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Background:As a rare genetic disease, adrenomyeloneuropathy (AMN) is themost

common adult phenotype of X-linked adrenoleukodystrophy (X-ALD). Mutations

in the ABCD1 gene have been identified to cause AMN.

Methods: We applied clinical evaluation, laboratory tests, and neuroimaging

on three patients with progressive spastic paraparesis. In genetic analysis, we

investigated ABCD1 gene mutations by whole-exome sequencing and Sanger

sequencing. Bioinformatics tools were used to predict the e�ects of identified

ABCD1 mutations on the protein.

Results: All three patients were men with adult-onset disease, mainly

characterized by progressive spastic paraparesis. Among them, two patients had

peripheral neuropathy and one patient had signs of adrenal insu�ciency. All three

patients showed cerebral involvement on brain MRI, while two patients were

found with di�use cord atrophy on spinal MRI. High-VLCFA levels in plasma, as

well as C24:0/C22:0 and C26:0/C22:0 ratios, were found in all three patients.

In addition, three di�erent ABCD1 mutations were identified in three unrelated

Chinese families, including one known mutation (c.1415_1416delAG) and two

novel mutations (c.217C>T and c.160_170delACGCAGGAGGC). Based on the

clinical assessment, radiographic, biochemical, and genetic testing, the final

diagnosis was AMN in these patients with spastic paraparesis.

Conclusion: This study reported three patients with AMN and identified two novel

mutations in the ABCD1 in the Chinese population. Our finding emphasized that X-

ALD is an important cause of adult-onset spastic paraplegia. Thus, neuroimaging,

VLCFA testing, and especially the detection of the ABCD1 gene have important

implications for the etiological diagnosis of adult patients with spastic paraplegia.

KEYWORDS

adrenomyeloneuropathy, X-linked adrenoleukodystrophy, spastic paraparesis, ABCD1,

mutation

1. Introduction

X-linked adrenoleukodystrophy (X-ALD, OMIM: 300100) is a rare progressive

neurometabolic disorder affecting the adrenal cortex, testes, and myelin in the central

nervous system. X-ALD is caused by mutations in the ABCD1 gene, which is a member

of the ATP-binding cassette (ABC) transporter superfamily and encodes a peroxisomal

membrane protein associated with very long-chain fatty acid (VLCFA) metabolism (1).
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Depending on the age of onset, the location of lesions, and

the pace of progress, X-ALD is divided into several different

phenotypes: childhood cerebral ALD, adolescent cerebral ALD,

adult cerebral ALD, adrenomyeloneuropathy (AMN), cerebellar

variant, Addison-only, asymptomatic, and presymptomatic female

heterozygotes (2). Approximately 65% of patients develop AMN

in adulthood, as it is the most common phenotype, which mainly

manifests as slowly progressive gait disturbance and peripheral

neuropathy (including large nerve fiber neuropathy and small

nerve fiber neuropathy) (3, 4). In this study, we reported three

Chinese pedigrees with AMN and identified two novel mutations

in the ABCD1 gene.

2. Methods

2.1. Families and patients

The study was approved by the Ethics Committee of the Fujian

Medical University Union Hospital. Written informed consent was

obtained from all participants or their legal guardians.

Patients underwent a comprehensive clinical evaluation,

including symptom evaluation, neurological examination

(including cognitive function assessment), neuroimaging,

neurophysiological testing, biochemical testing, and genetic

testing. In particular, all participants underwent genetic testing

only after informed consent was obtained from the patients or

their legal guardians after comprehensive genetic counseling.

2.2. Neuroimaging

Magnetic resonance imaging (MRI) was used to detect

pathological changes in the brain and the spine.

2.3. Biochemical testing

Plasma very long-chain fatty acids (VLCFAs) were

assayed using gas chromatography—mass spectrometry.

Plasma adrenocorticotropic hormone (ACTH) was measured

by radioimmunoassay.

2.4. Genetic testing

We performed whole-exome sequencing (WES) on the

probands of three pedigrees. Genomic DNA was extracted

from whole blood samples using a QIAamp DNA Blood Mini

Kit (Qiagen Inc., USA) following the manufacturer’s protocol.

The quantity and quality of obtained DNA samples were

analyzed by using a NanoDrop 2000 spectrophotometer (Thermo

Scientific, USA) and an Agilent 2100 bioanalyzer (Agilent

Technologies, USA). Agilent SureSelect Human All Exon V6

(Agilent Technologies, USA) was used to enrich DNA fragments of

human exons after the fragmentation of genomic DNA. Sequencing

data were produced on the Illumina NovaSeq platform. The

adaptor sequences were trimmed from the tail of sequencing

reads using cutadapt (v1.15). Sequencing reads were aligned to the

human reference genome (hg19) with BWA (v0.7.15). Duplicated

reads were marked by Picard (v2.4.1). Qualimap (v2.2.1) was

used to calculate base quality metrics, genome mapping rate, and

the coverage of targeted regions. Base quality score recalibration,

single nucleotide variants (SNVs), and small insertions or deletions

(InDels) calling were performed following the best practice

protocol of GATK (v3.8). Variant filtering was done by a finely

tuned in-house script. Pass-filter variants were annotated using

VEP (release 88). Subsequently, Sanger sequencing confirmed the

presence of the mutation and segregation in three families.

2.4. Genetic and bioinformatics analysis

We first removed variants that met any of the following criteria:

Population frequency in 1,000 Genome Project or gnomAD exome

dataset (version 2.1) was larger than 0.01, and genotype was low

confidence. The bioinformatics tools were used to predict the

effects of the missense mutation on protein function: SIFT (5),

PolyPhen2 (6), and MutationTaster (7). We then identified variants

that fit the dominant and recessive inheritance models separately.

The pathogenic evidence of candidate disease-causing variants was

scored by InterVar (v1.0.8) (8). All the aforementioned analyses

were performed on Seqmax (www.seqmax.com). On the contrary,

we used SWISS-MODEL in order to predict the three-dimensional

(3D) structure of the ABCD1 protein (swissmodel.expasy.org) to

show the effect of identified mutations.

3. Results

3.1. Clinical characterization

Three Chinese Han families were included in our study.

Family pedigrees for all the subjects are depicted in Figure 1. All

the patients in this study were men (Patient 1: Family A-II2,

Patient 2: Family B-II2, and Patient 3: Family C-II1), and their

family members had no similar symptoms or signs. The clinical

characteristics of the three probands are summarized in Table 1. All

three patients were initially suspected of having hereditary spastic

paraplegia (HSP). In addition, patient 2 was also initially suspected

of familial amyotrophic lateral sclerosis (ALS), because his father

was diagnosed with ALS.

The onset of the symptoms in the patients was between 25 and

37 years of age, with the time from onset of symptoms to diagnosis

ranging from 1 to 7 years. The initial and major neurological

presentations of all three patients were weakness in extremities and

gait disorder. In addition, patient 1 suffered from slight numbness

of the lower extremities and presented with scanty scalp hair and

skin pigmentation.

On neurological examination, all patients presented with

significant pyramidal tract signs, including spastic paraparesis or

quadriparesis, increased muscle tension and tendon reflexes, and

positive Babinski’s and Hoffman’s signs. Among the three patients,

only patient 1 presented with slight impairment of the distal

pin-prick sensation and vibration sensation during the sensory

examination. However, on electrophysiological examination,
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FIGURE 1

Pedigree of three AMN families. (A) The pedigree of the AMN family with the mutation p.Gln73*. (B) The pedigree of the AMN family with the

mutation p.Thr54Leufs*137. (C) The pedigree of the AMN family with the mutation p.Gln472Argfs*83. *Premature stop codon.

patient 1 and patient 2 had mild-to-moderate slowing sensory

conduction velocities and reduced sensory nerve action potential

amplitudes, which proved the impairment of sensory nerves.

Patient 3 had no signs or symptoms of peripheral neuropathy

but presented mildly prolonged distal motor latency and reduced

motor conduction velocity, with normal sympathetic skin response

(SSR). In terms of cognitive function, the scores of theMini-Mental

State Examination (MMSE) and the Montreal Cognitive Scale

(MoCA) were normal in all these three patients.

Noteworthy, patient 2 had rapid disease progression within a

year after onset. He was unable to walk independently and had

mild hearing loss and visual impairment. As the disease progressed,

he required constant nursing care and attention as he was now

bedridden and incontinent.

3.2. Neuroimaging characterization

The brain MRI was performed on all patients, and the spinal

MRI was performed on two patients (patient 1 and patient 2)

(Figure 2). The brain MRI of three patients showed different

degrees of white matter lesions involved, including cerebral
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TABLE 1 Clinical characteristics of three patients with AMN.

Patients No. 1 (II-2, F1) 2 (II-2, F2) 3 (II-1, F3)

Gender Male Male Male

Age at diagnosis, years 32 31 37

Age at onset, years 25 30 34

Initial symptoms Weakness of lower limbs;

spastic gait

Pain in lower limbs;

spastic gait

Weakness of lower limbs

Spinal symptoms Spastic paraparesis Spastic quadriparesis Spastic paraparesis

Peripheral neuropathy Yes Yes No

Cognitive impairment No No No

Sphincter dysfunction No No No

Hypoadrenocorticism Yes (scanty scalp hair, skin

pigmentation)

No No

Muscle strength (UL/ LL) 5/4 3/3 5/4

Muscle tension Increased Increased Increased

Tendon reflexes (UL/LL) +++/++++ ++++/++++ +++/++++

Hoffman sign Positive Positive Positive

Babinski sign Positive Positive Positive

Sensory Impaired distal pin sensation and

vibration sensation

Normal Normal

Cerebral involvement in MRI Yes Yes Yes

Spinal involvement in MRI Yes Yes No

Disease progression Slow progression Rapid progression Slow progression

M, male; UL, upper limb; LL, lower limb;+, decreased reflex;++, normal deep reflex;+++, brisk reflex;++++, hyperreflexia.

peduncle, the frontoparietal and periventricular white matter, and

corpus callosum. In addition, the brain MRI of patient 2 also

showed partial linear enhancement at the lesion edge. Spinal MRI

scans of two patients showed thoracic local cord atrophy.

3.3. Biochemical characterization

The plasma VLCFAs and serum ACTH levels of the patients

were measured, as shown in Table 2. In all three patients, the C26:0

level, and the ratios of C24:0/C22:0 and C26:0/C22:0 increased.

The plasma C24:0 level of patient 1 also increased significantly. In

addition, the levels of ACTH of two patients (patient 1 and patient

2) were elevated as well but were normal in patient 3.

3.4. Mutations and bioinformatics analysis

To identify the disease-causing variants, we performed WES

for these patients. Three distinct variants were identified and

confirmed by Sanger sequencing, as shown in Figure 3.

In the proband (II-1) of family A, a heterozygous nonsense

mutation c.217 C>T, p.Gln73∗ in the ABCD1 gene was

detected, which introduced a premature termination codon at

the 73rd amino acid of the protein preventing translation of the

full-length protein. His mother refused the genetic testing. In

family B, the genetic sequencing identified a deletion mutation

c.160_170delACGCAGGAGGC in the ABCD1 gene, leading to

the frameshift and premature transcription termination of amino

acid p.Thr54Leufs∗137. Sanger sequencing revealed that his mother

and daughter carried the hemizygous ABCD1 p.Thr54Leufs∗137

mutation. In family C, the genetic sequencing showed a deletion

mutation c.1415_1416delAG in the ABCD1 gene, leading to the

frameshift and premature transcription termination of amino acid

p.Gln472Argfs∗83. Hismother also carried the hemizygous ABCD1

p.Gln472Argfs∗83 mutation.

Among these mutations of the ABCD1 gene, two mutations

c.217C>T and c.160_170delACGCAGGAGGC had not been

previously in the dbSNP, 1,000 Genomes, gnomAD, or X-

ALD database (www.x-ald.nl). The potential pathogenicity of the

mutations was investigated by prediction bioinformatics tools

mentioned earlier, suggesting all three mutations had the possibility

to be disease-causing. According to the variant classification

guideline of the American College of Medical Genetics (ACMG),

all three mutations could be classified as pathogenic.

Compared to the normal structure of the ABCD1 protein,

c.1415_1416delAG p.Gln472Argfs∗83 mutation resulted in

different structures of the ABCD1 protein (Figure 4). However,

the amino acid sequences of the mutations c.217C>T p.Gln73∗

and c.160_170delACGCAGGAGGC p.Thr54Leufs∗137 had low
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FIGURE 2

Brain and spinal MRI for patients with ALD. Patient 1 (A–C): (A, B) Axial T2-flair and DWI images of brain MRI showed a hyperintensity of bilateral

cerebral peduncle (7 years after disease onset) (white arrows). (C) Sagittal T2-weighted image of spinal MRI showed the white arrows show lower

cervical and upper thoracic spinal cord local atrophy detected (6 years after disease onset) (white arrows). Patient 2 (D–H): (D, E) Axial T2-flair images

showed extensive hyperintensity involving the frontal and parietal white matter and corpus callosum (white arrows). (F) Axial enhanced T1-weighted

MRI showed partial linear enhancement at the lesion edge (white arrows). (G) Coronal T2-flair images showed extensive hyperintensity involving the

periventricular white matter and the right dentate nucleus of the cerebellar (white arrows). (H) Sagittal T2-weighted image of spinal MRI indicated the

thoracic spinal cord local atrophy detected (white arrows). Patient 3 (i): (I) Axial T2-flair and DWI images of brain MRI showed a slight hyperintensity

of the periventricular white matter next to posterior horns (3 years after disease onset) (white arrows).

global model quality estimation (GMQE) scores because of the

introduction of premature stop codons, which led to unreliable

predictions for protein structures.

4. Discussion

Adrenoleukodystrophy is a rare X-linked recessive inherited

neurodegenerative disorder. AMN is considered the milder

default manifestation of X-ALD (9), characterized by slowly

progressive non-inflammatory adult-onset spinal cord axonopathy

with associated demyelination, peripheral neuropathy, sphincter

disturbances, adrenal insufficiency, and hypogonadism (10). Most

men with ALD will develop slowly progressive myeloneuropathy in

their 20’s or 30’s (11). Approximately 50% of female carriers may

develop AMNmanifesting as mild-to-moderate spastic paraparesis

in middle-aged women or later with normal adrenal function (1).

However, heterogeneity exists in the symptom of onset and severity

of symptoms in X-ALD, resulting in difficulties in early diagnosis.

In our study, all three AMN probands manifested with symptoms

of spastic gait disturbance, without very prominent symptoms

of adrenal insufficiency, leading to the initial misdiagnosis of
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TABLE 2 Biochemical characteristics of three patients with AMN.

Biochemical test
(reference range)

Patient 1 Patient 2 Patient 3

C22:0 (≤96.3 nmol/ml) 64.6 44.4 52.5

C24:0 (≤91.4 nmol/ml) 108.4 78.6 82.4

C26:0 (≤1.30 nmol/ml) 4.30 3.03 2.92

C24:0/C22:0 (≤1.39) 1.68 1.77 1.57

C26:0/C22:0 (≤0.023) 0.067 0.068 0.056

ACTH (7.2–63.3 pg/ml) 803.2 83.0 62.1

HSP. Patient 1 and patient 3 experienced relatively slow disease

progression, while patient 2 had a rapid progression after onset.

Due to Wallerian degeneration, brain MRI demonstrates

moderate hyperintensity on FLAIR and T2 sequences of brainstem

pyramidal tract, pons, and internal capsule in some patients

with AMN but otherwise normal or slightly abnormal brain

MRI in most cases like patient 1 and patient 3 (2, 12, 13).

However, ∼20% of patients with AMN also suffered a rapidly

progressive cerebral inflammatory demyelination within the 10

years after disease onset, while presenting cognitive dysfunction

(3). Moreover, if the demyelinating lesions progress to the active

stage of neuroinflammation, showing the enhancing lesions on

brain MRI, the prognosis will be worse, similar to our patient

2. The patient did not show any visual or hearing impairment,

cognitive impairment, or obvious psychiatric symptoms when he

was diagnosed 5 months after disease onset, even though the brain

MRI showed extensive cerebral demyelination involves other than

the internal capsule and centrum semiovale, and even the corpus

callosum and frontoparietal white matter at this time. He presented

with a rapid decline in cortical function characterized by visual

and hearing dysfunction at the 9-month follow-up after diagnosis.

Patient 1, with relatively slight white matter lesions on brain MRI,

did not show any cognitive impairment or mental disorders at the

1-year follow-up after diagnosis. On the other side, this indicates

that abnormal white matter imaging may precede clinical signs and

symptoms andmay be a potential predictor of progression, which is

in accordance with previous studies (14, 15). However, spinal cord

atrophy seemed not to be necessarily consistent with the severity of

spastic paralysis.

The increased level of VLCFA in plasma is the principal

biochemical abnormality in ALD. The accumulation of VLCFA in

white matter and the adrenal cortex leads to clinical and imaging

abnormalities in patients with ALD; however, it is irrelevant to

the clinical signs and the severity of neuroimaging according to

the previous research and our results (2, 16). For the relationship

between the change in VLCFA level and disease progression,

there is currently a lack of further clinical evidence. Another

important biochemical feature of ALD is the increased level of

ACTH, although its sensitivity for the diagnosis of ALD is lower

than VLCFA. Previous research has found that more than 33% of

patients with AMN have normal ACTH levels (2, 15). The ACTH

level of two patients in our study increased, but only patient 1 had

mild signs of adrenal insufficiency.

The symptoms of X-ALD are complex and non-specific, which

can easily result in misdiagnosis and missed diagnosis, as was the

case in our study. All patients were suspected of HSP before AMN

diagnosis. Thus, gene diagnosis is one of themost important criteria

for the diagnosis. Given that some patients had a positive family

history of other neurodegenerative diseases or lacked HSP-related

mutations, additional WES and Sanger sequencing verification

was warranted in our study, which played a decisive role in

the genetic analysis. To date, over 960 different mutations in X-

ALD have been reported (www.x-ald.nl). In the present study,

we identified one nonsense and two frameshift mutations in the

ABCD1 gene in three AMN families. Of the three mutations,

c.1415_1416delAG in exon5 is one of themost commonly recurring

pathogenic variants of the ABCD1 gene, which can lead to the

truncation and negative expression of the adrenoleukodystrophy

protein (ALDP). Most cases occurred in newborns and adolescents

and appeared as cerebral ALD (CALD) phenotype (17, 18). Though

this mutation is comparatively rarely reported in patients with

late-onset spastic paraplegia as the first symptom, our results are

consistent with the existing reports on AMN (19, 20). Patient 2

with c.160_170delACGCAGGAGGC suffered from behavioral and

personality changes, visual impairment, and auditory processing

problems within a short course of clinical onset, except for rapidly

progressive spinal cord symptoms. Compared with the truncated

protein caused by c.1416_1417del, the mutations (c.217C>T

and c.160_170delACGCAGGAGGC) were expected to produce

severely truncated protein, but they do not appear to have the same

effect on disease severity and progression in AMN. This means

that there is no genotype–phenotype correlation, even no clear

correlation between disease severity and genotype, as shown in

previous studies (21, 22). This is because, in addition to ABCD1

genemutations, other triggers such as trauma, genetics, epigenetics,

and environmental factors may also be involved in the pathogenesis

of ALD (2). Thus, the relationship between genotype and clinical

phenotype will require further evaluation in future studies.

As we know, leukodystrophies are only rarely considered

in the differential diagnosis of progressive spastic paraplegia,

especially in adult-onset cases. A study population mainly of

European origin and a Chinese study showed that leukodystrophies

were ∼11–21% of cryptic, adult-onset, lower limb spasticity with

ALD being the most frequent cause (5–6%). These proportions

seemed relatively high in the Chinese population compared

with the European population (23, 24). However, due to the

heterogeneous presentation of adult-onset X-ALD, diagnosis is

often challenging. Clinical presentation and genetic detection play

a major role in diagnosing X-ALD, supplemented with VLCFA

examination and neuroimaging. Although diagnostic approaches

are known to have remarkably improved in recent decades, both

misdiagnosis and underdiagnosis are common due to the limited

understanding of X-ALD. Our results supported that X-ALD is an

important cause of spastic paraparesis and ABCD1 gene should

be included in the genetic sequencing, especially for late-onset

spastic paraplegia patients with leukoencephalopathy, peripheral

neuropathy, cognitive impairment, or adrenocortical insufficiency.

Furthermore, advances in therapeutic options for ALD also

make early diagnosis important. For instance, a hematopoietic stem
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FIGURE 3

Sanger sequencing results of the ABCD1 gene in the probands and their families. (A) Family A: Patient 1 was with mutation c.217 C>T. (B) Family B:

Patient 2, his mother, and daughter were with the mutation c.160_170delACGCAGGAGGC. (C) Family C: Patient 3 and his mother were with the

mutation c.1415_1416delAG.

FIGURE 4

3D computer model (SWISS-MODEL) shows the predicted structures of the ABCD1 protein. (A) The predicted structures of the normal ABCD1

protein. (B) The predicted structures of the ABCD1 protein carrying the mutation of c.1415_1416delAG p.Gln472Argfr*83.

cell transplant (HSCT) is able to halt the progression of CALD,

improving survival and function, especially in early CALD (25),

but despite the gratifying results from HSCT for CALD, its efficacy

on AMN is unclear (11). Previous studies have pointed out that

HSCT for CALD in childhood does not prevent the development

of AMN in adulthood (26). Meanwhile, some scientists began to

explore gene-based treatment options for AMN. Several studies

have successfully transduced CNS cells in vitro with adenoviral

vectors containing humanABCD1 and proved that ABCD1 protein

is localized in peroxisomes, with a reduction in VLCFAs (27,

28). Thus, gene therapy for AMN is worth looking forward to

clinical translation.

In conclusion, we reported three X-linked inherited families

with adult-onset AMN and identified two novel mutations

(p.Gln73∗ and p.Thr54Leufs∗137) in the ABCD1 gene. These three

cases were all initially considered as HSP and finally diagnosed with
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AMN by genetic, biochemical, and imaging testing. In conclusion,

the variable manifestations of AMN mean that individual patients

with AMN may have different, partially overlapping combinations

of clinical symptoms and signs. This study also highlights that

timely and correct genetic testing strategies are important for

avoiding unnecessary diagnostic procedures for rare genetic

diseases, such as X-ALD.
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