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Alzheimer’s disease (AD) is a neurodegenerative disease that primarily occurs in

elderly individuals with cognitive impairment. Although extracellular β-amyloid

(Aβ) accumulation and tau protein hyperphosphorylation are considered to

be leading causes of AD, the molecular mechanism of AD remains unknown.

Therefore, in this study, we aimed to explore potential biomarkers of AD.

Next-generation sequencing (NGS) datasets, GSE173955 and GSE203206, were

collected from the Gene Expression Omnibus (GEO) database. Analysis of

di�erentially expressed genes (DEGs), gene ontology (GO) functional enrichment,

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and

protein-protein networks were performed to identify genes that are potentially

associated with AD. Analysis of the DEG based protein-protein interaction (PPI)

network using Cytoscape indicated that neuroinflammation and T-cell antigen

receptor (TCR)-associated genes (LCK, ZAP70, and CD44) were the top three

hub genes. Next, we validated these three hub genes in the AD database and

utilized two machine learning models from di�erent AD datasets (GSE15222)

to observe their general relationship with AD. Analysis using the random forest

classifier indicated that accuracy (78%) observed using the top three genes as

inputs di�ered only slightly from that (84%) observed using all genes as inputs.

Furthermore, another data set, GSE97760, which was analyzed using our novel

eigenvalue decompositionmethod, indicated that the top three hub genesmay be

involved in tauopathies associated with AD, rather than Aβ pathology. In addition,

protein-protein docking simulation revealed that the top hub genes could form

stable binding sites with acetylcholinesterase (ACHE). This suggests a potential

interaction between hub genes and ACHE, which plays an essential role in the

development of anti-AD drug design. Overall, the findings of this study, which

systematically analyzed several AD datasets, illustrated that LCK, ZAP70, and CD44

may be used as AD biomarkers. We also established a robust prediction model for

classifying patients with AD.
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1. Introduction

Alzheimer’s disease (AD), which is the most common form

of dementia in the elderly, is regarded as a central nervous

system disorder (1). Considerably more people over the age of

60 years live with disabilities associated with AD (11.2%) than

those associated with stroke (9.5%) or musculoskeletal disorders

(8.9%) (2). After the age of 65 years, the probability of developing

AD doubles every 5 years, thereby affecting 30–50% of people

over the age of 85 years (3). Although the pathogenesis of

AD remains largely unknown, the deposition of amyloid- β

(Aβ), formation of neurofibrillary tangles (NFTs) due to MAPT

hyperphosphorylation, and neuroinflammation are considered

to be the leading causes (4–6). Moreover, rapid advances in

AD research have resulted in numerous different clinical drugs

being developed. Currently available drugs, such as inhibitors of

acetylcholinesterase (ACHE) and butyrylcholinesterase (BCHE),

are able to alleviate cognitive and memory decline linked to AD

(7–9). Despite the availability of drugs for delaying the progress of

Alzheimer’s Disease (AD) at the clinical level, there is currently no

cure for the disease (10, 11). The absence of dependable biomarkers

for early diagnosis and drug design presents a significant challenge

to AD research. Therefore, it is imperative to investigate the

underlying pathological mechanisms of AD and explore potential

biomarkers for the disease.

Over the past few decades, next-generation sequencing (NGS)

has been extensively used to study the pathological mechanisms

underlying AD (12). Re-analysis of the vast amounts of sequencing

data produced by NGS experiments may help understand the

mechanisms underlying AD progression and develop drugs

designed to treat this disease effectively. Numerous studies have

been conducted on NGS public sequencing data of AD. Himanshu

Narayan Singh used NGS bioinformatics analysis to determine that

DYNLL1 and KLRN were significantly associated with AD, which

suggested that these proteins may constitute the genetic basis of AD

(13). Furthermore, gene ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) analyses performed by Fang

indicated that certain functions, such as taxis and cell-cell signaling,

were strongly associated with AD (14). Although numerous studies

have investigated the differential expression of AD genes, the

results of only some have been verified via mathematical models

or biological experiments. Thus, in this study, we designed two

efficient classification models that predict patients with AD based

on the expression levels of differentially expressed genes (DEGs).

In this study, we aimed to identify DEGs between AD and

non-AD individuals in two different datasets. Next, the processes

and pathways enriched by these DEGs were elucidated, and

CytoHubba was utilized to identify the top hub genes among all

DEGs, resulting in the identification of neuroinflammation and

T-cell antigen receptor (TCR)-related genes as top hub genes.

Subsequently, we developed a novel correlation analysis based on

eigenvalue decomposition methods. This new method was used

to analyse assortativity between the top hub genes as well as

identify the primary hallmark genes of AD to determine which

pathology was more critical. In addition, another data set was

used to develop two machine learning models that disclose patients

according to the expression levels of hub genes. Finally, we further

TABLE 1 The description of di�erent datasets.

Dataset Tissue AD definition Demographics

GSE173955 Hippocampal CERAD and Braak

stage

Japan; Age 55–100

GSE203206 Occipital lobe Cognitive scores

and NFT staging

United States; Age

41–97

GSE15222 Temporal cortex CERAD and Braak

stage

European

GSE97760 Blood Cognitive scores United States; All

female; Age 59–91

investigated the potential effects exerted by the top hub genes

on drug designs involving ACHE or BCHE inhibitors. In this

study, we aimed at providing valuable insights into the mechanisms

underlying neuroinflammation and the functioning of TCR-related

genes in AD.

2. Materials and methods

2.1. Datasets information

Two publicly available high-throughput RNA sequencing

datasets, GSE173955 (GPL18460) (15) and GSE203206 (GPL20301)

(16), were extracted from the Gene Expression Omnibus (GEO;

https://www.ncbi.nlm.nih.gov/geo/). In the GSE173955 dataset, the

AD group consisted of eight biological replicates, whereas the

normal group consisted of 10 biological replicates, and all samples

were repeated once for the purpose of technical duplication, which

effectively minimized sequencing error (17). It used hippocampal

tissues from eight AD and ten control (non-AD) autopsy samples

of Hisayama residents, Japan. The assessment of AD pathology

was conducted according to the Consortium to Establish a Registry

for Alzheimer’s Disease (CERAD) guidelines and the Braak stage.

The age range of the samples was 55–100 years old. Moreover,

the GSE203206 dataset used brain tissue samples obtained from

the Brodmann Area 17 (Bm-17) of the occipital lobe (OL) of 40

AD patients and 8 healthy, non-demented control (NDC) samples

preserved at the UC San Diego Shiley-Marcos Alzheimer’s Disease

Research Center. The AD samples were selected based on their

lack of alternative diagnosis, APOE status, and age at onset (AAO).

Three cognitive evaluation scores were used to classify the selected

patients as AD or NDC. Each brain sample was staged based on the

concentration of Neurofibrillary Tangles (NFTs) in different brain

regions. We also utilized two additional datasets, GSE15222 and

GSE97760, to validate the performance of our machine learning

model and feature analysis results, with the aim of examining

the generalizability of our findings across different datasets (18).

Table 1 provides a comprehensive overview of the datasets utilized

in this study.

We selected the datasets as following criteria: (1) The datasets

should published in one years. (2) The datasets should contain only

AD and NON-AD groups. (3) They should be RNA NGS data,

since it represents the active genes that are being transcribed and

translated to produce proteins, and changes in RNA expression
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levels can reflect changes in cellular function and physiology. (4)

The datasets should include at least thirty replicates. AD is a

complex disease that involves multiple genetic and environmental

factors, and a small replicates may not adequately represent the

heterogeneity of the disease or provide enough statistical power

to identify significant biomarkers. Additionally, a larger replicates

can improve the generalizability and reproducibility of the findings,

allowing for more robust conclusions and potential translation into

clinical practice.

2.2. Pre-processing of datasets

As GSE173955 only provided fasta files, the raw fasta files

of GSE173955 need to be converted into gene expression values

in this study. Firstly, the raw data was downloaded using the

“Aspera” tool due to its fast transfer speeds and error detection

and correction mechanisms. Secondly,"Fastp" software was used

to trim and filter reads, where reads with lengths below 50 bp,

complexities below 30%, or mean quality scores below 20 were cut

(19). Thirdly, “Hisat2” was used to map the nucleotide sequences

to their corresponding genes using the Hg19 reference genome

available on Ensembl. Fourthly, “StringTie” was used to assemble

the transcripts, estimate their abundances, and output the results

in a gene expression matrix. Lastly, we used the Voom approach

with TMM normalization in this article (20). This method corrects

for technical variability in RNA-seq data caused by sequencing

depth, library composition, and other sources of variation. TMM

normalization ensures that read counts are comparable between

samples, while the Voom transformation accounts for the mean-

variance relationship. Voom is statistically more robust when

library sizes vary greatly, as in GSE173955. The article provides

code for each step and highlights the importance of each tool

and the reasoning behind the parameters used in each step in

Supplementary section 1.

2.3. Identification of DEGs

In our study, we performed differential expression analysis

using the "limma" package (version 3.48.3) of R language

[R version 4.1.0 (2021-05-18)], following the instructions

provided in the Limma manual (21). To account for potential

confounding variables, we created a four-column design matrix

that included disease status, age, and gender as covariates

(Supplementary Table 1). We used a linear model to fit the

normalized data to this design matrix, utilizing the “lmFit”

function provided by Limma. By incorporating these covariates

into the model, we were able to adjust for their effects on the gene

expression data.After fitting the model, we calculated the empirical

Bayes moderated t-statistics and p-values for each gene using the

“eBayes” function in Limma. To account for multiple testing, we

adjusted the p-values using the Benjamini-Hochberg procedure

method. Specifically, we used the “topTable” function in Limma to

generate a table of differentially expressed genes, sorted by their

adjusted p-values (22).

The thresholds for identifying differentially expressed genes in

our study were set at |logFC| > 1.5 and ρ < 0.05. These criteria

were chosen based on previous studies and our own preliminary

analyses, and allowed us to identify a set of genes that were

significantly differentially expressed between the two groups being

compared. Next, “ggplot2” was used to visualize all up-regulated

and down- regulated DEGs via a volcano plot, while the package

"pheatmap" was employed to display the correlation between DEGs

and samples via a heatmap.

2.4. Enrichment analysis

GO analysis is widely used to describe the biological

attributes of genes and gene products associated with specific

biological processes (BPs), molecular functions (MFs), and cellular

components (CC) (23). BPs involve a wide range of processes,

which can be described by an ordered combination of molecular

functions. MFs are used to annotate the molecular level functions

of genes or gene product, whereas CCs are utilized to elucidate

the locations and structures of genes. KEGG enrichment analysis

is used to annotate genomic and chemical information to

particular pathways (24). We used "clusterProfiler," an R package,

to perform KEGG and GO pathway analysis for identifying

biological pathways and functional categories that are enriched

with differentially expressed genes (DEGs) between Alzheimer’s

disease (AD) and non-AD groups. The enrichment analysis was

performed separately for upregulated and downregulated genes.

The maximum p-value was set at 0.05 and the maximum q-

value (adjusted p-value) was set at 0.2, indicating that any

pathways beyond these values were considered non-significant.

This approach enabled the identification of key biological pathways

and processes that are involved in AD pathogenesis and provided

insight into the underlying mechanisms of this complex disease.

2.5. Protein-protein interaction (PPI) and
hub genes analysis

To investigate the interaction between differentially expressed

genes (DEGs), we constructed a protein-protein interaction (PPI)

network using the Search Tool for the Retrieval of Interacting

Genes (STRING; https://string-db.org/cgi/network.pl). To ensure

the reliability of the interactions, a minimum interaction score of

0.99 (default: 0.50) was set for PPI analysis, and the option to

’hide disconnected nodes in the network’ was enabled to filter out

networks with an excessive number of genes. To further analyze the

network, we utilized the CytoHubba plugins in Cytoscape, which

rank nodes and identify hub genes based on the degree weight (25).

2.6. Correlation analysis of top hub genes

The AD database (http://www.alzdata.org/) was used to

examine the expression levels of hub genes, relationship with

the AD PPI network, and pathology of tau or abeta (26).

This online database uses convergent functional genomic (CFG)
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analyses of gene profiles in AD and non-AD groups from various

GEO datasets. The CFG method provides extra information by

integrating AD- related evidence with DNA variations linked to

disease susceptibility, the PPI network involving APP, PSEN1,

PSEN2, APOE, and MAPT, and predictive scores obtained from

mouse AD models.

2.7. Construction of the random forest and
ensemble prediction model

Random forest, proposed by Breiman, is a state-of-the-

art learning algorithm which performs classifications based on

decision trees (27). It can predict whether a sample has AD

based on gene expression levels. In this study, two random

forest models were constructed using the input of all genes and

hub genes. The difference in prediction accuracy indicates the

importance of hub genes in AD development. Ensemble learning is

considered a variable solution for prediction. It trains and combines

different machine learning predictions to improve the predictive

performance of a single model (28). After constructing the single

random forest model, an ensemble prediction model, consisting

of a random forest binary classifier (RF), Gaussian mixture model

(GMM), linear model (LM), and support vector machine binary

classifier (SVM), was established to predict AD patients via hub

gene expression. Another dataset, GSE15222, consisting of 187

controls and 176 AD cases, was used to train and test machine

learning models for the purpose of validating the correlation

between hub genes and AD in different datasets (18).

All models were constructed and validated via the sklearn

package of Python3.7 (29), using 80% and 20% of GSE15222 data

as training and as testing data, respectively. The random forest

model was developed using the Gini criterion, wherein the radial

basis function acts as the kernel of SVM (30). Changing the voting

standardization of the ensemble model from hard to soft, conferred

an outstanding capability for predicting diabetes mellitus (31) and

cardiovascular events, such as chronic thromboembolic pulmonary

hypertension (cteph) (32). Based on the knowledge of domains, the

weights of the model were set at 2 for random forest and SVM, and

1 for GMM and LM.

2.8. Visualization of machine learning
results

A receiver operating characteristic (ROC) curve was plotted

to evaluate the performance of the classifier models. This is

a widely used graphical representation which demonstrates the

performance of a binary model (33). The area under the receiver

operating characteristic curve (AUC) was calculated to evaluate

classification accuracy. The x-axis and y-axis of the ROC represent

false positive and true positive rates, respectively. Furthermore,

a nomogram figure was used to estimate the probability of AD

using a single numerical score. This is a user-friendly graphical

interface for clinical encounters (34). All figures were plotted using

the "matplotlib.pyplot" package of python if not specified.

2.9. Eigenvalue analysis

Correlation analysis revealed the coordination between genes

and diseases. However, a coordination between multiple genes was

not observed. Therefore, we utilized a novel method for analysing

coordination between several genes based on the eigenvalue

decomposition method. Let Xcon = {Excon1 , Excon2 , ..., Exconn }t and xad =

{Exad1 , Exad2 , ..., Exadn }t denote the matrix of hub gene expression values

after Z-score standardization of the normal and AD groups,

respectively, and n denote the number of hub genes. We then

constructed two groups of inner product matrices, Rcon and Rad,

consisting of vectors ai and bi, respectively. Below is an example of

Rcon construction.

Ea=i (xi1, xi2, ..., xim)

Eai · Eaj = xi1xj1 + xi2xj2 + ...+ ximxjm

Rcon =









Ea1
...

Ean

















Ea1
...

Ean









T

=









Ea1 · Ea1 · · · Ea1 · Ean
...

. . . · · ·

Ean · Ea1 · · · Ean · Ean









where m is the number of samples, n is the number of hub

genes, and i and j represent the i − th and j − th hub genes

in Xcon. Rcon and Rad are correlation matrices constructed using

the correlation coefficient (inner product), which demonstrates

the relationship between the hub genes. However, valuable

information, such as the whole coordination between genes and

diseases, is hidden in the matrix. The eigenvalue decomposition

method can reveal useful information as follows:

Rcon = Q









λ

. . .

λi









Q−1

where λ, the eigenvalue of the semi-definite matrix R,

represents the eigen information on hub genes. It is important

for Q to be an invertible matrix, guaranteeing that eigenvalue

decomposition does not affect gene correlations. To compare λ

in different groups, we transformed it into a percentage using the

formula, λi = λi/
∑n

k=1 λk. The sum of λ should then be equal to

1, and the k = 1 value of each λ should be larger than 0 and smaller

than 1. Moreover, another dataset, GSE97760 (10 AD samples and

9 non-AD samples), was used in this analysis to validate the results

in different datasets.

This novel method can reveal the intrinsic characteristics and

coordination between all genes. In this study, we combined the

expression values of hub genes and MAPT and APP. Eigenvalue

analysis was performed to compare the coordination between

tauopathies and Aβ pathology.
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2.10. Protein docking to explore the
interactions between hub gens and choline

Choline, which is the most critical therapeutic drug used

against AD, alleviates cognitive decline and accelerates the

recovery of consciousness (35–37). Protein- protein docking

simulation methods play a vital role in drug design. We used the

high ambiguity riven protein to protein docking (HADDOCK)

algorithm to predict the binding sites between hub genes and

choline (38). The protein structural file in protein data bank (PDB)

format was downloaded from the Alphafold2 database (39, 40).

Discovery studio 2019 was used to remove water molecules from

the proteins. The hub proteins of the above analysis were input

as receptor proteins, and the two kinds of choline proteins, ACHE

and BCHE, were used as the ligand and protein, respectively. The

HADDOCK module was then run to predict the docking site and

calculate the docking score. The results of the predicted model are

shown in a Ramachandran plot (41).

3. Results

3.1. GSE173955 filtering and mapping

The Supplementary Table 2 represents the results of a

sequencing experiment where raw data reads, clean data reads, and

the quality of the clean data were measured for 10 different samples

and 20 replicates in the GSE173955 dataset. The samples are

denoted by their name, which can be divided into two groups—AD

(Alzheimer’s Disease) and CON (Control). The raw data reads

represent the total number of reads obtained from the sequencing

experiment. In the GSE173955 dataset, a total of 1,353,805,542

raw reads were generated from 40 samples, including 583,925,188

from Alzheimer samples and 769,880,354 from control samples.

After removing adapters, short reads, low-quality reads, and bases,

1,307,630,392 clean reads remained, amounting to an average of

32,690,759 reads per sample. The clean data q30 rate represents

the percentage of reads with a Phred quality score of 30 or higher,

which indicates that the base call accuracy is 99.9% or higher. The

q30 rate is an important quality metric in sequencing experiments,

as higher accuracy reads result in more accurate downstream

analysis. The q30 rate in GSE173955 datsets is above 94% for

all samples, indicating high-quality data was obtained from the

sequencing experiment. During the mapping process, 85.07%

of the clean reads were successfully mapped to Hg19. The high

mapping rate indicates that the sequencing data was of good

quality and can be used for downstream analysis.

3.2. Identification of DEGs

In this study, we utilized the "limma" package in R language to

perform differential expression analysis. Specifically, we used the

"voom" function to transform the Trimmed Mean of M (TMM)

values, which is a recommended normalization method for RNA-

seq data (20). Moreover, we also use the design matrix to adjust

the gene expression data in our study. By incorporating these

covariates into the linear model, we were able to control for their

effects on the gene expression data and ensure that any observed

differences in gene expression were not due to these factors. We

identified a total of 448 DEGs in the GSE173955 dataset and 199

DEGs in the GSE203206 dataset. Among them, 211 and 182 genes

were up-regulated, while 237 and 17 genes were down-regulated in

the GSE173955 and GSE203206 datasets, respectively. To visualize

the DEGs, we used a volcano plot, generated using the "ggplot2"

package in R, to display all up-regulated and down-regulated DEGs

in the datasets (Figure 1A). The volcano plot allowed us to visualize

the relationship between the statistical significance and fold change

of the DEGs, and to identify the most significant DEGs. We also

generated heat maps of the top 100 DEGs, ranked by their adjusted

p-values, using the "pheatmap" package in R (Figure 1B). These

heat maps allowed us to visualize the expression patterns of the

top DEGs across different samples and to compare the expression

levels between different groups. Overall, our analysis identified a set

of DEGs that were significantly differentially expressed between the

two groups being compared.

3.3. Enrichment analysis of the DEGs

In this study, GO and KEGG enrichment analysis were

performed to identify biological pathways and functional

categories that are enriched with differentially expressed genes

(DEGs) between Alzheimer’s disease (AD) and non-AD groups.

The analysis was performed separately for upregulated and

downregulated genes. A total of 374 upregulated genes and

249 downregulated genes were identified and used in the

enrichment analysis.

For the GO analysis of upregulated genes, biological processes

were primarily associated with signal release related functions,

cellular components were primarily associated with "neuronal

cell body," and molecular functions were dominated by "channel

activity" and "passive transmembrane activity" (Figure 2A). In

contrast, GO analysis of downregulated genes showed that

biological processes were primarily associated with cell adhesion

and signaling-related functions, cellular components were

primarily associated with the "collagen-containing extracellular

matrix," and molecular functions were dominated by immune

and cytokine receptors (Figure 2B). For KEGG analysis of

upregulated genes, 25 genes were significantly expressed in the

neuroactive ligand-receptor interaction pathway, whereas the most

significantly enriched pathway in downregulated genes was the

cytokine-cytokine receptor interaction pathway, which involved 18

genes (Figures 2C, D). These results suggest that the pathogenesis

of Alzheimer’s disease involves complex molecular mechanisms

that affect a range of biological processes, including signal release,

cell adhesion, and immune response.

3.4. Hub genes analysis

Our study aimed to identify hub genes associated with

Alzheimer’s disease (AD) and evaluate their potential as biomarkers

for the disease. To achieve this, we constructed a protein-protein

interaction (PPI) network using the differentially expressed genes

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2023.1129470
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Guo et al. 10.3389/fneur.2023.1129470

FIGURE 1

Results of screening di�erentially expressed genes (DEGs). (A) Volcano maps of gene expression in GSE173955 and GSE203206. Green data dots

represent down-regulated DEGs. Data points in light blue and gray represent genes with up-regulated and not significantly di�erent expressions,

respectively. (B) Heatmap of top 100 DEGs in GSE173955 and GSE203206.
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FIGURE 2

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs in AD. (A, B) Top 10 GO results in terms of

molecular function, cellular component, and biological process category for upregulated and downregulated genes, respectively. (C, D) The

significant KEGG pathways for upregulated and downregulated genes, respectively. The length and colors represent the number of genes and the

log10 P-values.

(DEGs) obtained from the Gene Expression Omnibus (GEO)

dataset GSE15222. After excluding isolated nodes, we obtained a

final PPI network consisting of 30 nodes and 22 edges (Figure 3A).

Using the Cytoscape plugin CytoHubba, we identified the top

ten hub genes, namely Lck, Zap70, CD44, CD2, SNAP25, CD3E,

CXCL8, HIST1H3J, IL12RB2, and STAT4 (Figure 3B). We further

analyzed the top three hub genes, which enriched the same PPI

network and were correlated with T cell activation, leukocyte cell-

cell adhesion, and positive regulation of cell adhesion biological

processes (Supplementary Table 3).

To verify the reliability of the identified hub genes, we checked

their association with AD in the Alzheimer’s database. Table 2

shown that five out of the top ten hub genes, namely LCK, ZAP70,

CD44, SNAP25, and IL12RB2, were associated with the Alzheimer’s

pathological pathway (APOE, PSEN1, MAPT), and LCK, ZAP70,

CD44, and CD3E were significantly differentially expressed in AD

abeta and tau mouse models, respectively. This finding suggests

that these hub genes may be important in the development and

progression of AD and could potentially serve as biomarkers for

the disease.

Additionally, we evaluated the potential of hub genes as

biomarkers using a random forest classifier model. The model

was trained and tested using the GSE15222 dataset to verify its

universality. The results showed that the model with all genes had

an accuracy of 0.84 for predicting AD, whereas the model with

only the top three genes had an accuracy of 0.78 (Figure 4). The

area under the curve (AUC) for all predictive models was high,

indicating that hub genes could be verified via the Alzheimer’s

database and mapping relationships with AD. Moreover, the

model’s performance, which was trained and tested using different

datasets, confirmed the potential value of hub genes as biomarkers

of AD. Taken together, our findings suggest that the identified hub

genes are likely to be key players in the pathogenesis of AD andmay

have potential as therapeutic targets or diagnostic biomarkers.

3.5. Ensemble machine learning

We trained an ensemble machine learning classifier consisting

of RF, GMM, LM, and SVM binary models (RF) to further
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FIGURE 3

Protein-protein interaction (PPI) network for DEGs and hub gene identification was constructed using STRING and Cytoscape, respectively. (A) The

PPI network of all DEGs was constructed using the STRING database with the minimum required interaction score set at 0.99. (B) The top 10 hub

genes were analyzed using the CytoHubba plugin. The descending color from dark orange to yellow represents decreasing interaction intensity

between genes.

identify the top hub genes, LCK, ZAP70, and CD44, using a higher

diagnostic value based on the 80% data of GSE15222. A nomogram

that estimates AD risk according to the results predicted by the

ensemble model is shown in Figure 5A. The AUC, which represents

the accuracy of the model, was 0.92, confirming that it may be

reliably used to distinguish between AD and non-AD groups

(Figure 5B). The predicted probabilities for each model (green bar),

and the classifier probabilities for the ensemblemodel (blue bar) are

shown (Figure 5C). This indicated that the results of each model

were coincident. Subsequently, we plotted the decision boundaries

for every two genes, wherein a dot represents the predicted result;

the surface is the decision space of the model; and the yellow and

purple represent AD and non-AD, respectively (Figures 5D–F).

3.6. Eigenvalue decomposition analysis

In this section, we proposed a novel eigenvalue decomposition

method and applied it to the GSE97760 microarray dataset to

further investigate the coordination between the top hub genes and

AD pathologies.We first calculated thematrix of the inner products

of hub genes with APP and MAPT to determine the changes in

eigenvalues between the AD and normal groups. We observed

a slight change in the eigenvalues consisting of hub genes and

APP between the AD and normal groups (Figure 6A). However,

when hub genes were combined with MAPT, the eigenvalues

changed significantly (Figure 6B). The largest eigenvalue changed

from 0.543 (in the non-AD group) to 0.672 (in the AD group), while

the smallest eigenvalue changed from 0.0013 (non- AD group) to

0.0529 (AD group).

A comparison between Figures 6A, B indicated that hub gene

expression was incongruent with the tauopathies associated with

AD pathology. This suggests that the interaction between LCK,

ZAP70, and CD44 may be involved in NFT formation, which

is a characteristic feature of AD pathology. Our analysis of

the GSE97760 dataset using our novel eigenvalue decomposition

method suggests that the top three hub genes may be involved

in tauopathies associated with AD, rather than Aβ pathology.

However, further validation and investigation are needed to

confirm the involvement of these hub genes in the pathogenesis

of AD and to elucidate the precise mechanisms underlying their

roles. Nevertheless, our findings provide new insights into the

coordination between hub genes and AD pathology, which may aid

in the development of new therapeutic strategies for AD.

3.7. Protein-protein docking simulation

In this section, we aimed to investigate the potential role of hub

genes in Alzheimer’s disease (AD) drug design. To this end, we
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TABLE 2 The convergent functional genomic (CFG) result of hub genes.

Gene PPIa Pathology cor abeta

or taub
CFGc

LCK APOE * 4

ZAP70 APP,PSEN1,MAPT * 3

CD44 APP,PSEN1 *** 3

CD2 – NA 1

CD3E – ** 2

CXCL8 – NA 0

SNAP25 MAPT NA 2

HIST1H3J – NA 2

IL12RB2 APP,PSEN1,APOE NA 2

STAT4 – NA 1

aPPI: Target gene is significant correlate with APP, PSEN1, PSEN2, APOE, or MAPT (P-val <

0.05).
bPathology cor abeta or tau: Correlation of target gene expression with AD pathology in abeta

or tau in ADmousemodels (NA: P-val> 0.05; *P-val<0.05; **P-val< 0.01; ***P-val< 0.001).
cCFG: Total CFG score of target gene,range from 0 to 5.

FIGURE 4

The receiver operating characteristics (ROC) of the random forest

classifier model for the dataset, GSE15222. The red line and the blue

line represent the model with all genes and top three hub genes as

input, respectively. The area below the line represents the accuracy

of the model.

downloaded the Protein Data Bank (PDB) structure files of LCK

(ID: P06239), CD44 (ID: P16070), and ZAP70 (ID: P43403), and

two choline-related genes, ACHE (ID: P22303) and BCHE (ID:

P06276) from the Alphafold2 database. We then used the docking

algorithm with each hub gene as a receptor and each choline gene

as a ligand, which was applied using Discover Studio 2019.

After performing the docking analysis, we calculated the

docking and confidence scores, and Figure 7 was used to compute

the residues in the most favored regions (Table 3). The docking

scores of hub genes and ACHE were found to be slightly lower

than those of BCHE. We observed that the best predictive model

was CD44 and ACHE, which had a –312.09 docking score, a

confidence score of 0.9624, and 86.0% of residues in the most

favored regions. Our comprehensive analysis revealed that CD44

may play a potential role in AD drug design since it was able to form

stable binding sites with ACHE. Thus, CD44 could be a potential

drug target for the treatment of AD.

4. Discussion

AD is the most common disease among the elderly, and its

worldwide prevalence is increasing substantially (42). According to

the annual report of the AD association, the number of patients

with AD is expected to increase from 65.7 million in 2030 to 115.4

million in 2050 (43). Currently, drugs that target AD do not exhibit

adequate efficacy owing to the complicated pathology of AD (44).

Thus, there is an urgent need to identify potential biomarkers of

AD that may help reduce the disease burden. The development

and increased use of NGS have helped enhance gene expression

profiling (45). One of the most critical applications of NGS is the

identification of DEGs because these can be used as “biomarkers,”

which reveal the status of a drug response, or “drug targets” if

directly associated with drugs (46).

In this study, we used the “limma” package of the R language

to analyse the GSE173955 and GSE203206 datasets and identified

623 DEGs between AD patients and normal groups. Next, GO

and KEGG enrichment analyses were applied to investigate the

biological functions and pathological pathways via "clusterProfiler"

in the R package. The signal release process and neuroactive

ligand-receptor interaction pathway were enriched in the highest

number of DEGs (Figure 2). Next, 10 hub genes, namely LCK,

ZAP70, CD44, CD2, SNAP25, CD3E, CXCL8, HIST1H3j, IL12RB2,

and STAT4, were identified as DEGs in the PPI network, which

was constructed using the STRING database. Among these,

LCK, ZAP70, and CD44 were associated with APOE or APP

proteins and strongly correlated with common AD pathology.

A previous study has confirmed that APP and MAPT may

play substantial roles in neuroinflammation (47–50). We used

the proposed novel eigenvalue decomposition method to analyse

another dataset, GSE97760, to identify the correlation between hub

genes and APP or MAPT. The eigenvalue changed significantly

when hub genes were integrated with MAPT, compared to

APP (Figure 6). This suggested that neuroinflammation pathology

involving LCK, ZAP70, and CD44 would affect MAPT more than

APP. Further investigation is required to elucidate the mechanistic

interactions responsible for the effect of MAPT and hub genes in

AD pathogenesis.

Moreover, GSE15222 is an Alzheimer’s NGS dataset with 187

non-AD samples and 176 AD cases, of which 80% was used to train

models and 20% was used to test the classifier. The single random

forest test result (Figure 4) shows that the prediction accuracy

(0.84) obtained using all genes as the input of the classifier was

only slightly higher compared to that (0.78) obtained using LCK,

ZAP70, and CD44 as input. An ensemble model was established to

further explore the predictive value of the hub genes. A nomogram

was plotted according to the predicted label of the ensemble model

(Figure 5), which is easy to use in clinical practice (51). These results

implied that the neuroinflammation-related genes, LCK, ZAP70,

andCD44, were strongly associated with AD and were not modified
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FIGURE 5

Visualization of ensemble classifier model. (A) The nomogram can be used to predict the risk of AD according to the expression of top hub genes. (B)

The ROC of the model; the area under the ROC is 0.92 representing the accuracy of the model. (C) The green bar represents predicted probabilities

for each model, and the blue bar represents the ensemble model. Its distribution is generally consistent in every single model. (D–F) The decision

boundaries of the ensemble model with CD44 and LCK (D), ZAP70 and LCK (E), CD44 and ZAP70 (F) as input. Dark yellow dots are the samples

predicted as AD, whereas dark blue dots are the samples predicted as non-AD. The dark yellow and dark blues areas represent AD and non-AD

predicted space, respectively.

FIGURE 6

The eigenvalue of the inner product matrix of the top three hub genes. The eigenvalue has been standardized for the purpose of comparison in a

di�erent matrix. The blue bar represents the eigenvalue in the AD expression matrix, whereas the red bar represents the eigenvalue in the control

group expression matrix. (A) The eigenvalues based on the matrix were representative of LCK,ZAP70,CD44 and APP. (B) The eigenvalues based on the

matrix were representative of LCK,ZAP70,CD44, and MAPT.

by the changes in the experiments. Thus, they show potential as

promising biomarkers of AD.

Lymphocyte-specific protein tyrosine kinase (LCK), encoded

by lck, is a protein tyrosine kinase that binds to CD4 and CD8

molecules and plays a vital role in T cell development and activation

(52). Regulation of LCK activity depends on conformational

changes at the plasma membrane induced by phosphorylation.

Intracellular signaling pathways activated by the phosphorylation

of LCK are essential for T cell differentiation and the release

of allergenic cytokines that activate nuclear factor kappa-B (NF-

κB) and cytokine IL4/5/13, which cause neuroinflammation and

oxidative stress, respectively (53). Previous studies have shown
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that neurodegenerative diseases, including AD, are mediated by

inflammation and neurotoxic factors, such as interleukin-1beta (IL-

1β), tumor necrosis factor-alpha (TNF-α), reactive oxygen species

(ROS), and NFκB activation (54). In addition, LCK plays a crucial

role in initiating TCR proximal signaling events (55).

Cluster of differentiation-44 (CD44) is a cell surface

transmembrane glycoprotein with various biological functions.

It has been widely implicated as a marker of cancer stem cells

(CSC) in several cancers (56). CD44, which partly provides

costimulatory signaling in the activation of T cells, may also

TABLE 3 The result of protein docking between hub genes and choline.

Receptor Ligand Docking
scorea

Confidence
scoreb

Residues
in most
favored
regions

LCK ACHE –280.67 0.9178 91.90%

CD44 ACHE –322.09 0.9624 86.00%

ZAP70 ACHE –293.82 0.9225 89.80%

LCK BCHE –275.38 0.9247 91.10%

CD44 BCHE –265.2 0.9092 85.50%

ZAP70 BCHE –254.83 0.8906 89.30%

aDocking Score: Docking score represent the possibility of binding. A more negative docking

score means a more possible binding model.
bConfidence Score: Represent the binding likeliness of two proteins, the receptor and ligand

would be very likely to bind if the confidence score is above 0.7.

stimulate the proliferation of T cells (57, 58). Additionally, it is an

inflammation-related protein involved in inflammation-induced

neurodegenerative ailments, such as AD. Furthermore, recent

studies have revealed that CD44, which strongly interacts with

TCR, is involved in T cell activation (59–61). Studies have also

indicated that CD44 may contribute to the development of AD,

and that inhibition of CD44 may serve as a novel neuroprotective

treatment strategy against this disease.

Tyrosine protein kinase (ZAP70) is expressed in T cells and

stimulates T cell activation and function by interacting with

the TCR/CD3 complex. LCK promotes ZAP70 phosphorylation

through TCR activation when T cells are stimulated (62). Studies

have demonstrated that ZAP70 is an essential protein kinase

involved in several signaling pathways that regulate T lymphocyte

development and function. Down-regulation of ZAP70 leads to

immunodeficiency, with particular reference to T-lymphocyte-

mediated immunity, which is often dysfunctional in AD. Aberrant

T cells secrete proinflammatory factors and glial cells that cause

neuroinflammation in the brain (63). Pathological hallmarks of AD

have been linked to the immune system, indicating that T cells play

a substantial role in AD (64).

Taken together, interactions between LCK, ZAP70, and CD44

play a role in neuroinflammation and the TCR signaling cascade.

Previous studies have shown that neuroinflammation strongly

affects ACHE and BCHE (65–67). The signaling cascade of T cells

is involved in the late step of ACHE activation (68). TCR activates

the mitogen-activated protein kinase (MAPK) pathways, resulting

in enhanced ACHE activity. These findings are consistent with our

FIGURE 7

The Ramachandran plot for docking models. The higher number of dots in the red area represent the increased reliability of the model. The models

for CD44 and ACHE (A), LCK and ACHE (B), ZAP70 and ACHE (C), CD44 and BCHE (D), LCK and BCHE (E), and ZAP70 and BCHE (F).
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protein-protein docking simulation results (69, 70). The average

score and confidence score of ACHE as a ligand were significantly

better than those of BCHE (Table 3 and Figure 7). Therefore, we

postulate that neuroinflammation and TCR- related proteins may

form a more stable docking model with ACHE than with BCHE.

These interactions could be considered therapeutic targets in AD.

Despite the encouraging results obtained in this study, several

limitations need to be considered. One of the primary limitations

is the relatively small sample size in some of the datasets, which

could lead to biased estimates and limit the generalizability of

the findings. Furthermore, AD is a complex and heterogeneous

disease with diverse clinical and pathological phenotypes, and it

is possible that the identified DEGs may not be representative of

the entire AD population. Moreover, molecular differences in brain

regions and cell types could influence gene expression patterns,

which might complicate the interpretation of results. It should be

emphasized that there is an uneven distribution of age between

AD and control participants in certain datasets, which may pose

a potential confounding factor. Although we have made efforts

to address this concern in the DEG model, it is important to

acknowledge the possibility of age bias affecting the results.

Overall, the findings of this study suggest that

neuroinflammation and TCR signaling may have a significant

impact on the development of Alzheimer’s disease. The analysis of

hub genes indicated that LCK, ZAP70, and CD44 proteins may play

an essential role in this process. The proposed eigenvalue analysis

revealed that there is a lack of stability in the coordination between

hub genes andMAPT, which is a gene that codes for the tau protein

involved in AD pathogenesis. This instability implies that the hub

genes and MAPT might have a considerable impact on the activity

of ACHE, a critical protein involved in AD drug design.

5. Conclusions

In summary, this study used integrated bioinformatics

tools and datasets to reveal that significant hub genes,

such as LCK, ZAP70, CD44, CD2, SNAP25, CD3E, CXCL8,

HIST1H3J, IL12RB2, and STAT4, may play a pivotal role in

AD development. The Cytohubba plugin identified LCK,

ZAP70, and CD44 as the top three hub genes among all

hub genes, as well as neuroinflammation and TCR-related

genes. Next, they were verified using the AD database and

machine-learning models with credible results. Eigenvalue

analysis revealed an imbalance between the top three hub

genes and MAPT expression. Protein docking showed that

LCK, ZAP70, and CD44 could form reliable binding sites

with ACHE. Therefore, the top three hub genes may play vital

roles in designing drugs based on ACHE inhibitors. However,

further studies may be required to fully predict the underlying

molecular mechanisms.
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