Check for updates

OPEN ACCESS

EDITED BY Keith Pennypacker, University of Kentucky, United States

REVIEWED BY

Nikolaos Papagiannakis, National and Kapodistrian University of Athens, Greece Yildiz Degirmenci, Istanbul Health and Technology University, Türkiye

*CORRESPONDENCE Yuanyuan Zhang 🖂 yuanyuanzhangdct@outlook.com

RECEIVED 22 December 2022 ACCEPTED 17 April 2023 PUBLISHED 24 May 2023

CITATION

Huang X and Zhang Y (2023) Relationship between serum bicarbonate levels and the risk of death within 30 days in ICU patients with acute ischemic stroke. *Front. Neurol.* 14:1125359. doi: 10.3389/fneur.2023.1125359

COPYRIGHT

© 2023 Huang and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Relationship between serum bicarbonate levels and the risk of death within 30 days in ICU patients with acute ischemic stroke

Xia Huang¹ and Yuanyuan Zhang^{2*}

¹Department of Neurology, Ninghai First Hospital, Ningbo, Zhejiang, China, ²Emergency Medicine Department, Affiliated Hospital of Yangzhou University (Yangzhou First People's Hospital), Yangzhou, Jiangsu, China

Aim: To explore the relationship between baseline bicarbonate levels and their changes with 30-day mortality in patients with acute ischemic stroke who were admitted to the intensive care unit (ICU).

Methods: This cohort study collected the data of 4,048 participants from the Medical Information Mart for Intensive Care (MIMIC)-III and MIMIC-IV databases. Univariate and multivariable Cox proportional risk models were utilized to explore the relationship between bicarbonate T0 and Δ bicarbonate with 30-day mortality in patients with acute ischemic stroke. The Kaplan–Meier curves were plotted to measure the 30-day survival probability of patients with acute ischemic stroke.

Conclusion: Low baseline bicarbonate levels and decreased bicarbonate levels during the ICU stay were associated with a high risk of 30-day mortality in acute ischemic stroke patients. Special interventions should be offered to those with low baseline and decreased bicarbonate levels during their ICU stay.

KEYWORDS

bicarbonate T0, Δ bicarbonate, mortality, acute ischemic stroke, MIMIC

Introduction

Stroke remains one of the leading causes of death and a major cause of disability worldwide (1). Ischemic stroke accounts for 87% of all stroke cases. Acute ischemic stroke is considered a medical emergency due to the decreased blood flow to the brain and is characterized by suddenonset numbness or weakness in the arm or the leg, facial drooping, difficulty speaking or understanding speech, confusion, trouble with balance or coordination, and the loss of vision (2). Although treatments, including intravenous thrombolysis (IVT) using tissue plasminogen activator (tPA), have improved the functional outcomes of patients with acute ischemic stroke, the prognosis of these patients remains poor (3). Stroke has caused \sim 5.8 million deaths (4) and is a tremendous financial burden (5). Identifying more reliable biomarkers for predicting the prognosis of patients with acute ischemic stroke could improve patient management and treatment.

In a previous study, endothelial dysfunction was reported to be one of the pathological mechanisms of ischemic stroke (6). Evidence shows that lower serum bicarbonate levels may be associated with endothelial dysfunction, and bicarbonate therapy can improve endothelial function in patients with chronic kidney disease (7, 8). However, researchers have found that peripheral blood electrolyte changes occurred after stroke and that alterations in cerebrovascular acid-base balance directly affected cerebral blood flow (9). Bicarbonate measurements are well-acknowledged as a clinically useful biomarker for assessing the acid-base status to diagnose various disease conditions (10, 11). A previous study indicated that, although there was no statistical significance between the serum bicarbonate levels and the mortality of stroke patients, the serum bicarbonate levels were also considered an important factor that correlated with the prognosis of stroke patients and were included in the prediction model for predicting 30-, 180-, and 360-day survival of stroke patients (12). Other studies have revealed that higher serum bicarbonate levels in patients with hypertension are associated with a higher risk of cardiovascular disease (13, 14). The role of bicarbonate levels in patients with cardiovascular diseases was conflicting. Thus, clarifying the association between serum bicarbonate levels and the risk of death in patients with acute ischemic stroke would be highly valuable. In addition, in severe cases, serum bicarbonate levels can fluctuate with changes in the patient's condition as a result of the treatments received (15). Evaluating the influence of the change in bicarbonate levels on the prognosis of patients with ischemic stroke may be valuable.

In this study, the associations between serum bicarbonate levels and their changes with 30-day mortality in patients with acute ischemic stroke were measured based on the data from the Medical Information Mart for Intensive Care (MIMIC)-III and MIMIC-IV databases. Subgroup analyses were stratified by age, the Charlson comorbidity index (CCI), thrombolysis, antiplatelet agents, and anticoagulation agents.

Methods

Study design and population

In this cohort study, 4,674 participants with acute ischemic stroke were identified from the MIMIC-III and MIMIC-IV databases. MIMIC-III is a publicly available single-center critical care database that was approved by the Institutional Review Boards of Beth Israel Deaconess Medical Center (BIDMC, Boston, MA, USA) and the Massachusetts Institute of Technology (Cambridge, MA, USA), and it contains information on 46,520 patients who were admitted to the ICUs of BIDMC in Boston from 2001 to 2012 (16). The information included demographics, vital signs, laboratory tests, fluid balance, and vital status; documents of the International Classification of Diseases and Ninth Revision (ICD-9) codes; records of hourly physiologic data from bedside monitors validated by the ICU nurses; and written evaluations of radiologic films by specialists covering the corresponding time period (17). MIMIC-IV is an updated version of MIMIC-III that features improvements, including a simplified structure, new data elements, and improved usability of previous data elements (18). The project was approved by the Institutional Review Boards of Beth Israel Deaconess Medical Center (Boston, MA) and the Massachusetts Institute of Technology (Cambridge, MA). The use of the data provided by clinicians, data scientists, and information technology personnel, as well as unidentified health information from patients, did not require individual patient consent due to the anonymization of the health information. The diagnosis of acute ischemic stroke was based on ICD-9 (43,301, 43,311, 43,321, 43,331, 43,381, 43,391, 43,401, 43,411, or 43,491) or ICD-10 code (I63). In our study, we excluded individuals under the age of 18 years, those who did not have bicarbonate levels measured at 24-h intervals, and those who died within 2 days of being admitted to the ICU. Finally, 4,048 participants were included, with 3,172 subjects surviving at 30 days and 876 dying within 30 days.

Potential confounders

Potential confounders analyzed in this study including demographic characteristics, such as age (years), gender (female or male), and ethnicity (Black, White, others or unknown), and clinical data such as ventilation (yes or no), vasopressor (yes or no), coronary artery bypass grafting (CABG) (yes or no), coronary artery disease (yes or no), congestive heart failure (yes or no), peripheral vascular disease (yes or no), hyperlipidemia (yes or no), hypertension (yes or no), chronic kidney disease (yes or no), atrial fibrillation (yes or no), malignant cancer (yes or no), diabetes (yes or no), systolic (mmHg), diastolic (mmHg), respiratory rate (beat/min), heart rate (beat/min), temperature (°C), oxygen saturation (SPO2, %), white blood cell (WBC, K/uL), platelet (K/uL), hemoglobin (g/dL), red cell distribution width (RDW, %), blood urea nitrogen (BUN, mg/dL), creatinine (mg/dL), glucose (mg/dL), CCI, simplified acute physiology score II (SAPSII), sequential organ failure assessment (SOFA), quick SOFA (qSOFA), systemic inflammatory response syndrome (SIRS), thrombolysis (yes or no), antiplatelet agents (yes or no), anticoagulation

agents, mechanical bolt removal (yes or no), and hemorrhagic transformation (yes or no). The laboratory data were collected within 24 h after admission to the ICU, and drug use was defined as receiving respective drugs at any point during admission.

Main variables and outcome variables

Bicarbonate T0 (mEq/L), bicarbonate T1 (mEq/L), and Δ bicarbonate were the main variables. Bicarbonate T0 was the first measurement of bicarbonate from 0 to 24 h after admission to the ICU, and bicarbonate T1 was the first measurement of bicarbonate between 24 and 48 h after admission to the ICU. Δ bicarbonate = bicarbonate T0—bicarbonate T1. Bicarbonate T0 was divided into \leq Q₁, Q₁-Q₂, Q₂-Q₃, and >Q₃ groups according to the quartiles, and Q₁ was 21 mEq/L, Q₂ was 23 mEq/L, and Q₃ was 26 mEq/L. Δ bicarbonate was also divided into \leq Q₁, Q₁-Q₂, Q₂-Q₃, and >Q₃ groups according to the quartiles, and Q₁ was -2 mEq/L, Q₂ was 0 mEq/L, and Q₃ was 2 mEq/L.

Whether the participant survived within 30 days was regarded as the outcome of this study. In-hospital mortality was recorded by the MIMIC III and MIMIC IV databases, while out-of-hospital mortality was recorded by the Social Security Bureau. The median follow-up time was 30.00 (30.00, 30.00) days.

Statistical analysis

The mean \pm standard deviation (SD) was used to describe the measurement data with a normal distribution, and a *t*test was applied to compare the difference between the two groups. The median and quartile [M (Q₁, Q₃)] were used to display the measurement data with a non-normal distribution, and the Wilcoxon rank sum test was employed to compare the difference between the two groups. The enumeration data were shown as the number of cases and the component ratio [*n* (%)], and differences between groups were compared using the chi-squared test or Fisher's exact probability methods. Variables with missing values \geq 20% were deleted. The Random Forest interpolation method (n_estimators = 500) was applied to variables with missing values of <20% (Supplementary Table 1), and sensitivity analysis was performed to compare the data before

TABLE 1 Comparisons of characteristics of acute ischemic stroke patients the between survival and death groups.

		Group			
Variables	Total (n = 4,048)	Survival group (n = 3,172)	Death group (<i>n</i> = 876)	Statistics	Р
Age, years, Mean \pm SD	67.93 ± 15.57	66.44 ± 15.76	73.29 ± 13.58	t = -12.75	< 0.001
Gender, <i>n</i> (%)				$\chi^2=0.816$	0.366
Female	2,034 (50.25)	1,582 (49.87)	452 (51.60)		
Male	2,014 (49.75)	1,590 (50.13)	424 (48.40)		
Ethnicity, <i>n</i> (%)				$\chi^2 = 36.357$	< 0.001
Black	423 (10.45)	352 (11.10)	71 (8.11)		
Others	480 (11.86)	388 (12.23)	92 (10.50)		
Unknown	496 (12.25)	340 (10.72)	156 (17.81)		
White	2,649 (65.44)	2,092 (65.95)	557 (63.58)		
Ventilation, n (%)				$\chi^2=154.121$	< 0.001
No	1,367 (33.77)	1,225 (38.62)	142 (16.21)		
Yes	2,681 (66.23)	1,947 (61.38)	734 (83.79)		
Vasopressor, n (%)				$\chi^2 = 76.458$	<0.001
No	2,766 (68.33)	2,274 (71.69)	492 (56.16)		
Yes	1,282 (31.67)	898 (28.31)	384 (43.84)		
CABG, n (%)				$\chi^2 = 7.355$	0.007
No	3,958 (97.78)	3,091 (97.45)	867 (98.97)		
Yes	90 (2.22)	81 (2.55)	9 (1.03)		
Coronary artery disease, n (%)				$\chi^2 = 14.886$	< 0.001
No	2,768 (68.38)	2,216 (69.86)	552 (63.01)		
Yes	1,280 (31.62)	956 (30.14)	324 (36.99)		
Congestive heart failure, <i>n</i> (%)				$\chi^2 = 33.660$	< 0.001
No	2,972 (73.42)	2,396 (75.54)	576 (65.75)		
Yes	1,076 (26.58)	776 (24.46)	300 (34.25)		
Peripheral vascular disease, <i>n</i> (%)				$\chi^2 = 0.665$	0.415
No	3,468 (85.67)	2,725 (85.91)	743 (84.82)		
Yes	580 (14.33)	447 (14.09)	133 (15.18)		
Hyperlipidemia, n (%)				$\chi^2 = 14.048$	<0.001
No	2,200 (54.35)	1,675 (52.81)	525 (59.93)		
Yes	1,848 (45.65)	1,497 (47.19)	351 (40.07)		
Hypertension, <i>n</i> (%)				$\chi^{2} = 0.004$	0.949
No	2,282 (56.37)	1,789 (56.40)	493 (56.28)		
Yes	1,766 (43.63)	1,383 (43.60)	383 (43.72)		
Chronic kidney disease, n (%)				$\chi^2 = 26.655$	< 0.001
No	3,375 (83.37)	2,695 (84.96)	680 (77.63)		
Yes	673 (16.63)	477 (15.04)	196 (22.37)		
Atrial fibrillation, <i>n</i> (%)				$\chi^2 = 29.072$	< 0.001
No	2,710 (66.95)	2,190 (69.04)	520 (59.36)		
Yes	1,338 (33.05)	982 (30.96)	356 (40.64)		
Malignant cancer, <i>n</i> (%)				$\chi^2 = 69.130$	< 0.001

TABLE 1 (Continued)

		Group			
Variables	Total (n = 4,048)	Survival group (n = 3,172)	Death group $(n = 876)$	Statistics	Р
No	3,708 (91.60)	2,966 (93.51)	742 (84.70)		
Yes	340 (8.40)	206 (6.49)	134 (15.30)		
Diabetes, <i>n</i> (%)				$\chi^2=1.198$	0.274
No	2,733 (67.51)	2,155 (67.94)	578 (65.98)		
Yes	1,315 (32.49)	1,017 (32.06)	298 (34.02)		
Systolic blood pressure, mmHg, Mean \pm SD	137.44 ± 27.15	138.38 ± 26.54	134.06 ± 29.01	T = 3.97	<0.001
Diastolic blood pressure, mmHg, Mean \pm SD	72.72 ± 18.77	73.15 ± 18.39	71.13 ± 20.02	t = 2.70	0.007
Respiratory rate, bpm, Mean \pm SD	18.63 ± 5.00	18.41 ± 4.84	19.42 ± 5.49	t = -4.94	< 0.001
Heart rate, bpm, Mean \pm SD	83.64 ± 18.27	82.73 ± 17.62	86.95 ± 20.13	t = -5.64	< 0.001
Temperature, °C, Mean \pm SD	36.72 ± 0.81	36.73 ± 0.75	36.70 ± 0.99	t = 0.80	0.424
SPO_2 , %, Mean \pm SD	97.62 ± 2.58	97.62 ± 2.52	97.64 ± 2.82	t = -0.20	0.840
WBC, K/uL, M (Q ₁ , Q ₃)	10.40 (8.00, 13.70)	10.10 (7.80, 13.40)	11.50 (8.80, 15.50)	Z = 7.026	< 0.001
Platelet, K/uL, M (Q ₁ , Q ₃)	209.00 (158.00, 268.50)	209.00 (162.00, 266.50)	207.00 (149.00, 275.00)	Z = -1.557	0.119
Hemoglobin, g/dL, Mean \pm SD	11.54 ± 2.26	11.66 ± 2.26	11.11 ± 2.21	t = 6.31	< 0.001
RDW, %, Mean ± SD	14.53 ± 1.96	14.39 ± 1.91	15.05 ± 2.05	t = -8.53	<0.001
BUN, mg/dL, M (Q ₁ , Q ₃)	18.00 (13.00, 26.00)	17.00 (12.00, 24.00)	22.00 (15.00, 35.00)	Z = 12.311	< 0.001
Creatinine, mg/dL, M (Q ₁ , Q ₃)	0.90 (0.70, 1.28)	0.90 (0.70, 1.20)	1.00 (0.80, 1.50)	Z = 7.807	< 0.001
Glucose, mg/dL, M (Q1, Q3)	128.00 (105.00, 164.00)	125.00 (104.00, 158.00)	139.00 (114.00, 184.00)	Z = 8.448	<0.001
CCI score, M (Q ₁ , Q ₃)	5.00 (3.00, 7.00)	4.00 (3.00, 6.00)	6.00 (4.00, 8.00)	Z = 11.257	<0.001
SAPSII score, M (Q ₁ , Q ₃)	33.00 (26.00, 42.00)	31.00 (24.00, 40.00)	42.00 (35.00, 51.00)	Z = 21.765	< 0.001
SOFA score, M (Q ₁ , Q ₃)	4.00 (2.00, 6.00)	3.00 (2.00, 5.00)	5.00 (3.00, 8.00)	Z = 15.479	< 0.001
qSOFA score, M (Q ₁ , Q ₃)	2.00 (1.00, 2.00)	2.00 (1.00, 2.00)	2.00 (2.00, 3.00)	Z = 9.703	< 0.001
SIRS score, M (Q ₁ , Q ₃)	1.00 (0.00, 1.00)	1.00 (0.00, 1.00)	1.00 (0.00, 2.00)	Z = 9.183	< 0.001
Thrombolysis, n (%)				$\chi^2 = 10.054$	0.002
No	3,506 (86.61)	2,719 (85.72)	787 (89.84)		
Yes	542 (13.39)	453 (14.28)	89 (10.16)		
Antiplatelet agents, n (%)				$\chi^2 = 14.750$	< 0.001
No	1,589 (39.25)	1,196 (37.70)	393 (44.86)		
Yes	2,459 (60.75)	1,976 (62.30)	483 (55.14)		
Anticoagulation agents, n (%)				$\chi^2 = 69.651$	< 0.001
No	3,254 (80.39)	2,463 (77.65)	791 (90.30)		
Yes	794 (19.61)	709 (22.35)	85 (9.70)		
LOS, days, M (Q ₁ , Q ₃)	3.57 (1.84, 7.51)	3.07 (1.70, 7.06)	5.02 (2.94, 8.78)	Z = 10.498	< 0.001
Follow-up time, days, M (Q1,, Q3)	30.00 (30.00, 30.00)	30.00 (30.00, 30.00)	8.69 (5.11, 15.95)	Z = -62.992	< 0.001
Bicarbonate T0, mEq/L, Mean \pm SD	23.24 ± 3.90	23.48 ± 3.67	22.36 ± 4.55	t = 6.72	< 0.001
Bicarbonate T0, <i>n</i> (%)				$\chi^2 = 76.501$	< 0.001
≤Q1	836 (20.65)	570 (17.97)	266 (30.37)		

TABLE 1 (Continued)

		Group			
Variables	Total (<i>n</i> = 4,048)	Survival group (n = 3,172)	Death group $(n = 876)$	Statistics	Р
Q1-Q2	757 (18.70)	581 (18.32)	176 (20.09)		
Q2-Q3	1,406 (34.73)	1,170 (36.89)	236 (26.94)		
>Q3	1,049 (25.91)	851 (26.83)	198 (22.60)		
Bicarbonate T1, mEq/L, Mean \pm SD	23.62 ± 3.77	23.95 ± 3.59	22.43 ± 4.13	<i>t</i> = 9.96	< 0.001
Bicarbonate T1, <i>n</i> (%)				$\chi^2 = 122.989$	< 0.001
$\leq Q_1$	762 (18.82)	493 (15.54)	269 (30.71)		
Q1-Q2	1,198 (29.59)	927 (29.22)	271 (30.94)		
Q2-Q3	896 (22.13)	745 (23.49)	151 (17.24)		
>Q3	1,192 (29.45)	1,007 (31.75)	185 (21.12)		
Δ Bicarbonate, M (Q ₁ , Q ₃)	0.00 (-2.00, 2.00)	0.00 (-2.00, 1.00)	0.00 (-2.00, 2.00)	Z = 3.315	<0.001
Δ Bicarbonate, <i>n</i> (%)				$\chi^2 = 9.785$	0.020
$\leq Q_1$	874 (21.59)	712 (22.45)	162 (18.49)		
Q1-Q2	1,010 (24.95)	793 (25.00)	217 (24.77)		
Q2-Q3	1,116 (27.57)	875 (27.59)	241 (27.51)		
>Q3	1,048 (25.89)	792 (24.97)	256 (29.22)		
Mechanical bolt removal, <i>n</i> (%)				$\chi^2 = 0.675$	0.411
No	3,935 (97.21)	3,087 (97.32)	848 (96.80)		
Yes	113 (2.79)	85 (2.68)	28 (3.20)		
Hemorrhagic transformation, <i>n</i> (%)				$\chi^2 = 0.594$	0.441
No	3,344 (82.61)	2,628 (82.85)	716 (81.74)		
Yes	704 (17.39)	544 (17.15)	160 (18.26)		

SD, standard deviation; M, Median; Q₁,1st Quartile; Q₃, 3st Quartile; CABG, coronary artery bypass grafting; SPO₂, oxygen saturation; WBC, white blood cell; RDW, red cell distribution width; BUN, blood urea nitrogen; CCI, Charlson comorbidity index; SAPSII, simplified acute physiology score II; SOFA, sequential organ failure assessment; qSOFA, quick sequential organ failure assessment; SIRS, systemic inflammatory response syndrome; LOS, length of stay.

and after interpolation (Supplementary Table 2). Confounders were identified using the univariate Cox proportional risk models, which were then subjected to stepwise regression analysis. Univariate and multivariable Cox proportional risk models were utilized for exploring the relationship between bicarbonate T0 and Abicarbonate with 30-day mortality in patients with acute ischemic stroke. To explore the association between bicarbonate T0 and 30-day mortality in patients with acute ischemic stroke, a multivariable model was adjusted for age, gender, ethnicity, ventilation, vasopressor, hyperlipidemia, atrial fibrillation, heart rate, hemoglobin, RDW, CCI, SAPSII, CABG, thrombolysis, antiplatelet agents, and anticoagulation agents. To explore the association between Δ bicarbonate and 30-day mortality in patients with acute ischemic stroke, a multivariable model was adjusted for age, gender, ethnicity, ventilation, vasopressor, hyperlipidemia, atrial fibrillation, diastolic, RDW, glucose, CCI, SAPSII, CABG, thrombolysis, antiplatelet agents, and anticoagulation agents. A sensitivity analysis was conducted by comparing the data before and after interpolating the missing data. A subgroup analysis was conducted by stratifying age, CCI, thrombolytic therapy, antiplatelet therapy, and anticoagulant therapy. The Kaplan-Meier curves were plotted to measure the 30-day survival probability of patients with acute ischemic stroke. The Hazard Ratio (HR) was applied to evaluate the associations between bicarbonate T0 and Δ bicarbonate with 30-day mortality in patients with acute ischemic stroke. The value of alpha equal to 0.05 was set as the confidence level. Missing value interpolation was completed using Python 3.7.4 (Python Software Foundation, Delaware, USA). Sensitivity analysis, difference comparison, univariate/multivariate Cox proportional risk model modeling, and subgroup analysis were performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA). The Kaplan–Meier curve was drawn using R version 4.2.0 (2022-04-22 ucrt).

Results

Comparisons of the characteristics of acute ischemic stroke patients between the survival and death groups

This study collected data from both the MIMIC-III and MIMIC-IV databases, which included information from 4,674

participants with acute ischemic stroke. Among them, people aged <18 years (n = 2), without measurements on bicarbonate levels at 24-h intervals (n = 570), and who died within 2 days of being admitted to the ICU (n = 54) were excluded. Finally, 4,048 participants were included. The screening process is shown in Figure 1.

Compared with the survival group, the mean age (73.29 vs. 66.14 years), respiratory rate (19.41 beats vs. 18.41 beats), heart rate (86.46 beats vs. 82.67 beats), and RDW (15.05 vs. 14.39%) in the death group were high. The percentages of patients who received ventilation (83.79 vs. 61.38%) and vasopressors (43.84 vs. 28.31%) in the death group were higher than those in the percentages of the survival group. The percentages of participants who received thrombolysis (10.16 vs. 14.28%), antiplatelet agents (55.14 vs. 62.30%), and anticoagulation agents (9.70 vs. 22.35%) in the death group were lower than those in the survival group. The survival group. The survival group the survival group were lower than those in the survival group. The median length of stay (LOS) in the death group was longer than the survival group (5.02 vs. 3.07 days) (Table 1).

Potential confounders for the associations of bicarbonate T0 and ∆bicarbonate with 30-day mortality in patients with acute ischemic stroke

To identify the associations between bicarbonate T0 and Δ bicarbonate and 30-day mortality in patients with acute ischemic stroke, potential confounders were found using univariate Cox proportional hazard model analysis. The data revealed that several factors, including age, being Black, ventilation, vasopressor use, coronary artery disease, hyperlipidemia, chronic kidney disease, atrial fibrillation, systolic blood pressure, diastolic blood pressure, respiratory rate, heart rate, WBC count, hemoglobin levels, RDW, BUN, creatinine, glucose levels, CCI, SAPS II, SOFA, qSOFA, SIRS, CABG, thrombolysis, antiplatelet agents, and anticoagulation agents, might be potential confounding variables in the associations between bicarbonate T0 and Δ bicarbonate levels and 30-day mortality risk in patients with acute ischemic stroke (Table 2).

Associations of bicarbonate T0 with 30-day mortality in patients with acute ischemic stroke

Variables with a statistically significant difference were involved in the multivariable Cox proportional hazard model through stepwise regression. The results are displayed in Table 3, with age (HR = 1.02, 95%CI: 1.02–1.03), being Black (HR = 0.75, 95%CI: 0.59–0.97), ventilation (HR = 2.16, 95%CI: 1.78–2.62), vasopressor use (HR = 1.27, 95%CI: 1.09–1.48), hyperlipidemia (HR = 0.80, 95%CI: 0.70–0.92), atrial fibrillation (HR = 1.22, 95%CI: 1.05– 1.41), diastolic blood pressure (HR = 1.01, 95%CI: 1.01–1.01), heart rate (HR = 1.01, 95%CI: 1.01–1.01), RDW (HR = 1.05, 95%CI: 1.01–1.08), CCI (HR = 1.09, 95%CI: 1.06–1.12), SAPS II (HR = 1.03, 95%CI: 1.02–1.04), CABG (HR = 0.22, 95%CI: 0.11– 0.43), thrombolysis (HR = 0.72, 95%CI: 0.58–0.90), antiplatelet TABLE 2 Potential confounding factors associated with 30-day mortality in patients with acute ischemic stroke.

Variables	β	S.E	χ ²	HR (95%CI)	Р	
Age	0.029	0.003	129.201	1.03 (1.02–1.03)	< 0.001	
Gender	1		1			
Female				Ref		
Male	-0.068	0.068	1.005	0.93 (0.82–1.07)	0.316	
Ethnicity						
Black	-0.264	0.126	4.379	0.77 (0.60–0.98)	0.036	
Others	-0.100	0.113	0.794	0.90 (0.73-1.13)	0.373	
Unknown	0.472	0.091	27.147	1.60 (1.34–1.91)	< 0.001	
White				Ref		
Ventilation						
No				Ref		
Yes	1.078	0.092	138.168	2.94 (2.46-3.52)	< 0.001	
Vasopressor	,		,			
No				Ref		
Yes	0.602	0.068	78.051	1.83 (1.60–2.09)	< 0.001	
Coronary artery d	lisease					
No				Ref		
Yes	0.262	0.070	13.982	1.30 (1.13–1.49)	< 0.001	
Hyperlipidemia						
No				Ref		
Yes	-0.252	0.069	13.318	0.78 (0.68–0.89)	< 0.001	
Hypertension						
No				Ref		
Ye	0.005	0.068	0.005	1.00 (0.88–1.15)	0.943	
Chronic kidney d	isease					
No				Ref		
Yes	0.398	0.081	24.110	1.49 (1.27–1.75)	< 0.001	
Atrial fibrillation						
No				Ref		
Yes	0.375	0.069	29.746	1.46 (1.27–1.67)	< 0.001	
Systolic blood pressure	-0.005	0.001	17.810	0.99 (0.99–0.99)	< 0.001	
Diastolic blood pressure	-0.005	0.002	8.615	0.99 (0.99–0.99)	0.003	

TABLE 2 (Continued)

Variables	β	S.E	χ^2	HR (95%CI)	Р	
Respiratory rate	0.034	0.006	27.586	1.03 (1.02–1.05)	< 0.001	
Heart rate	0.011	0.002	37.143	1.01 (1.01–1.01)	< 0.001	
Temperature	-0.043	0.043	0.981	0.96 (0.88–1.04)	0.322	
SPO ₂	0.004	0.013	0.109	1.00 (0.98–1.03)	0.741	
WBC	0.010	0.002	23.159	1.01 (1.01–1.01)	< 0.001	
Platelet	-0.000	0.000	1.298	1.00 (1.00-1.00)	0.255	
Hemoglobin	-0.089	0.015	36.690	0.91 (0.89–0.94)	< 0.001	
RDW	0.116	0.013	74.577	1.12 (1.09–1.15)	< 0.001	
BUN	0.015	0.001	123.461	1.01 (1.01–1.02)	< 0.001	
Creatinine	0.060	0.013	19.737	1.06 (1.03–1.09)	< 0.001	
Glucose	0.002	0.000	58.403	1.01 (1.01–1.01)	< 0.001	
CCI score	0.141	0.012	148.302	1.15 (1.13–1.18)	< 0.001	
SAPSII score	0.049	0.002	518.122	1.05 (1.05–1.05)	< 0.001	
SOFA score	0.120	0.008	235.215	1.13 (1.11–1.15)	< 0.001	
qSOFA score	0.414	0.044	87.047	1.51 (1.39–1.65)	< 0.001	
SIRS score	0.358	0.038	86.698	1.43 (1.33–1.54)	< 0.001	
CABG				·		
No				Ref		
Yes	-0.857	0.335	6.550	0.42 (0.22–0.82)	0.010	
Thrombolysis						
No				Ref		
Yes	-0.346	0.112	9.561	0.71 (0.57–0.88)	0.002	
Antiplatelet agents						
No				Ref		
Yes	-0.265	0.068	15.219	0.77 (0.67–0.88)	< 0.001	
Anticoagulation a	igents					
No				Ref		
Yes	-0.918	0.114	64.733	0.40 (0.32–0.50)	< 0.001	
Los	0.004	0.004	0.787	1.00 (1.00–1.01)	0.375	
					(Continued)	

TABLE 2 (Continued)

Variables	β	S.E	χ ²	HR (95%CI)	Р	
Mechanical bolt r	emoval					
No				Ref		
Yes	0.171	0.192	0.789	1.19 (0.81–1.73)	0.375	
Hemorrhagic transformation						
No				Ref		
Yes	0.056	0.087	0.415	1.06 (0.89–1.26)	0.519	

Ref, Reference; HR, Hazard Ratio; CI, Confidence Interval; SPO₂, oxygen saturation; WBC, white blood cell; RDW, red cell distribution width; BUN, blood urea nitrogen; CCI, Charlson comorbidity index; SAPSII, simplified acute physiology score II; SOFA, sequential organ failure assessment; qSOFA, quick sequential organ failure assessment; SIRS, systemic inflammatory response syndrome; CABG, coronary artery bypass grafting; LOS, length of stay.

agents (HR = 0.82, 95%CI: 0.72–0.95), and anticoagulation agents (HR = 0.35, 95%CI: 0.28–0.44) considered as confounders associated with 30-day mortality in patients with acute ischemic stroke. Gender was an important variable associated with mortality in patients with acute ischemic stroke, which was also adjusted for in the multivariable Cox proportional hazard model. The data revealed that after adjusting for these confounding factors, bicarbonate T0 \leq Q₁ (HR = 1.22, 95%CI: 1.01–1.48) or bicarbonate T0 of Q₁-Q₂ (HR = 1.26, 95%CI: 1.03–1.55) was associated with an increased risk of 30-day mortality in patients with acute ischemic stroke compared with bicarbonate T0 >Q₃ (Table 3). The 30day survival probability of acute ischemic stroke patients with bicarbonate T0 of Q₂-Q₃, bicarbonate T0 of Q₂-Q₃, or bicarbonate T0 >Q₃ was higher than that of the participants with bicarbonate T0 \leq Q₁ (Figure 2).

When bicarbonate T0 was dealt with as a continuous variable, we found that age (HR = 1.02, 95%CI: 1.02-1.03), Black (HR = 0.75, 95%CI: 0.58-0.97), ventilation (HR = 2.19, 95%CI: 1.80-2.65), vasopressor (HR = 1.27, 95%CI: 1.09-1.49), hyperlipidemia (HR = 0.80, 95%CI: 0.70-0.92), atrial fibrillation (HR = 1.22, 95%CI: 1.05–1.41), diastolic blood pressure (HR = 1.01, 95%CI: 1.01-1.01), heart rate (HR = 1.01, 95%CI:1.01–1.01), RDW (HR = 1.05, 95%CI: 1.02–1.08), CCI (HR = 1.09, 95%CI: 1.06-1.12), SAPS II (HR = 1.03, 95%CI: 1.02-1.04), CABG (HR = 0.23, 95%CI: 0.12–0.44), thrombolysis (HR = 0.72, 95%CI: 0.57-0.90), antiplatelet agents (HR = 0.83, 95%CI: 0.72-0.95), and anticoagulation agents (HR = 0.35, 95%CI: 0.28-0.45) were confounding factors. After adjusting for these variables and gender, increased bicarbonate T0 was related to a decreased risk of 30-day mortality in patients with acute ischemic stroke (HR = 0.98, 95%CI: 0.97-0.99) (Supplementary Table 3).

Relationship between Δ bicarbonate with 30-day mortality in patients with acute ischemic stroke

As for the association between Δ bicarbonate and 30-day mortality in acute ischemic stroke patients, the results of the

TABLE 3 Association between bicarbonate T0 and 30-day mortality in patients with acute ischemic stroke.

Variables	β	S.E	χ^2	HR (95%CI)	Р
Bicarbonate T0					
$\leq Q_1$	0.202	0.098	4.267	1.22 (1.01–1.48)	0.039
Q1-Q2	0.234	0.105	4.977	1.26 (1.03–1.55)	0.026
Q ₂ -Q ₃	-0.048	0.097	0.242	0.95 (0.79–1.15)	0.623
>Q3				Ref	
Age	0.023	0.003	58.877	1.02 (1.02–1.03)	< 0.001
Gender					
Female				Ref	
Male	0.070	0.070	1.003	1.07 (0.94–1.23)	0.316
Ethnicity					
Black	-0.282	0.129	4.755	0.75 (0.59–0.97)	0.029
Others	0.053	0.114	0.214	1.05 (0.84–1.32)	0.644
Unknown	0.521	0.093	31.485	1.68 (1.40-2.02)	< 0.001
White				Ref	
Ventilation					
No				Ref	
Yes	0.772	0.098	61.548	2.16 (1.78–2.62)	< 0.001
Vasopressor					
No				Ref	
Yes	0.240	0.079	9.347	1.27 (1.09–1.48)	0.002
Hyperlipidemia				-	
No				Ref	
Yes	-0.217	0.071	9.408	0.80 (0.70-0.92)	0.002
Atrial fibrillation					
No				Ref	
Yes	0.196	0.074	6.953	1.22 (1.05–1.41)	0.008
Diastolic blood pressure	0.004	0.002	6.136	1.01 (1.01–1.01)	0.013
Heart rate	0.004	0.002	4.626	1.01 (1.01–1.01)	0.031
RDW	0.045	0.016	8.435	1.05 (1.01–1.08)	0.004
CCI score	0.088	0.013	44.732	1.09 (1.06–1.12)	< 0.001

(Continued)

TABLE 3 (Continued)

Variables	β	S.E	χ ²	HR (95%CI)	Р	
SAPSII score	0.030	0.003	100.206	1.03 (1.02–1.04)	< 0.001	
CABG						
No				Ref		
Ye	-1.507	0.341	19.505	0.22 (0.11-0.43)	< 0.001	
Thrombolysis						
No				Ref		
Yes	-0.325	0.114	8.150	0.72 (0.58–0.90)	0.004	
Antiplatelet agent	s					
No				Ref		
Yes	-0.193	0.070	7.541	0.82 (0.72–0.95)	0.006	
Anticoagulation agents						
No				Ref		
Yes	-1.049	0.117	79.834	0.35 (0.28–0.44)	< 0.001	

Ref, Reference; HR, Hazard Ratio; CI, Confidence Interval; RDW, red cell distribution width; CCI, Charlson comorbidity index; SAPSII, simplified acute physiology score II; CABG, coronary artery bypass grafting.

multivariable Cox proportional hazard model revealed that age (HR = 1.02, 95%CI: 1.02-1.03), being Black (HR = 0.75, 95%CI: 0.58–0.97), ventilation (HR = 2.20, 95%CI: 1.81-2.66), vasopressor use (HR = 1.33, 95%CI: 1.14-1.55), hyperlipidemia (HR = 0.81, 95%CI: 0.70-0.93), atrial fibrillation (HR = 1.21, 95%CI: 1.05–1.40), diastolic blood pressure (HR = 1.01, 95%CI: 1.01-1.01), heart rate (HR = 1.01, 95%CI: 1.01-1.01), RDW (HR = 1.05, 95%CI: 1.02-1.08), CCI (HR = 1.09, 95%CI: 1.06-1.12), SAPSII (HR = 1.03, 95%CI: 1.03-1.04), CABG (HR = 0.23, 95%CI: 0.12-0.45), thrombolysis (HR = 0.70, 95%CI: 0.56-0.88), antiplatelet agents (HR = 0.82, 95%CI: 0.72-0.94), and anticoagulation agents (HR = 0.35, 95%CI: 0.28-0.44) were confounding factors associated with the mortality in acute ischemic stroke patients. In the multivariable Cox proportional hazard model, Δ bicarbonate of Q₁-Q₂ (HR = 1.36, 95%CI: 1.11–1.67), Δ bicarbonate of Q₂-Q₃ (HR = 1.40, 95%CI: 1.14–1.71), and Δ bicarbonate >Q₃ (HR = 1.37, 95%CI: 1.12–1.03) were correlated with an elevated risk of 30-day mortality in acute ischemic stroke patients (Table 4). The Kaplan-Meier curve showed that the 30day survival probability in patients with Δ bicarbonate $\leq Q_1$ group was higher than that in patients with $\Delta bicarbonate > Q_3 \ group$ (Figure 3).

When Δ bicarbonate was considered a continuous variable, an increased risk of 30-day mortality in patients with acute ischemic stroke was identified in those with higher Δ bicarbonate (HR = 1.03, 95%CI: 1.01–1.05) after adjusting for confounding factors, including age (HR = 1.02, 95%CI: 1.02–1.03), gender,

ethnicity (HR = 0.75, 95%CI: 0.59–0.97), ventilation (HR = 2.20, 95%CI: 1.82–2.67), vasopressor (HR = 1.31, 95%CI: 1.13–1.53), hyperlipidemia (HR = 0.81, 95%CI: 0.71–0.93), atrial fibrillation (HR = 1.22, 95%CI: 1.05–1.41), diastolic blood pressure (HR = 1.01, 95%CI: 1.01–1.01), heart rate (HR = 1.01, 95%CI: 1.01–1.01), RDW (HR = 1.05, 95%CI: 1.02–1.08), CCI (HR = 1.09, 95%CI: 1.06–1.12), SAPSII (HR = 1.03, 95%CI: 1.03–1.04), CABG (HR = 0.23, 95%CI: 0.12–0.44), thrombolysis (HR = 0.70, 95%CI: 0.56–0.88), antiplatelet agents (HR = 0.82, 95%CI: 0.71–0.94), and anticoagulation agents (HR = 0.35, 95%CI: 0.28–0.44) (Supplementary Table 4).

Subgroup analysis of associations of bicarbonate T0 and ∆bicarbonate with 30-day mortality in patients with acute ischemic stroke

In patients aged <70 years, bicarbonate T0 of Q₂-Q₃ was associated with an increased risk of 30-day mortality in patients with acute ischemic stroke in the adjusted model (HR = 1.67, 95%CI: 1.18–2.37). In people aged \geq 70 years, bicarbonate T0 \leq Q₁

was linked with an elevated risk of 30-day mortality in patients with acute ischemic stroke (HR = 1.28, 95%CI: 1.01-1.61). Higher bicarbonate T0 was related to an increased risk of 30-day mortality in patients with acute ischemic stroke, which was observed in those aged \geq 70 years (HR = 1.05, 95%CI: 1.02–1.08). After adjusting for potential confounders, we found that subjects with \Dbicarbonate of Q_1 - Q_2 (HR =1.56, 95%CI: 1.19–2.04), Δ bicarbonate of Q_2 - Q_3 (HR = 1.58, 95%CI: 1.21–2.06), and Δ bicarbonate > Q_3 (HR = 1.65, 95% CI: 1.28-2.14) were associated with an increased risk of 30-day mortality in patients with acute ischemic stroke in patients aged \geq 70 years. In those with CCI \geq 5, Δ bicarbonate of Q_1-Q_2 (HR = 1.57, 95%CI: 1.20–2.06), Δ bicarbonate of Q_2-Q_3 (HR = 1.63, 95% CI: 1.25-2.12), or Δ bicarbonate>Q₃ (HR = 1.66, 1.25-2.12)95%CI: 1.29-2.15) were correlated with an increased risk of 30day mortality in patients with acute ischemic stroke. An increased risk of 30-day mortality in patients with acute ischemic stroke was elevated with the increase of Δ bicarbonate (HR = 1.05, 95%CI: 1.02–1.07) in people with CCI \geq 5 (Table 5).

Among participants who did not receive thrombolysis, those with bicarbonate levels at or below the first quartile $T0 \le Q_1$ had a 24% higher risk of 30-day mortality (HR = 1.24, 95%CI: 1.01–1.52). Similarly, those with changes in bicarbonate levels between the first and second quartiles (Δ bicarbonate of Q1–Q2), second and third

The Kaplan–Meier curve presenting the 30-day survival probability in patients from different Δ bicarbonate group. Log-rank \leq Q₁ vs. Q₁-Q₂ (P = 0.160), \leq Q₁ vs. Q₂-Q₃ (P = 0.160), \leq Q₁ vs. >Q₃ (P = 0.010), Q₁-Q₂ vs. Q₂-Q₃ (P = 0.930), Q₁-Q₂ vs. >Q₃ (P = 0.210), and Q₂-Q₃ vs. >Q₃ (P = 0.210).

quartiles (Abicarbonate of Q2-Q3), or above the third quartile (Δ bicarbonate >Q3) had elevated risks of 30-day mortality, with hazard ratios (HRs) of 1.30 (95% CI: 1.05-1.61), 1.41 (95% CI: 1.14-1.73), and 1.32 (95%CI: 1.08-1.63), respectively. An increased risk of 30-day mortality in patients with acute ischemic stroke was elevated with the increase of Δ bicarbonate in participants who did not receive thrombolysis (HR = 1.03, 95%CI: 1.01-1.05). Among patients who received thrombolysis, those with Abicarbonate of Q_1-Q_2 (HR = 2.29, 95%CI: 1.06-4.92) or Δ bicarbonate > Q_3 (HR = 2.12, 95%CI: 1.02-4.40) had an increased risk of 30-day mortality in patients with acute ischemic stroke. Among people who did not receive antiplatelet agents, Δ bicarbonate of Q₂-Q₃ (HR = 1.37, 95%CI: 1.02-1.84) or \triangle bicarbonate $>Q_3$ (HR = 1.38,95%CI: 1.03-1.85) were associated with an increased risk of 30day mortality in patients with acute ischemic stroke; and patients with higher Abicarbonate were correlated with an increased risk of 30-day mortality (HR = 1.04, 95%CI: 1.01-1.07). In people who received antiplatelet agents, bicarbonate T0 \leq Q₁ (HR = 1.36, 95%CI: 1.04–1.77), bicarbonate T0 of Q₂-Q₃ (HR = 1.37, 95%CI: 1.04–1.80), Δ bicarbonate of Q₁-Q₂ (HR = 1.49, 95%CI: 1.13–1.97), and Δ bicarbonate of Q₂-Q₃ (HR = 1.40, 95%CI: 1.06–1.85) were correlated with an increased risk of 30-day mortality in patients with acute ischemic stroke. We also observed that bicarbonate T0 of Q_2 - Q_3 (HR = 1.27, 95%CI: 1.042–1.57), Δ bicarbonate of Q_1-Q_2 (HR = 1.31, 95%CI: 1.06–1.64), Δ bicarbonate of Q_2-Q_3 (HR = 1.47, 95%CI: 1.19-1.82), or Δ bicarbonate >Q₃ (HR = 1.36, 95%CI: 1.11-1.68) were linked with an elevated risk of 30day mortality in acute ischemic stroke patients who did not receive anticoagulation agents. An elevated level of ∆bicarbonate was linked with an increased risk of 30-day mortality in acute ischemic stroke patients who did not receive anticoagulation agents (HR = 1.04, 95%CI: 1.01–1.06). Bicarbonate T0 \leq Q₁ (HR = 2.35, 95%CI: 1.24–4.45) and Δ bicarbonate of Q₁-Q₂ (HR = 1.91, 95%CI: 1.01-3.64) were linked with an elevated risk of 30-day mortality in acute ischemic stroke patients receiving anticoagulation agents. A decreased risk of 30-day mortality in acute ischemic stroke patients who received anticoagulation agents was found in those with higher bicarbonate T0 (HR = 0.93, 95%CI: 0.88-0.98) (Table 5).

Discussion

The current study assessed the relationship between the bicarbonate levels measured from 0 to 24 h after admission to

TABLE 4	Association between Abicarbonate and 30-day m	ortality in
patients	with acute ischemic stroke.	

Variables	β	S.E.	χ^2	HR (95%CI)	Р
∆bicarbonate		^			
$\leq Q_1$				Ref	
Q_1 to Q_2	0.307	0.105	8.629	1.36 (1.11–1.67)	0.003
Q_2 to Q_3	0.333	0.103	10.520	1.40 (1.14–1.71)	0.001
>Q ₃	0.312	0.101	9.503	1.37 (1.12–1.67)	0.002
Age	0.022	0.003	54.807	1.02 (1.02–1.03)	< 0.001
Gender					
Female				Ref	
Male	0.063	0.070	0.827	1.07 (0.93–1.22)	0.363
Ethnicity					
Black	-0.287	0.129	4.923	0.75 (0.58–0.97)	0.027
Others	0.095	0.114	0.686	1.10 (0.88–1.38)	0.407
Unknown	0.531	0.093	32.874	1.70 (1.42–2.04)	< 0.001
White				Ref	
Ventilation					
No				Ref	
Yes	0.788	0.098	64.306	2.20 (1.81–2.67)	< 0.001
Vasopressor					
No				Ref	
Yes	0.286	0.078	13.365	1.33 (1.14–1.55)	< 0.001
Hyperlipidemia					
No				Ref	
Yes	-0.217	0.071	9.299	0.81 (0.70–0.93)	0.002
Atrial fibrillation				1	
No				Ref	
Yes	0.193	0.074	6.767	1.21 (1.05–1.40)	0.009
Diastolic blood pressure	0.004	0.002	6.137	1.01 (1.01–1.01)	0.013
Heart rate	0.004	0.002	4.161	1.01 (1.01–1.01)	0.041
RDW	0.048	0.016	9.374	1.05 (1.02–1.08)	0.002
CCI score	0.085	0.013	41.588	1.09 (1.06–1.12)	< 0.001

(Continued)

TABLE 4 (Continued)

Variables	β	S.E.	χ ²	HR (95%CI)	Р	
SAPSII score	0.032	0.003	120.319	1.03 (1.03–1.04)	< 0.001	
CABG						
No				Ref		
Yes	-1.466	0.340	18.538	0.23 (0.12–0.45)	< 0.001	
Thrombolysis						
No				Ref		
Yes	-0.350	0.114	9.444	0.70 (0.56–0.88)	0.002	
Antiplatelet agent	s					
No				Ref		
Yes	-0.198	0.070	7.990	0.82 (0.72–0.94)	0.005	
Anticoagulation agents						
No				Ref		
Yes	-1.045	0.117	79.460	0.35 (0.28–0.44)	< 0.001	

Ref, Reference; HR, Hazard Ratio; CI, Confidence Interval; RDW, red cell distribution width; CCI, Charlson comorbidity index; SAPSII, simplified acute physiology score II; CABG, coronary artery bypass grafting.

the ICU and the bicarbonate level changes with 30-day mortality in patients with acute ischemic stroke. The data revealed that bicarbonate T0 $\leq Q_1$ or bicarbonate T0 of Q_2 - Q_3 were associated with an increased risk of 30-day mortality in patients with acute ischemic stroke. Δ bicarbonate of Q_1 - Q_2 , Δ bicarbonate of Q_2 - Q_3 , and Δ bicarbonate >Q₃ were correlated with an elevated risk of 30-day mortality in acute ischemic stroke patients. The findings of our study might provide a reference for the management of the prognosis of acute ischemic stroke patients in the ICU.

Bicarbonate is an essential marker that plays an important role in regulating body fluids, acid-base balance, and participation in life activities (19). A low bicarbonate concentration usually represents metabolic acidosis, and low bicarbonate levels may cause astrocyte dysfunction, which was negatively associated with the outcome of stroke patients (20). Another study indicated that lower baseline bicarbonate concentrations were associated with a higher mortality risk among critically ill patients with ischemic cardiogenic shock (21). Lower serum bicarbonate concentrations were found to be significantly associated with higher cardiovascular disease mortality in type 2 diabetes (22). Evidence showed that a low serum bicarbonate level was an independent risk factor for kidney disease progression and mortality in heart failure patients (23). Our study found low baseline bicarbonate levels correlated with an elevated risk of 30-day mortality in patients with acute ischemic stroke. Low serum bicarbonate levels indicated metabolic acidosis, which is a kind of disorder associated with increased mortality, as it is implicated in multiple TABLE 5 Subgroup analysis of associations of bicarbonate T0 and $\Delta bicarbonate$ with 30-day mortality in patients with acute ischemic stroke.

Subgroups	HR (95%CI)	Р
Age < 70 years (<i>n</i> = 2,031)		
Bicarbonate T0		
$\leq Q_1$	1.12 (0.80–1.57)	0.506
Q1-Q2	1.67 (1.18–2.37)	0.004
Q ₂ -Q ₃	1.07 (0.76–1.51)	0.697
>Q ₃	Ref	
Bicarbonate T0	1.00 (0.97–1.02)	0.737
∆Bicarbonate		
$\leq Q_1$	Ref	
Q1-Q2	1.14 (0.82–1.57)	0.429
Q2-Q3	1.18 (0.86–1.62)	0.311
>Q ₃	1.00 (0.72–1.39)	0.991
∆Bicarbonate	1.01 (0.98–1.05)	0.450
Age \ge 70 years (<i>n</i> = 2,017)		
Bicarbonate T0		
$\leq Q_1$	1.28 (1.01–1.61)	0.043
Q1-Q2	1.09 (0.84–1.41)	0.510
Q ₂ -Q ₃	0.91 (0.72–1.15)	0.423
>Q ₃	Ref	
Bicarbonate T0	0.98 (0.96-0.99)	0.024
Δ Bicarbonate		
$\leq Q_1$	Ref	
Q1-Q2	1.56 (1.19–2.04)	0.001
Q2-Q3	1.58 (1.21–2.06)	<0.001
>Q ₃	1.65 (1.28–2.14)	<0.001
∆Bicarbonate	1.05 (1.02–1.08)	<0.001
CCI < 5 (<i>n</i> = 2,009)		
Bicarbonate T0		
$\leq Q_1$	1.23 (0.87–1.75)	0.244
Q ₁ -Q ₂	1.36 (0.96–1.93)	0.083
Q2-Q3	0.98 (0.70-1.38)	0.905
>Q ₃	Ref	
Bicarbonate T0	0.99 (0.96–1.02)	0.342
∆Bicarbonate		
$\leq Q_1$	Ref	
Q ₁ -Q ₂	1.18 (0.85–1.64)	0.315
Q ₂ -Q ₃	1.10 (0.80–1.50)	0.567
>Q ₃	1.00 (0.72–1.38)	0.987
∆Bicarbonate	1.01 (0.98–1.04)	0.468
$CCI \ge 5 (n = 2,039)$		

TABLE 5 (Continued)

Subgroups	HR (95%CI)	Р		
Bicarbonate T0				
$\leq Q_1$	1.22 (0.97–1.54)	0.095		
Q1-Q2	1.14 (0.88–1.48)	0.329		
Q ₂ -Q ₃	0.95 (0.75-1.19)	0.643		
>Q3	Ref			
Bicarbonate T0	0.98 (0.97-1.00)	0.074		
∆Bicarbonate				
$\leq Q_1$	Ref			
Q1-Q2	1.57 (1.20–2.06)	<0.001		
Q ₂ -Q ₃	1.63 (1.25–2.12)	< 0.001		
>Q ₃	1.66 (1.29–2.15)	< 0.001		
∆Bicarbonate	1.05 (1.02–1.07)	< 0.001		
Thrombolysis = No ($n = 3,506$)				
Bicarbonate T0				
$\leq Q_1$	1.24 (1.01–1.52)	0.038		
Q1-Q2	1.19 (0.96–1.48)	0.121		
Q ₂ -Q ₃	0.95 (0.78–1.16)	0.631		
>Q ₃	Ref			
Bicarbonate T0	0.98 (0.97-1.00)	0.065		
Δ Bicarbonate				
$\leq Q_1$	Ref			
Q ₁ -Q ₂	1.30 (1.05–1.61)	0.016		
Q2-Q3	1.41 (1.14–1.73)	0.001		
>Q ₃	1.32 (1.08–1.63)	0.008		
∆Bicarbonate	1.03 (1.01–1.05)	0.003		
Thrombolysis = Yes $(n = 542)$				
Bicarbonate T0				
$\leq Q_1$	0.98 (0.49–1.95)	0.959		
Q ₁ -Q ₂	1.84 (0.99–3.43)	0.056		
Q2-Q3	0.98 (0.55–1.75)	0.942		
>Q ₃	Ref			
Bicarbonate T0	0.98 (0.92–1.04)	0.455		
∆Bicarbonate				
$\leq Q_1$	Ref			
Q1-Q2	2.29 (1.06-4.92)	0.034		
Q ₂ -Q ₃	1.40 (0.65-3.01)	0.384		
>Q ₃	2.12 (1.02-4.40)	0.045		
∆Bicarbonate	1.06 (0.99–1.13)	0.106		
Antiplatelet agents = No $(n = 1,589)$				
Bicarbonate T0				
$\leq Q_1$	1.07 (0.81–1.43)	0.626		

(Continued)

TABLE 5 (Continued)

Q.Q.Q.1.12 (0.82-1.54)0.469Q-Q.0.88 (0.66-1.17)0.371J.Q.1.61 (0.98-1.03)0.624Bicarbonate T01.21 (0.99-1.63)0.624Q.Q.Q.1.23 (0.90-1.68)0.0187Q.Q.Q.1.32 (0.90-1.68)0.0187Q.Q.Q.1.32 (0.91-1.68)0.002Abicarbonate O1.33 (1.01-1.80)0.002Scharbonate T01.36 (1.01-1.07)0.013Q.Q.Q.1.36 (1.04-1.77)0.024Q.Q.Q.1.32 (0.91-1.80)0.025Q.Q.Q.1.32 (0.91-1.80)0.025Q.Q.Q.1.32 (0.91-1.80)0.001Scharbonate T01.32 (0.91-1.80)0.001Q.Q.Q.1.40 (1.01-1.80)0.001Q.Q.Q.1.40 (1.01-1.80)0.001Abicarbonate T01.41 (1.01-1.80)0.001Q.Q.Q.1.41 (1.01-1.81)0.005Q.Q.Q.1.41 (1.01-1.81)0.005Q.Q.Q.1.31 (1.00-1.81)0.002Abicarbonate T01.31 (1.00-1.81)0.013Q.Q.Q.1.51 (0.41-1.81)0.033Q.Q.Q.1.51 (0.41-1.81)0.033Q.Q.Q.1.51 (0.41-1.81)0.014Q.Q.Q.1.51 (0.41-1.81)0.014Q.Q.Q.1.51 (0.41-1.81)0.014Q.Q.Q.1.51 (0.41-1.81)0.014Q.Q.Q.1.51 (0.41-1.81)0.004Abicarbonate1.31 (1.01-1.81)0.004Q.Q.Q.1.51 (1.11-1.82)0.001Abicarbonate1.31 (1.01-1.81)0.001Q.Q.Q.1.	Subgroups	HR (95%CI)	Р		
Q.Q.Q.0.88 (0.66-1.17)0.0371>Q_A101 (0.98-1.03)0.624Bicarbonate TO1.01 (0.98-1.03)0.624Q.Q.1.82 (0.90-1.68)0.187Q.Q.Q.1.32 (0.90-1.68)0.013Q.Q.Q.1.33 (1.02-1.84)0.003>Q.Q.Q.1.33 (1.03-1.85)0.013ABicarbonate1.04 (1.01-107)0.013Abicarbonate To1.04 (1.01-107)0.021Q.Q.Q.1.37 (1.04-1.80)0.022Q.Q.Q.1.02 (0.79-1.32)0.890Q.Q.Q.1.02 (0.79-1.32)0.890Q.Q.Q.1.02 (0.79-1.32)0.001Q.Q.Q.1.64 (1.01-107)0.002Q.Q.Q.1.64 (1.01-107)0.001Q.Q.Q.1.49 (1.13-197)0.005Q.Q.Q.1.49 (1.13-197)0.005Q.Q.Q.1.49 (1.01-107)0.002Q.Q.Q.1.49 (1.01-107)0.002Q.Q.Q.1.31 (1.00-1.30)0.002Q.Q.Q.1.50 (0.41)0.013Q.Q.Q.1.51 (0.41)0.013Q.Q.Q.1.51 (0.41)0.013Q.Q.Q.1.51 (0.41)0.013Q.Q.Q.1.51 (0.41)0.013Q.Q.Q.1.51 (0.41)0.014Q.Q.Q.1.51 (0.41)0.014Q.Q.Q.1.51 (1.01, 61)0.014Q.Q.Q.1.61 (1.16, 61)0.014Q.Q.Q.1.61 (1.16, 61)0.004Q.Q.Q.1.61 (1.16, 61)0.004Q.Q.Q.1.61 (1.16, 61)0.004Q.Q.Q.1.61 (1.16, 61)0.0	Q1-Q2	1.12 (0.82–1.54)	0.469		
PQIRfIQIQBarbonateIQAicarbonateIQQnIQIQQnQIQIQQnQIQIQQnQIQIQQnQIQIQQnQIQIQAirbarbanatIQIQAirbarbatersersIQIQQnQIQ <t< td=""><td>Q2-Q3</td><td>0.88 (0.66-1.17)</td><td>0.371</td></t<>	Q2-Q3	0.88 (0.66-1.17)	0.371		
Bicarbonate T01.01 (0.98-1.03)0.624ABicarbonate \subseteq_Q_1 Ref $Q_1 \cdot Q_2$ 1.23 (0.90-1.68)0.187 $Q_2 \cdot Q_3$ 1.38 (1.03-1.85)0.029 $\Delta Bicarbonate$ 1.04 (1.01-1.07)0.013 $\Delta Itiplatelet agents = Yes (n = V0.001Z_1 \cdot Q_21.36 (1.04-1.77)0.024Q_1 \cdot Q_21.37 (1.04-1.80)0.025Q_2 \cdot Q_31.02 (0.79-1.32)0.8902Q_2 \cdot Q_3Ref0.001Z_1 \cdot Q_21.40 (1.05-1.89)0.001Z_1 \cdot Q_21.44 (1.13-1.97)0.005Q_2 \cdot Q_31.44 (1.05-1.85)0.007Q_2 \cdot Q_31.31 (1.00-1.73)0.005Q_2 \cdot Q_31.31 (1.00-1.73)0.005Q_2 \cdot Q_31.31 (1.00-1.73)0.005A BicarbonateV = V = V = V = V = V = V = V = V = V =$	>Q ₃	Ref			
ABicarbonate $\leq Q_1$ Ref $Q_1 Q_2$ 1.23 (0.90-1.68)0.187 $Q_2 Q_3$ 1.33 (1.02-1.84)0.036 $> Q_3$ 1.34 (1.01-1.07)0.013ABicarbonate1.04 (1.01-1.07)0.013Ahripatelet agents = Yes ($n = V = V = V = V = V = V = V = V = V = $	Bicarbonate T0	1.01 (0.98–1.03)	0.624		
$\leq Q_1$ Ref Q_1Q_2 $1.23 (0.90-1.68)$ 0.187 Q_2Q_3 $1.37 (1.02-1.84)$ 0.036 $>Q_3$ $1.38 (1.03-1.85)$ 0.029 Δ Bicarbonate $1.04 (1.01-0.7)$ 0.013 $Atriplatelet agents = Yes (\pi = VV0.021SQ_11.36 (1.04-1.77)0.024Q_1Q_21.02 (0.79-1.32)0.890Q_1Q_30.010.021Q_2Q_30.0010.011AbicarbonateV0.001Q_1Q_21.40 (1.07-1.32)0.001Q_1Q_21.40 (1.01-1.69)0.001Q_1Q_31.31 (1.00-1.73)0.053Q_2Q_31.15 (0.94-1.40)0.062Abicarbonate1.15 (0.94-1.40)0.017Q_1Q_21.15 (0.94-1.40)0.181Q_1Q_21.15 (0.94-1.40)0.181Q_1Q_30.95 (0.78-1.16)0.597Q_2Q_3Ref0.017Q_2Q_3Ref0.017Q_1Q_21.31 (1.06-1.64)0.004Q_1Q_21.31 (1.6-1.64)0.004Q_1Q_31.31 (1.6-1.64)0.004Q_2Q_31.61 (1.1-1.68)0.004Q_1Q_31.61 (1.1-1.68)0.004Q_1Q_21.61 (1.1-1.68)0.004Q_1Q_21.62 (1.2-4.57)0.003Q_1Q_21.61 (1.0-1.68)0.004Q_1Q_21.61 (1.0-1.68)0.004Q_1Q_21.61 (1.0-1.64)$	∆Bicarbonate				
Q.Q.Q.1.23 (0.90-1.68)0.187Q.Q.Q.1.37 (1.02-1.84)0.036>Q.A.1.38 (1.03-1.85)0.029ABicarbonate1.04 (1.01-1.07)0.013Antiplatelet agents = Yes ($n = V = V = V = V$)1.02 (0.01)Sq.1.36 (1.04-1.77)0.024Q.Q.Q.1.02 (0.79-1.32)0.890Q.Q.Q.0.06 (0.94-0.99)0.001Skarbonate T00.96 (0.94-0.99)0.001Q.Q.Q.1.40 (1.01-1.69)0.005Q.Q.Q.1.40 (1.01-1.69)0.005Q.Q.Q.1.40 (1.01-1.69)0.005Q.Q.Q.1.40 (1.01-1.69)0.005Q.Q.Q.1.15 (0.94-1.40)0.005Q.Q.Q.1.15 (0.94-1.40)0.013Q.Q.Q.1.15 (0.94-1.40)0.013Q.Q.Q.1.15 (0.94-1.40)0.033Q.Q.Q.0.90 (0.97-1.01)0.033Q.Q.Q.0.90 (0.97-1.01)0.033Q.Q.Q.0.90 (0.97-1.01)0.033Q.Q.Q.0.90 (0.97-1.01)0.022Skarbonate T00.90 (0.97-1.01)0.033Q.Q.Q.1.31 (1.06-1.64)0.014Q.Q.Q.1.31 (1.06-1.64)0.004Q.Q.Q.1.31 (1.07-1.62)<0.001	$\leq Q_1$	Ref			
Q2-Q31.37 (1.02-1.84)0.036-Q31.38 (1.03-1.85)0.029ABicarbonate1.04 (1.01-1.07)0.013Ahtiplatelet agents = Ves (n = 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	Q1-Q2	1.23 (0.90–1.68)	0.187		
$-Q_3$ 1.38 (1.03-1.85)0.029 $ABicarbonate$ 1.04 (1.01-1.07)0.013 $Antiplatelt agents = Yes (n = 2 S S S S S S S S S S S S S S S S S S$	Q2-Q3	1.37 (1.02–1.84)	0.036		
ABicarbonate1.04 (1.01-1.07)0.013Antiplated agents = Yes (N = Secondate TO)Sicarbonate TOSicarbonate TOSicarbonate TOQ.Q.Q.1.36 (1.04-1.37)0.024Q.Q.Q.1.02 (0.79-1.32)0.890SQ.G.Nef e0.001Sicarbonate TO0.06 (0.94-0.99)0.001Alicarbonate TO0.96 (0.94-0.99)0.001Sicarbonate TO1.49 (1.13-1.97)0.005Q.Q.Q.1.49 (1.13-1.97)0.005Q.Q.Q.1.31 (1.00-1.38)0.017SQ.G.1.31 (1.00-1.38)0.0162Alicarbonate1.33 (1.00-1.39)0.053Alicarbonate TO1.15 (0.94-1.40)0.013Q.Q.Q.1.15 (0.94-1.40)0.013Q.Q.Q.1.27 (1.02-1.57)0.033Q.Q.Q.0.95 (0.78-1.16)0.597SQ.Nef Co0.950 (0.81-1.61)Sylaphicar TO1.27 (1.02-1.57)0.033SQ.G.Nef Co0.020SQ.G.Nef Co0.020SQ.G.Nef Co0.020SQ.G.Nef Co0.014Q.Q.Q.1.31 (1.06-1.64)0.014Q.Q.Q.1.31 (1.06-1.64)0.004Q.Q.Q.1.31 (1.06-1.64)0.004Q.Q.Q.1.31 (1.06-1.64)0.004Q.Q.Q.1.31 (1.06-1.64)0.004SQ.G.1.31 (1.06-1.64)0.004Alicarbonate1.31 (1.06-1.64)0.004Q.Q.Q.1.31 (1.06-1.64)0.004Alicarbonate1.41 (1.91.82)0.	>Q ₃	1.38 (1.03–1.85)	0.029		
Antiplatelt agents = Yes (n =)Sicarbonate TO \leq_Q_1 1.35 (1.04-1.70)0.024 $Q_1 Q_2$ 1.02 (0.79-1.32)0.890 $Q_2 Q_3$ 1.02 (0.79-1.32)0.890 $>Q_3$ Ref0 Δ Bicarbonate TO0.96 (0.94-0.99)0.001 Δ Bicarbonate TO1.49 (1.13-1.97)0.005 $Q_1 Q_2$ 1.40 (1.06-1.85)0.017 $Q_2 Q_3$ 1.40 (1.06-1.85)0.017 $2Q_1 Q_2$ 1.40 (1.06-1.85)0.0162 $2Q_2 Q_3$ 1.31 (1.00-1.73)0.053 Δ Bicarbonate1.32 (1.02-1.57)0.033 $Q_1 Q_2$ 1.15 (0.94-1.40)0.181 $Q_1 Q_2$ 1.15 (0.94-1.40)0.181 $Q_1 Q_2$ 0.95 (0.78-1.16)0.597 $2Q_3$ Ref0.95 (0.78-1.16)0.597 $Q_1 Q_2$ 1.51 (1.06-1.64)0.014 $Q_1 Q_2$ 1.51 (1.06-1.64)0.014 $Q_1 Q_2$ 1.51 (1.06-1.64)0.014 $Q_1 Q_2$ 1.31 (1.06-1.64)0.014 $Q_1 Q_2$ 1.31 (1.06-1.64)0.014 $Q_1 Q_2$ 1.31 (1.06-1.64)0.014 $Q_1 Q_2$ 1.31 (1.06-1.64)0.014 $Q_2 Q_3$ 1.32 (1.1-1.68)0.004 $Q_1 Q_2$ 1.32 (1.24-4.51)0.004 $Q_1 Q_2$ 1.23 (1.24-4.51)0.009 $Q_1 Q_2$ 1.23 (0.24-4.51)0.009 $Q_1 Q_2$ 1.23 (0.24-4.51)0.009 $Q_1 Q_2$ 1.23 (0.24-4.51)0.009 $Q_2 Q_3$ 1.21 (0.52-1.94)0.007 <td< td=""><td>∆Bicarbonate</td><td>1.04 (1.01–1.07)</td><td>0.013</td></td<>	∆Bicarbonate	1.04 (1.01–1.07)	0.013		
Bicarbonate T0 $\leq Q_1$ 1.36 (1.04-1.77)0.024 $Q_1 \cdot Q_2$ 1.37 (1.04-1.80)0.025 $Q_2 \cdot Q_3$ 1.02 (0.79-1.32)0.890 $>Q_3$ Ref1Bicarbonate T00.96 (0.94-0.99)0.001 $\Delta Bicarbonate$ 1.49 (1.13-1.97)0.005 $Q_1 \cdot Q_2$ 1.40 (1.06-1.85)0.017 $Q_2 \cdot Q_3$ 1.31 (1.00-1.06)0.062 $\Delta Bicarbonate$ 1.03 (1.00-1.06)0.062 $Q_2 \cdot Q_3$ 1.03 (1.00-1.06)0.062 $\Delta Bicarbonate$ 1.03 (1.00-1.06)0.062 $\Delta Icarbonate T0$ 1.02 (1.02-1.57)0.033 $Q_1 \cdot Q_2$ 0.95 (0.78-1.16)0.181 $Q_1 \cdot Q_2$ 0.95 (0.78-1.16)0.597 $Q_1 \cdot Q_2$ 0.95 (0.78-1.16)0.597 $Q_1 \cdot Q_2$ 1.11 (1.06-1.44)0.014 $Q_1 \cdot Q_2$ 1.31 (1.06-1.44)0.014 $Q_1 \cdot Q_2$ 1.31 (1.06-1.44)0.014 $Q_1 \cdot Q_2$ 1.31 (1.01-1.06)<0.001	Antiplatelet agents = Yes ($n = 2$,	,459)			
$\leq Q_1$ 1.36 (1.04-1.77)0.024 $Q_1 \cdot Q_2$ 1.37 (1.04-1.80)0.0025 $Q_2 \cdot Q_3$ 1.02 (0.79-1.32)0.890 $>Q_3$ Ref1Bicarbonate T00.96 (0.94-0.99)0.001 Δ BicarbonateRef1 $\leq Q_1$ Ref1 $Q_1 \cdot Q_2$ 1.49 (1.13-1.97)0.005 $Q_2 \cdot Q_3$ 1.40 (1.06-1.85)0.017 $2Q_2 \cdot Q_3$ 1.31 (1.00-1.73)0.053 Δ Bicarbonate1.03 (1.00-1.73)0.053 Δ Bicarbonate1.03 (1.00-1.73)0.053 Δ Bicarbonate1.27 (1.02-1.57)0.033 $Q_1 \cdot Q_2$ 0.95 (0.78-1.16)0.597 $Q_1 \cdot Q_2$ 0.95 (0.78-1.16)0.597 $2Q_1$ 0.99 (0.97-1.01)0.202 PQ_3 Ref1.31 (1.06-1.44) $Q_1 \cdot Q_2$ 1.31 (1.06-1.44)0.014 $Q_1 \cdot Q_2$ 1.33 (1.06-1.64)0.014 $Q_1 \cdot Q_2$ 1.31 (1.06-1.64)0.014 $Q_1 \cdot Q_2$ 1.31 (1.06-1.64)0.014 $Q_2 \cdot Q_3$ 1.36 (1.11-1.68)0.004 $Q_1 \cdot Q_2$ 1.36 (1.11-1.68)0.004 $Q_1 \cdot Q_2$ 1.36 (1.11-1.68)0.004 $Abicarbonate T0$ 1.36 (1.11-1.68)0.004 $Q_1 \cdot Q_2$ 1.36 (1.11-1.68)0.004 $Q_1 \cdot Q_2$ 1.26 (0.64-2.47)0.500 $Q_1 \cdot Q_2$ 1.26 (0.64-2.47)0.500 $Q_1 \cdot Q_3$ 1.26 (0.64-2.47)0.977 $Q_1 \cdot Q_3$ 1.26 (0.64-2.47)0.977 $Q_2 \cdot Q_3$ 1.26 (0.64-2.47) <t< td=""><td>Bicarbonate T0</td><td></td><td></td></t<>	Bicarbonate T0				
Q1-Q21.37 (1.04-1.80)0.025Q2-Q31.02 (0.79-1.32)0.890>Q3RefBicarbonate T00.96 (0.94-0.99)0.001ABicarbonateSQ1RefQ1-Q21.49 (1.13-1.97)0.005Q2-Q31.40 (1.06-1.85)0.017>Q31.03 (1.00-1.73)0.053ABicarbonate1.03 (1.00-1.73)0.053Abicarbonate1.03 (1.00-1.60)0.062Anticoagulation agents =No (>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	$\leq Q_1$	1.36 (1.04–1.77)	0.024		
Q2-Q31.02 (0.79-1.32)0.890>Q3RefBicarbonate TO0.96 (0.94-0.99)0.001△Bicarbonate≤Q1RefQ1-Q21.49 (1.13-1.97)0.005Q2-Q31.40 (1.06-1.85)0.017>Q31.31 (1.00-1.73)0.053ABicarbonate1.03 (1.00-1.06)0.062ABicarbonate1.03 (1.00-1.06)0.062ABicarbonate1.15 (0.94-1.40)0.0181Q1-Q21.27 (1.02-1.57)0.033Q2-Q30.95 (0.78-1.16)0.597>Q3RefBicarbonate TO0.99 (0.97-1.01)0.202>Q4RefBicarbonate TO0.99 (0.97-1.01)0.202>Q31.31 (1.06-1.64)0.014Q1-Q21.33 (1.06-1.64)0.014Q2-Q31.47 (1.19-1.82)<-0.001	Q1-Q2	1.37 (1.04–1.80)	0.025		
>Q3RefBicarbonate T00.96 (0.94-0.99)0.001ΔBicarbonate≤Q1RefQ1-Q21.49 (1.13-1.97)0.005Q2-Q31.40 (1.06-1.85)0.017>Q31.31 (1.00-1.73)0.053ΔBicarbonate1.03 (1.00-1.06)0.062ΔBicarbonate1.03 (1.00-1.06)0.062Anticoagulation agents = No (\times 254)0.0181Sq11.15 (0.94-1.40)0.181Q1-Q21.27 (1.02-1.57)0.033Q2-Q30.95 (0.78-1.16)0.597>Q3Ref0.1202Bicarbonate T00.99 (0.97-1.01)0.202ABicarbonate0.99 (0.97-1.01)0.202Q1-Q21.31 (1.06-1.64)0.014Q1-Q21.31 (1.06-1.64)0.014Q2-Q31.47 (1.19-1.82)<0.001	Q2-Q3	1.02 (0.79–1.32)	0.890		
Bicarbonate T00.06 (0.94-0.99)0.001 $\Delta Bicarbonate$ Ref $\leq Q_1$ Ref $Q_1 \cdot Q_2$ 1.49 (1.13-1.97)0.005 $Q_2 \cdot Q_3$ 1.40 (1.06-1.85)0.017 $>Q_3$ 1.31 (1.00-1.73)0.053 $\Delta Bicarbonate$ 1.03 (1.00-1.06)0.062 $\Delta Bicarbonate$ 1.03 (1.00-1.06)0.062 $Q_1 \cdot Q_2$ 1.15 (0.94-1.40)0.181 $Q_1 \cdot Q_2$ 1.15 (0.94-1.40)0.181 $Q_1 \cdot Q_2$ 0.95 (0.78-1.16)0.597 $>Q_3$ Ref0.99 (0.97-1.01)0.202 $>Q_3$ Ref0.99 (0.97-1.01)0.202 $A Bicarbonate T0$ 0.99 (0.97-1.01)0.202 $>Q_1 \cdot Q_2$ 1.31 (1.06-1.64)0.014 $Q_1 \cdot Q_2$ 1.31 (1.06-1.64)0.014 $Q_2 \cdot Q_3$ 1.47 (1.19-1.82)<0.001	>Q3	Ref			
ΔBicarbonate≤Q1RefQ1-Q21.49 (1.13-1.97)0.005Q2-Q31.40 (1.06-1.85)0.017>Q31.31 (1.00-1.73)0.053ΔBicarbonate1.03 (1.00-1.06)0.062Anticoagulation agents = No ($+$ 3/254)0.0181Seq11.15 (0.94-1.40)0.181Q1-Q21.27 (1.02-1.57)0.033Q2-Q30.95 (0.78-1.16)0.597>Q3Ref0.99 (0.97-1.01)Selicarbonate T00.99 (0.97-1.01)0.202ΔBicarbonate T00.99 (0.97-1.01)0.202>Q31.31 (1.06-1.64)0.014Q1-Q21.31 (1.06-1.64)0.014Q2-Q31.32 (1.11-1.68)0.004ΔBicarbonate T01.36 (1.11-1.68)0.004Q2-Q31.36 (1.11-1.68)0.004ΔBicarbonate T02.35 (1.24-4.45)0.009Q1-Q21.26 (0.64-2.47)0.500Q1-Q21.26 (0.64-2.47)0.500Q1-Q21.01 (0.52-1.94)0.977 <q3< td="">Nef0.977<q1< td="">2.000.977</q1<></q3<>	Bicarbonate T0	0.96 (0.94–0.99)	0.001		
≤Q1RefQ1-Q21.49 (1.13-1.97)0.005Q2-Q31.40 (1.06-1.85)0.017>Q31.31 (1.00-1.73)0.053∆Bicarbonate1.03 (1.00-1.06)0.062Anticoagulation agents = No (>>254)0.017Bicarbonate T01.15 (0.94-1.40)0.181Q1-Q21.27 (1.02-1.57)0.033Q2-Q30.95 (0.78-1.16)0.597>Q3Ref1.131 (1.06-1.64)Bicarbonate T00.99 (0.97-1.01)0.202ABicarbonate T00.99 (0.97-1.01)0.202Q1-Q21.31 (1.06-1.64)0.014Q1-Q21.33 (1.06-1.64)0.014Q1-Q21.36 (1.11-1.68)0.004Abicarbonate1.04 (1.01-1.06)<0.001	∆Bicarbonate				
Q1-Q21.49 (1.13-1.97)0.005Q2-Q31.40 (1.06-1.85)0.017>Q31.31 (1.00-1.73)0.053△Bicarbonate1.03 (1.00-1.06)0.062Anticoagulation agents = No (= 3,254)0.062Sicarbonate T0	$\leq Q_1$	Ref			
$Q_2 \cdot Q_3$ 1.40 (1.06-1.85)0.017> Q_3 1.31 (1.00-1.73)0.053 Δ Bicarbonate1.03 (1.00-1.06)0.062Anticoagulation agents = No ($=$ 3,254)0.062Bicarbonate T0 $=$ 1.15 (0.94-1.40)0.181 $Q_1 \cdot Q_2$ 1.27 (1.02-1.57)0.033 $Q_2 \cdot Q_3$ 0.95 (0.78-1.16)0.597> Q_3 Ref $=$ 1.31 (1.06-1.64)Bicarbonate T00.99 (0.97-1.01)0.202 Δ Bicarbonate T00.99 (0.97-1.01)0.202 Δ Bicarbonate T01.31 (1.06-1.64)0.014 $Q_1 \cdot Q_2$ 1.47 (1.19-1.82)<0.001	Q1-Q2	1.49 (1.13–1.97)	0.005		
>Q31.31 (1.00-1.73)0.053∆Bicarbonate1.03 (1.00-1.06)0.062Anticoagulation agents = No (x254)0.062Bicarbonate T01.15 (0.94-1.40)0.181Q1-Q21.27 (1.02-1.57)0.033Q2-Q30.95 (0.78-1.16)0.597>Q3Ref1.15 (0.94-1.40)0.202Bicarbonate T00.99 (0.97-1.01)0.202>Q3Ref1.31 (1.06-1.64)0.014Q1-Q21.31 (1.06-1.64)0.0140.014Q2-Q31.47 (1.19-1.82)<0.001	Q ₂ -Q ₃	1.40 (1.06–1.85)	0.017		
$\Delta Bicarbonate$ 1.03 (1.00-1.06)0.062Anticoagulation agents = No ($n > 3,254$)Bicarbonate T0 $\leq Q_1$ 1.15 (0.94-1.40)0.181 $Q_1 - Q_2$ 1.27 (1.02-1.57)0.033 $Q_2 - Q_3$ 0.95 (0.78-1.16)0.597 $> Q_3$ Ref0.99 (0.97-1.01)0.202Bicarbonate T00.99 (0.97-1.01)0.202 $\Delta Bicarbonate$ VV $\leq Q_1$ Ref0.914 $Q_1 - Q_2$ 1.31 (1.06-1.64)0.014 $Q_2 - Q_3$ 1.47 (1.19-1.82)<0.001	>Q ₃	1.31 (1.00–1.73)	0.053		
Anticoagulation agents = No ($n = 3,254$) Bicarbonate T0 $\leq Q_1$ 1.15 (0.94–1.40) 0.181 $Q_1 - Q_2$ 1.27 (1.02–1.57) 0.033 $Q_2 - Q_3$ 0.95 (0.78–1.16) 0.597 $>Q_3$ Ref 0.99 (0.97–1.01) 0.202 $\Delta Bicarbonate T0$ 0.99 (0.97–1.01) 0.202 $\Delta Bicarbonate$ 0.99 (0.97–1.01) 0.202 $Q_1 - Q_2$ 1.31 (1.06–1.64) 0.014 $Q_1 - Q_2$ 1.31 (1.06–1.64) 0.014 $Q_2 - Q_3$ 1.47 (1.19–1.82) <0.001	∆Bicarbonate	1.03 (1.00-1.06)	0.062		
Bicarbonate T0 $\leq Q_1$ 1.15 (0.94-1.40) 0.181 $Q_1 - Q_2$ 1.27 (1.02-1.57) 0.033 $Q_2 - Q_3$ 0.95 (0.78-1.16) 0.597 $>Q_3$ Ref 0.99 (0.97-1.01) 0.202 $\Delta Bicarbonate T0$ 0.99 (0.97-1.01) 0.202 $\Delta Bicarbonate T0$ 0.99 (0.97-1.01) 0.202 $\Delta Iicarbonate$ V V $\leq Q_1$ Ref V $Q_1 - Q_2$ 1.31 (1.06-1.64) 0.014 $Q_2 - Q_3$ 1.47 (1.19-1.82) <0.001	Anticoagulation agents = No $(n = 3,254)$				
$\leq Q_1$ 1.15 (0.94-1.40)0.181 Q_1-Q_2 1.27 (1.02-1.57)0.033 Q_2-Q_3 0.95 (0.78-1.16)0.597 $>Q_3$ RefBicarbonate T00.99 (0.97-1.01)0.202 $\Delta Bicarbonate$ $\leq Q_1$ Ref Q_1-Q_2 1.31 (1.06-1.64)0.014 Q_2-Q_3 1.47 (1.19-1.82)<0.001	Bicarbonate T0				
Q_1-Q_2 $1.27 (1.02-1.57)$ 0.033 Q_2-Q_3 $0.95 (0.78-1.16)$ 0.597 $>Q_3$ Ref $0.99 (0.97-1.01)$ 0.202 Bicarbonate T0 $0.99 (0.97-1.01)$ 0.202 $\Delta Bicarbonate$ V V $\leq Q_1$ Ref V Q_1-Q_2 $1.31 (1.06-1.64)$ 0.014 Q_2-Q_3 $1.47 (1.19-1.82)$ <0.001 $>Q_3$ $1.36 (1.11-1.68)$ 0.004 $\Delta Bicarbonate$ $1.04 (1.01-1.06)$ <0.001 $Anticoagulation agents = Yes (r 794)VBicarbonate T02.35 (1.24-4.45)0.009Q_1-Q_21.26 (0.64-2.47)0.500Q_2-Q_31.01 (0.52-1.94)0.977>Q_3RefV$	$\leq Q_1$	1.15 (0.94–1.40)	0.181		
Q_2-Q_3 $0.95(0.78-1.16)$ 0.597 $>Q_3$ Ref Bicarbonate T0 $0.99(0.97-1.01)$ 0.202 $\Delta Bicarbonate$ $\leq Q_1$ Ref Q_1-Q_2 $1.31(1.06-1.64)$ 0.014 Q_2-Q_3 $1.47(1.19-1.82)$ <0.001 $>Q_3$ $1.36(1.11-1.68)$ 0.004 $\Delta Bicarbonate$ $1.04(1.01-1.06)$ <0.001 $\Delta Bicarbonate$ $1.04(1.01-1.06)$ <0.001 $\Delta Anticoagulation agents = Yes (r = 794) <0.009 <0.009 Q_1-Q_2 1.26(0.64-2.47) 0.009 Q_1-Q_2 1.01(0.52-1.94) 0.977 Q_2-Q_3 Ref <0.977 $	Q1-Q2	1.27 (1.02–1.57)	0.033		
$>Q_3$ Ref Bicarbonate T0 0.99 (0.97-1.01) 0.202 Δ Bicarbonate $\leq Q_1$ Ref Q_1-Q_2 1.31 (1.06-1.64) 0.014 Q_2-Q_3 1.47 (1.19-1.82) <0.001	Q ₂ -Q ₃	0.95 (0.78–1.16)	0.597		
Bicarbonate T0 $0.99(0.97-1.01)$ 0.202 $\Delta Bicarbonate$ $\leq Q_1$ Ref $\leq Q_1$ Q_1-Q_2 $1.31(1.06-1.64)$ 0.014 Q_2-Q_3 $1.47(1.19-1.82)$ <0.001 $>Q_3$ $1.36(1.11-1.68)$ 0.004 $\Delta Bicarbonate$ $1.04(1.01-1.06)$ <0.001 $Anticoagulation agents = Yes (r = 794) <0.001 <0.001 Bicarbonate T0 <0.009 <0.009 <0.009 Q_1-Q_2 1.26(0.64-2.47) 0.500 <0.977 Q_2-Q_3 1.01(0.52-1.94) 0.977 <0.977 $	>Q ₃	Ref			
ΔBicarbonate $\leq Q_1$ Ref $Q_1 - Q_2$ 1.31 (1.06-1.64) 0.014 $Q_2 - Q_3$ 1.47 (1.19-1.82) <0.001	Bicarbonate T0	0.99 (0.97-1.01)	0.202		
$\leq Q_1$ Ref $Q_1 - Q_2$ 1.31 (1.06-1.64) 0.014 $Q_2 - Q_3$ 1.47 (1.19-1.82) <0.001 $>Q_3$ 1.36 (1.11-1.68) 0.004 Δ Bicarbonate 1.04 (1.01-1.06) <0.001 Anticoagulation agents = Yes (r 794) <0.001 Bicarbonate T0 <0.009 <0.009 $Q_1 - Q_2$ 1.26 (0.64-2.47) 0.500 $Q_2 - Q_3$ 1.01 (0.52-1.94) 0.977 $>Q_3$ Ref <0.007	ΔBicarbonate				
$\begin{array}{ c c c c } Q_1 - Q_2 & 1.31 (1.06 - 1.64) & 0.014 \\ \hline Q_2 - Q_3 & 1.47 (1.19 - 1.82) & <0.001 \\ \hline > Q_3 & 1.36 (1.11 - 1.68) & 0.004 \\ \hline \Delta Bicarbonate & 1.04 (1.01 - 1.06) & <0.001 \\ \hline \Delta Anticoagulation agents = Yes (r 794) & \\ \hline Bicarbonate T0 & \\ \hline \leq Q_1 & 2.35 (1.24 - 4.45) & 0.009 \\ \hline Q_1 - Q_2 & 1.26 (0.64 - 2.47) & 0.500 \\ \hline Q_2 - Q_3 & 1.01 (0.52 - 1.94) & 0.977 \\ \hline > Q_3 & Ref & \\ \hline \end{array}$	$\leq Q_1$	Ref			
$\begin{array}{ c c c c } Q_2 - Q_3 & 1.47 (1.19 - 1.82) & <0.001 \\ \hline > Q_3 & 1.36 (1.11 - 1.68) & 0.004 \\ \hline \Delta Bicarbonate & 1.04 (1.01 - 1.06) & <0.001 \\ \hline Anticoagulation agents = Yes (r - 794) \\ \hline Bicarbonate TO & \\ \hline \leq Q_1 & 2.35 (1.24 - 4.45) & 0.009 \\ \hline Q_1 - Q_2 & 1.26 (0.64 - 2.47) & 0.500 \\ \hline Q_2 - Q_3 & 1.01 (0.52 - 1.94) & 0.977 \\ \hline > Q_3 & Ref & \\ \hline \end{array}$	Q1-Q2	1.31 (1.06–1.64)	0.014		
$>Q_3$ 1.36 (1.11-1.68) 0.004 Δ Bicarbonate 1.04 (1.01-1.06) <0.001 Anticoagulation agents = Yes (π = 794) Bicarbonate T0	Q ₂ -Q ₃	1.47 (1.19–1.82)	< 0.001		
ΔBicarbonate 1.04 (1.01-1.06) <0.001 Anticoagulation agents = Yes (n = 794) Bicarbonate T0 ≤Q1 2.35 (1.24-4.45) 0.009 Q1-Q2 1.26 (0.64-2.47) 0.500 Q2-Q3 1.01 (0.52-1.94) 0.977 >Q3 Ref	>Q ₃	1.36 (1.11–1.68)	0.004		
Anticoagulation agents = Yes ($n = 794$) Bicarbonate T0 $\leq Q_1$ 2.35 (1.24-4.45) 0.009 Q_1 - Q_2 1.26 (0.64-2.47) 0.500 Q_2 - Q_3 1.01 (0.52-1.94) 0.977 $>Q_3$ Ref 1	Δ Bicarbonate	1.04 (1.01–1.06)	<0.001		
Bicarbonate T0 ≤Q1 2.35 (1.24-4.45) 0.009 Q1-Q2 1.26 (0.64-2.47) 0.500 Q2-Q3 1.01 (0.52-1.94) 0.977 >Q3 Ref 1.01	Anticoagulation agents = Yes $(n = 794)$				
$\begin{array}{c c} \leq Q_1 & 2.35 (1.24-4.45) & 0.009 \\ \hline Q_1 - Q_2 & 1.26 (0.64-2.47) & 0.500 \\ \hline Q_2 - Q_3 & 1.01 (0.52-1.94) & 0.977 \\ > Q_3 & Ref \end{array}$	Bicarbonate T0				
Q_1 - Q_2 1.26 (0.64–2.47) 0.500 Q_2 - Q_3 1.01 (0.52–1.94) 0.977 > Q_3 Ref	$\leq Q_1$	2.35 (1.24-4.45)	0.009		
Q2-Q3 1.01 (0.52-1.94) 0.977 >Q3 Ref	Q1-Q2	1.26 (0.64–2.47)	0.500		
>Q ₃ Ref	Q ₂ -Q ₃	1.01 (0.52–1.94)	0.977		
	>Q ₃	Ref			

10.3389/fneur.2023.1125359

TABLE 5 (Continued)

Subgroups	HR (95%CI)	Р		
Bicarbonate T0	0.93 (0.88–0.98)	0.008		
∆Bicarbonate				
$\leq Q_1$	Ref			
Q1-Q2	1.91 (1.01–3.64)	0.049		
Q2-Q3	0.78 (0.37-1.67)	0.528		
>Q ₃	1.40 (0.74–2.66)	0.301		
Δ Bicarbonate	1.01 (0.95–1.08)	0.683		

Ref, Reference; HR, Hazard Ratio; CI, Confidence Interval; CCI, Charlson comorbidity index. In association between bicarbonate T0 and 30-day mortality adjusted for age, gender, ethnicity, ventilation, vasopressor, hyperlipidemia, atrial fibrillation, heart rate, hemoglobin, RDW, CCI, SAPSII, CABG, thrombolysis, antiplatelet agents, and anticoagulation agents if not stratified.

In association between Δ Bicarbonate and 30-day mortality adjusted for age, gender, ethnicity, ventilation, vasopressor, hyperlipidemia, atrial fibrillation, diastolic blood pressure, RDW, glucose, CCI, SAPSII, CABG, thrombolysis, antiplatelet agents, and anticoagulation agents if not stratified.

complications, including cardiac dysfunction, hypotension, and an increased risk of infection (24-26). Bicarbonate is involved in endothelial function, which is one of the pathological mechanisms involved in the development of ischemic stroke (6, 7, 27). It was produced from carbonic anhydrases, which regulated the Neurovascular Unit cells in vitro and in vivo models of stroke pathology (28). The patients with increased Δ bicarbonate had a poor prognosis. The possible reason might be that increased Δ bicarbonate indicated the bicarbonate concentration showed a decreasing trend during ICU admission, which usually reflects underlying metabolic acidosis (14), and this might lead to the severity of acute ischemic stroke. Acidosis modulates a wide range of inflammatory gene expression in endothelial cells and regulates endothelial cell adhesion (29), which, in turn, contributes to leukocyte infiltration and plasma leakage with subsequent tissue damage.

In addition, the change in bicarbonate levels was associated with an increased risk of 30-day mortality in acute ischemic stroke patients. These results underscore the importance of monitoring not only the baseline bicarbonate levels but also changes in bicarbonate levels over time. Clinicians should provide special interventions for patients with a decreased trend in the bicarbonate levels. The subgroup analysis revealed that, for patients under 70 years of age, attention should be given to the baseline bicarbonate level, while for patients 70 years of age and older, both the baseline bicarbonate level and changes in bicarbonate levels should be monitored. The Charlson comorbidity index (CCI) is a validated and straightforward method for evaluating the risk of death from comorbid diseases. It has been widely used to predict the prognosis and survival of patients with different diseases (30). In our study, the association between changes in the bicarbonate level and 30-day mortality in acute ischemic stroke patients was identified in those with CCI \geq 5, suggesting that patients with more comorbid diseases should pay attention to the change in the bicarbonate levels. For patients who received thrombolysis or did not receive antiplatelet agent treatments, dynamic bicarbonate levels should be detected, and

Frontiers in Neurology

those with decreased bicarbonate levels require special care and treatments.

The present study involved a large sample size and found an association between the change in bicarbonate level and the prognosis of patients with acute ischemic stroke. The findings of our study have potential implications for the clinical management of acute ischemic stroke patients. Our findings highlight that the association between bicarbonate levels and the prognosis of patients with acute ischemic stroke may influence clinical decision-making regarding the dose and level of acidosis correction. Sequential monitoring of bicarbonate concentrations may be useful in predicting the prognosis of patients with acute ischemic stroke. In addition, low bicarbonate levels might be associated with a poor prognosis for patients with acute ischemic stroke, which reminds clinicians to be careful with other modifiable factors associated with the prognosis of patients with acute ischemic stroke and provide timely interventions for these patients.

There were several limitations to this study. First, the data were collected from a single-center database, which may limit the generalizability of the results to other populations. Therefore, caution should be exercised when interpreting and applying our findings to other settings. Second, the data on liquid input during the ICU stay, the location and size of the infarction, and stroke etiology were missing or not reported, which might influence the results. Third, the last known well time and the delayed presentation of patients with medical attention were not reported. Fourth, the deep mechanisms underlying the results were not explored. Moreover, the data of the study population were collected from the MIMIC III and MIMIC IV databases and consisted of patients with acute ischemic stroke who were admitted to the ICU. Therefore, caution should be exercised when generalizing our findings to the general population of patients with acute ischemic stroke, as the characteristics of ICUS patients may differ from those of the general population of patients. Finally, blood samples were not obtained at the same time point for all patients, and the difference in the time interval between T0 and T1 may have varied between the patients, which might affect the results. Therefore, further studies are needed to confirm the findings of our study and to determine the optimal timing of bicarbonate level measurements in patients with acute ischemic stroke.

Conclusions

Our study assessed the relationship between the serum bicarbonate levels and their changes with 30-day mortality in patients with acute ischemic stroke. The results indicated that low baseline bicarbonate levels and decreased bicarbonate levels during ICU stay were associated with a high risk of 30-day mortality in acute ischemic stroke. The findings highlighted the importance of detecting bicarbonate levels and monitoring changes in acute ischemic stroke patients. Special interventions should be provided for those with low baseline bicarbonate levels or/and decreased bicarbonate levels.

Data availability statement

Publicly available datasets were analyzed in this study. This data can be found here: MIMIC-III: https://www.physionet.org/ content/mimiciii/1.4/ and MIMIC-IV: https://www.physionet.org/ content/mimiciv/2.2/.

Ethics statement

The studies involving human participants were reviewed and approved by Beth Israel Deaconess Medical Center (Boston, MA) and the Massachusetts Institute of Technology (Cambridge, MA). This study did not require individual patient consent due to the anonymization of the health information.

Author contributions

XH and YZ designed the study, collected, analyzed, and interpreted the data. XH wrote the manuscript. YZ critically reviewed, edited, and approved the manuscript. Both authors read and approved the final version of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur.2023. 1125359/full#supplementary-material

References

1. Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions. *Neurology*. (2021) 97(20 Suppl. 2):S6-16. doi: 10.1212/WNL.00000000012781

2. Feske SK. Ischemic stroke. Am J Med. (2021) 134:1457–64. doi: 10.1016/j.amjmed.2021.07.027

3. Heo NH, Lee MR, Yang KH, Hong OR, Shin JH, Lee BY, et al. Shortand long-term mortality after intravenous thrombolysis for acute ischemic stroke: a propensity score-matched cohort with 5-year follow-up. *Medicine*. (2021) 100:e27652. doi: 10.1097/MD.000000000027652

4. Phipps MS, Cronin CA. Management of acute ischemic stroke. BMJ. (2020) 368:16983. doi: 10.1136/bmj.16983

5. Ho JP. Acute ischemic stroke: emergency department management after the 3-hour window. *Emerg Med Pract.* (2021) 23:1–33.

6. Tuttolomondo A, Daidone M, Pinto A. Endothelial dysfunction and inflammation in ischemic stroke pathogenesis. *Curr Pharm Des.* (2020) 26:4209–19. doi: 10.2174/1381612826666200417154126

7. Kendrick J, Shah P, Andrews E, You Z, Nowak K, Pasch A, et al. Effect of treatment of metabolic acidosis on vascular endothelial function in patients with CKD: a pilot randomized cross-over study. *Clin J Am Soc Nephrol.* (2018) 13:1463–70. doi: 10.2215/CJN.00380118

8. Cheng F, Li Q, Wang J, Wang Z, Zeng F, Zhang Y. The effects of oral sodium bicarbonate on renal function and cardiovascular risk in patients with chronic kidney disease: a systematic review and meta-analysis. *Ther Clin Risk Manag.* (2021) 17:1321–31. doi: 10.2147/TCRM.S344592

9. Caldwell HG, Carr J, Minhas JS, Swenson ER, Ainslie PN. Acid-base balance and cerebrovascular regulation. *J Physiol.* (2021) 599:5337–59. doi: 10.1113/JP281517

10. Martha SR, Fraser JF, Pennypacker KR. Acid-base and electrolyte changes drive early pathology in ischemic stroke. *Neuromolecular Med.* (2019) 21:540–5. doi: 10.1007/s12017-019-08555-5

11. Spears RC, McLouth CJ, Pennypacker KR, Frank JA, Maglinger B, Martha S, et al. Alterations in local peri-infarct blood gases in stroke patients undergoing thrombectomy. *World Neurosurg.* (2022) 158:e317–22. doi: 10.1016/j.wneu.2021.10.171

12. Li XD, Li MM. A novel nomogram to predict mortality in patients with stroke: a survival analysis based on the MIMIC-III clinical database. *BMC Med Inform Decis Mak.* (2022) 22:92. doi: 10.1186/s12911-022-01836-3

13. Kendrick JB, Zelnick L, Chonchol MB, Siscovick D, Hoofnagle AN, Ix JH, et al. Serum bicarbonate is associated with heart failure in the multi-ethnic study of atherosclerosis. *Am J Nephrol.* (2017) 45:118–26. doi: 10.1159/000454783

14. Dobre M, Pajewski NM, Beddhu S, Chonchol M, Hostetter TH, Li P, et al. Serum bicarbonate and cardiovascular events in hypertensive adults: results from the Systolic Blood Pressure Intervention Trial. *Nephrol Dial Transplant.* (2020) 35:1377– 84. doi: 10.1093/ndt/gfz149

15. Semenenko AI, Hrebtiy GI, Semenenko NA, Malyk SL, Dmytriiev DV, Bodnar RY, et al. Evaluation of influence of infusion therapy on the dynamics of acid alkaline balance indices in patients with acute ischemic stroke. *Wiad Lek.* (2018) 71:1316–9.

16. Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care database. *Sci Data.* (2016) 3:160035. doi: 10.1038/sdata.2016.35

17. Hou N, Li M, He L, Xie B, Wang L, Zhang R, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. *J Transl Med.* (2020) 18:462. doi: 10.1186/s12967-020-02620-5

18. Liu T, Zhao Q, Du B. Effects of high-flow oxygen therapy on patients with hypoxemia after extubation and predictors of reintubation: a retrospective study based on the MIMIC-IV database. *BMC Pulm Med.* (2021) 21:160. doi: 10.1186/s12890-021-01526-2

19. Nagami GT, Kraut JA. Regulation of acid-base balance in patients with chronic kidney disease. *Adv Chronic Kidney Dis.* (2022) 29:337–42. doi: 10.1053/j.ackd.2022.05.004

20. Yao H, Azad P, Zhao HW, Wang J, Poulsen O, Freitas BC, et al. The Na(+)/HCO(-) co-transporter is protective during ischemia in astrocytes. *Neuroscience.* (2016) 339:329–37. doi: 10.1016/j.neuroscience.2016.09.050

21. Wigger O, Bloechlinger S, Berger D, Häner J, Zanchin T, Windecker S, et al. Baseline serum bicarbonate levels independently predict short-term mortality in critically ill patients with ischaemic cardiogenic shock. *Eur Heart J Acute Cardiovasc Care.* (2018) 7:45–52. doi: 10.1177/2048872616683526

22. Li Y, Gao R, Zhao B, Zhang Y. Low serum bicarbonate levels increased the risk of all-cause, cardiovascular and cancer Mortality in type 2 diabetes. *J Clin Endocrinol Metab.* (2022) 105:290–304. doi: 10.1210/clinem/dgac504

23. Dobre M, Yang W, Chen J, Drawz P, Hamm LL, Horwitz E, et al. Association of serum bicarbonate with risk of renal and cardiovascular outcomes in CKD: a report from the Chronic Renal Insufficiency Cohort (CRIC) study. *Am J Kidney Dis.* (2013) 62:670–8. doi: 10.1053/j.ajkd.2013.01.017

24. Gunnerson KJ, Saul M, He S, Kellum JA. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. *Crit Care.* (2006) 10:R22. doi: 10.1186/cc3987

25. Masevicius FD, Rubatto Birri PN, Risso Vazquez A, Zechner FE, Motta MF, Valenzuela Espinoza ED, et al. Relationship of at admission lactate, unmeasured anions, and chloride to the outcome of critically ill patients. *Crit Care Med.* (2017) 45:e1233–9. doi: 10.1097/CCM.00000000002730

26. Lim SY, Park Y, Chin HJ, Na KY, Chae DW, Kim S. Short-term and long-term effects of low serum bicarbonate level at admission in hospitalised patients. *Sci Rep.* (2019) 9:2798. doi: 10.1038/s41598-019-38892-1

27. Crimi E, Taccone FS, Infante T, Scolletta S, Crudele V, Napoli C. Effects of intracellular acidosis on endothelial function: an overview. *J Crit Care.* (2012) 27:108–18. doi: 10.1016/j.jcrc.2011.06.001

28. Lemon N, Canepa E, Ilies MA, Fossati S. Carbonic anhydrases as potential targets against neurovascular unit dysfunction in Alzheimer's disease and stroke. *Front Aging Neurosci.* (2021) 13:772278. doi: 10.3389/fnagi.2021.772278

29. Dong L, Li Z, Leffler NR, Asch AS, Chi JT, Yang LV. Acidosis activation of the proton-sensing GPR4 receptor stimulates vascular endothelial cell inflammatory responses revealed by transcriptome analysis. *PLoS ONE.* (2013) 8:e61991. doi: 10.1371/journal.pone.0061991

30. Tuty Kuswardhani RA, Henrina J, Pranata R, Anthonius Lim M, Lawrensia S, Suastika K. Charlson comorbidity index and a composite of poor outcomes in COVID-19 patients: a systematic review and metaanalysis. *Diabetes Metab Syndr.* (2020) 14:2103–9. doi: 10.1016/j.dsx.2020. 10.022