture features analysis (p < 0.05) in the small artery occlusion type between favorable-outcome and unfavorable-outcome groups.

Discussion

In this study, we developed new models that could predict 90-day 
functional outcomes in patients with AIS. Our findings indicated that the 
second-order texture characteristics reflected the heterogeneity of stroke 
lesions. The predictive models of LAA and SAO stroke outcomes had 
moderate sensitivity and specificity. We demonstrated that the texture 
feature profiles differed between LAA and SAO subtypes.

TA features proved to be  efficient in describing the voxel inter-
relationships and the gray-level distributions within images, allowing the 

quantification of the intrinsic heterogeneity invisible to the naked eye. 
We extracted the second-order features of texture features, which consisted 
of GLCM, GLRLM, GLSZM, and NGTDM. The GLCM features 
quantified the relationship between gray levels by counting the pairs with 
predefined distance and direction that had the same distribution of gray-
level values (24). The GLRLM features quantified the length and number 
of consecutive voxels that had the same gray-level value (25). The GLSZM 
features quantified the number of connected voxels that shared the same 
gray-level intensity (26). The NGTDM features quantified the difference 
between a gray value and the average gray value of its neighbors within the 
predefined distance (27). The significant differences in second-order 

TABLE 3 The performance of the prediction models.

Total AIS LAA subtype SAO subtype

Clinical Texture Combined Clinical Texture Combined Clinical Texture Combined

AUC 0.56 0.77 0.78 0.58 0.80 0.80 0.64 0.74 0.81

Accuracy 0.69 0.78 0.81 0.61 0.82 0.83 0.79 0.84 0.84

Sensitivity 0.41 0.61 0.74 0.55 0.70 0.79 0.50 0.67 0.75

Specificity 0.71 0.79 0.82 0.61 0.83 0.83 0.81 0.85 0.84

AUC, area under curve; AIS, acute ischemic stroke; LAA, large artery atherosclerosis; CE, cardioembolism; SAO, small artery occlusion.
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texture features might suggest that the spatial inter-relationship between 
adjacent voxels in patients with AIS having functional independence was 
different from that in patients with disability.

The pathophysiological mechanisms underlying ischemic stroke 
termed the ischemic cascade, which consisted of the formation of 
reactive oxygen species, release of glutamate, accumulation of 
intracellular calcium, and induction of inflammatory processes. A 

previous study showed that the texture features based on DWI were 
closely related to edema after cerebral infarction (28). Electrico-
physiological phenomena such as cortical spreading depolarisations 
with associated energy failure and altered intracellular calcium 
concentration particularly from cells of the neuromuscular unit 
resulting into further neuronal cell injury, blood–brain barrier (BBB) 
break-down and related changes of the microstructures and thereby 
of the ADC maps and other radionics (29, 30). TA has been useful in 
examining subtle BBB leakage and inflammatory process after brain 
ischemia (14, 31). However, the relationship between TA features and 
pathological changes of stroke is unclear. We  speculated that the 
complex pathophysiological processes of stroke might lead to the 
microstructural changes, which could be reflected in texture features.

A recent study found that the radiomics signatures based on ADC 
maps were associated with unfavorable outcomes and served as a risk 
factor (32). The radiomics features of computed tomography reflected 
the heterogeneity of stroke infarction and had good performance in 
predicting patient prognosis (33–35). One recent study also confirmed 
that a clinical-radiomics nomogram from DWI was a good predictor 
for ischemic stroke prognosis (36). Our study also demonstrated a 
positive signal, indicating the ADC-based texture analysis could be a 
useful tool in predicting stroke prognosis.

In a previous study, several texture features, principally the GLRLM 
features, differed between patients with AIS undergoing mechanical 
thrombectomy with good versus bad outcomes (37). Although the 
findings were partially similar, our study highlighted the differences in 
texture feature categories by the stroke subtype. We found that adjacent 
voxel relationships of images had higher dissimilarity and contrast and 
less homogeneity in unfavorable-outcome patients with SAO than those 
in favorable-outcome patients, which were diametrically contradictory 
to previous results (37). These implied that the brain tissue textures on 
infarction lesions with bad outcomes might be  more complex and 
heterogeneous than those on lesions with good outcomes. Similar results 

TABLE 5 Texture features analysis (p < 0.05) in the large artery 
atherosclerosis type between favorable-outcome and unfavorable-
outcome groups.

Method Texture features p-value

GLRLM (gray-level 

run-length matrix)

Short run emphasis (SRE) 0.041

Long run emphasis (LRE) 0.049

Gray-level nonuniformity (GLN) <0.001

Run-length nonuniformity (RLN) <0.001

Run percentage (RP) 0.040

GLSZM (gray-level 

size zone matrix)

Large zone emphasis (LZE) <0.001

Gray-level nonuniformity (GLN) <0.001

Zone-size nonuniformity (ZSN) <0.001

Zone percentage (ZP) 0.005

High gray-level zone emphasis (HGZE) 0.022

Large zone low gray-level emphasis 

(LZLGE)

0.008

Large zone high gray-level emphasis 

(LZHGE)

<0.001

NGTDM 

(neighborhood gray-

tone difference matrix)

Busyness <0.001

TABLE 4 Demographic and clinical characteristics in LAA and SAO strokes with favorable and unfavorable outcome.

Characteristics LAA p-value SAO p-value

Favorable 
outcome 
(n = 445)

Unfavorable 
outcome (n = 99)

Favorable 
outcome 
(n = 262)

Unfavorable 
outcome 

(n = 36)

Age, y 66.17 ± 12.19 65.21 ± 12.59 0.483 64.15 ± 12.03 66.06 ± 13.88 0.383

Men, n (%) 295 (66.3%) 68 (68.7%) 0.647 194 (74.0%) 22 (61.1%) 0.103

Smoking, n (%) 154 (34.6%) 39 (39.4%) 0.368 111 (42.4%) 13 (36.1%) 0.475

Drinking, n (%) 59 (13.3%) 15 (15.2%) 0.619 44 (16.8%) 4 (11.1%) 0.553

Hypertension, n (%) 292 (65.6%) 74 (74.7%) 0.080 180 (68.7%) 20 (55.6%) 0.115

Hyperlipidemia, n (%) 125 (28.1%) 34 (34.3%) 0.216 65 (24.8%) 8 (22.2%) 0.735

Diabetes Mellitus, n (%) 140 (31.5%) 35 (35.4%) 0.453 99 (37.8%) 14 (38.9%) 0.898

Atrial fibrillation, n (%) 36 (8.1%) 11 (11.1%) 0.333 5 (1.9%) 1 (2.8%) 0.740

Discharge statin, n (%) 276 (62.0%) 72 (72.7%) 0.045 164 (62.6%) 21 (58.3%) 0.621

Discharge antiplatelet, n (%) 411 (92.4%) 86 (86.9%) 0.79 248 (94.7%) 33 (91.7%) 0.732

Discharge anticoagulant, n (%) 17 (3.8%) 3 (3.0%) 0.934 2 (0.8%) 0 (0.0%) 1.000

LDL-C, mmol/L 3.05 ± 0.96 3.15 ± 1.24 0.337 2.99 ± 0.86 3.01 ± 0.90 0.895

Admission NIHSS score 3 (2–5) 4 (3–8) <0.001 2 (1–3) 2 (1–3) 0.343

Stroke volume, ml 3.68 (1.41–13.40) 6.19 (1.59–15.02) <0.001 0.56 (0.30–0.93) 0.41 (0.27–0.64) 0.198

LAA, large artery atherosclerosis; SAO, small artery occlusion; HbA1c, glycosylated hemoglobin; LDL-C, low-density lipoprotein cholesterol; NIHSS, National Institutes of Health Stroke Scale. 
The bold values indicate the value of p less than 0.05.
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were obtained in previous studies of chronic ischemic stroke (38). 
Furthermore, we  showed that five GLRLM features, seven GLSZM 
features, and one NGTDM feature were associated with stroke outcomes 
in LAA, whereas only three GLCM features were associated with stroke 
outcomes in SAO. One possible explanation could be ascribed to the 
different pathogenic mechanisms of ischemic stroke. TA has been used 
to automatically differentiate lacunar syndrome and partial or total 
anterior circulation stroke based on MRI images (12). The occluded 
arteries in lacunar infarcts were end arteries, which was in contrast to the 
large cerebral artery disease; no collaterals were formed with the adjacent 
vascular territories. The findings of such specific subtypes might support 
the concept of a different underlying etiologic disease process.

As expected, a larger volume of infarct lesions and increasing 
stroke severity in terms of the admission NIHSS score were 
associated with unfavorable outcomes in both the entire cohort 
and the LAA subtype. This finding was in accordance with the 
previous literature (39). The reason why no difference was found 
in age and sex between two groups was probably that the majority 
of enrolled patients had a good prognosis. The clinical 
characteristics in SAO did not correlate with the clinical outcomes 
was likely because the patients with SAO tended to have smaller 
infarct volumes and mild clinical symptoms.

This study had several limitations. First, the retrospective data might 
lead to selection bias. Second, the clinical symptoms of patients in this 
cohort were relatively mild, and a large proportion of patients had a good 
prognosis. We used deep learning algorithms to tackle the imbalance of 
data distribution and hence improve the performance of our predictive 
models. Third, considering our small study population, we  did not 
analyze the textures of the other three subtypes of TOAST. Fourth, 
we included patients with AIS, however, we did not analyze whether 
different therapies vary different texture features. Further research is still 
needed in the future. Fifth, other relevant factors were not accounted for, 
such as hemorrhagic transformation or white matter hyperintensities, 
which were previously linked to texture features (40, 41). Future work 
should contemplate enlarging the sample size, finding TA features relevant 
to each stroke subtype, and demonstrating the robustness of these results 
in a prospective randomized multicenter study.

In conclusion, the TA base on ADC maps showed potential value 
in predicting the prognosis of patients with AIS. TA features differed 
in LAA and SAO stroke subtypes. Combined with clinical 
characteristics, TA could be used to improve the efficacy for predicting 
the functional outcomes in AIS.
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