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Aim: The current gold standard for measuring sleep disorders is polysomnography

(PSG), which is manually scored by a sleep technologist. Scoring a PSG

is time-consuming and tedious, with substantial inter-rater variability. A

deep-learning-based sleep analysis software module can perform autoscoring

of PSG. The primary objective of the study is to validate the accuracy and reliability

of the autoscoring software. The secondary objective is to measure workflow

improvements in terms of time and cost via a time motion study.

Methodology: The performance of an automatic PSG scoring software was

benchmarked against the performance of two independent sleep technologists on

PSG data collected from patients with suspected sleep disorders. The technologists

at the hospital clinic and a third-party scoring company scored the PSG records

independently. The scores were then compared between the technologists and the

automatic scoring system. An observational study was also performed where the time

taken for sleep technologists at the hospital clinic tomanually score PSGswas tracked,

along with the time taken by the automatic scoring software to assess for potential

time savings.

Results: Pearson’s correlation between the manually scored apnea–hypopnea index

(AHI) and the automatically scored AHI was 0.962, demonstrating a near-perfect

agreement. The autoscoring system demonstrated similar results in sleep staging. The

agreement between automatic staging and manual scoring was higher in terms of

accuracy and Cohen’s kappa than the agreement between experts. The autoscoring

system took an average of 42.7 s to score each record compared with 4,243 s for

manual scoring. Following a manual review of the auto scores, an average time

savings of 38.6min per PSG was observed, amounting to 0.25 full-time equivalent

(FTE) savings per year.

Conclusion: The findings indicate a potential for a reduction in the burden of manual

scoring of PSGs by sleep technologists and may be of operational significance for

sleep laboratories in the healthcare setting.
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1. Introduction

An estimated 50–70 million people in the US have a sleep

disorder (1). Economic modeling of five OECD countries estimated

the economic loss due to sleep loss to be up to 3% of GDP (2).

Polysomnography (PSG) remains the gold standard for measuring

sleep. The medical procedure involves concurrent measurement of

multiple physiological signals comprising of electroencephalogram

(EEG), electrooculogram (EOG), electromyogram (EMG),

electrocardiogram (ECG), nasal pressure, airflow, thoracic and

abdominal movement, and blood oxygen saturation, among others.

Following data collection, the sleep technologist spends ∼1–2 h

manually scoring the record as per standardized criteria. The most

widely adopted criteria are established by the American Academy of

Sleep Medicine (AASM), which are updated regularly (3–6).

The process of scoring can be broadly divided into two major

tasks: sleep staging and detection of associated respiratory events.

Staging involves the division of the record into 30-s epochs and

assigning one of the five sleep stages (Wake, N1, N2, N3, and

REM) based on patterns in the EEG/EOG/EMG channels. This is

followed by identification of various events across different channels.

This includes identification of oxygen desaturation events, arousals,

apneas, hypopneas, and periodic leg movements. Wherein apneas

can be further categorized into obstructive, mixed, and central, and

arousals can be categorized into spontaneous, respiratory, or limb

movement related. The process is time-consuming and requires

strong expertise and consistent attention for reliable results. Although

the scoring criteria are standardized, the process remains highly

subjective, which introduces significant inter-rater variability (7–11).

A meta-analysis of 11 studies found an average agreement for sleep

staging at Cohen’s kappa of 0.76, indicating substantial agreement

(8). The agreement varied greatly across different sleep stages, with

the lowest average kappa of 0.24 for N1 and the highest kappa of 0.70

for wake. Although inattention and bias play a role in disagreements,

most of the variability in sleep staging is attributed to the fact

that many epochs legitimately do not have a clear classification

(12). With regard to primary respiratory outcomes like the apnea–

hypopnea index (AHI) or oxygen desaturation index (ODI), the

agreement among raters is excellent (9). However, the agreement

across specific respiratory events can be low (9, 11). Specifically,

disagreements between apnea and hypopnea and the types of apneas

are common (11).

Therefore, automatic scoring can play a significant role in

reducing the burden on sleep technologists while simultaneously

reducing variability in scoring. In this study, we benchmark the

performance of an automatic scoring system called Neurobit PSG

(Neurobit Inc., New York, USA). Neurobit PSG uses deep-learning

(DL)-based algorithms to stage sleep and a combination of DL and

rule-based systems to identify respiratory events. By default, it scores

as per the 2012 AASM standard (3) but is flexible to accommodate

popular alternate standards. To establish the viability of such a

system, it is important to compare the level of agreement between

automatic scoring and experts to an agreement between experts. In

addition, productivity gains through the use of the system can also

be established.

2. Materials and methods

2.1. The sleep scoring system—Training
dataset

The sleep scoring system called Neurobit PSG was developed

by Neurobit Inc., New York, NY, USA. The system uses DL-based

architecture to provide sleep staging and detection of associated

respiratory events. The system was trained and tested on private

datasets comprising 12,404 PSG recordings collected at academic

sleep centers in South-East Asia (35%), North America (30%), and

Europe (30%). In all, 59% of the total assessed participants had a

suspected sleep disorder, whereas the remaining 41% of participants

were healthy subjects. The mean age of such aggregated dataset was

42.3 ± 16.8 (mean ± std) years. The training data were scored as

per the 2007 AASM standards or higher. The software is designed

to operate on two EEG channels C3-A2 and C4-A1; two EOG

channels E2-A2 and E1-A2; and a bipolar EMG channel for staging.

Alternate EOG derivations referenced to A1 or a mix of A1 or

A2 are also acceptable by the software. SpO2 channel is used for

desaturation. Airflow, Pressure, Thoracic, and Abdominal channels

are used for the detection of respiratory events. The selection of

input channels was made based on common channels available across

the complete training dataset. As per the AASM standards (5), the

C4-A1 channel and its backup channel C3-A2 are present in both

the recommended and alternate EEG derivations. For EOG channels,

AASM recommends derivations referenced to A2, but derivation

referenced to A1 is also acceptable. The software is designed to

automatically handle electrode fall off, noisy, or missing channels.

2.2. Subjects

Overnight, in-laboratory PSG recordings from adult

patients referred to the clinical sleep laboratory at Changi

General Hospital, Singapore, with suspected organic and

functional sleep disorders were included in the study. The

scoring software was never trained or tested on data from

the sleep laboratory before. The study was approved by the

Singhealth Centralized Institutional Review Board (CIRB

Ref. 2020/2000).

A total of 94 subjects participated in the study. Data from

the first five subjects were used to ensure that the software

was installed and integrated properly at the clinic. These records

were not considered for further analysis. Finally, data from

86 subjects (18 women and 68 men) were included in the

comparative analysis. The set was composed of ∼67.4% Chinese,

20.9% Malay, 9.3% Indians, and 2.3% other races, which is

representative of the Singaporean population. Notably, 31.4% of the

subjects had hypertension, 17.4% had diabetes, 1.2% had chronic

obstructive pulmonary disease, 25.6% had hyperlipidemia, 4.7%

had ischemic heart disease, 10.5% had asthma, and 4.7% had

depression. The mean age of the subjects was 44.0 ± 14.4 (range

14–75) years. Further clinical profiling of patients can be found

in Table 1.
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TABLE 1 Clinical and demographic characteristics of patients in dataset.

Demographic/clinical
characteristics

Mean ± SD
or N (%)

Min Max

Age (years) 44.0± 14.4 14 75

Men 68 (79.1) – –

Race – –

Chinese

Malay

Indian

Others

58 (67.4)

18 (20.9)

8 (9.3)

2 (2.3)

BMI (kg/m2) 30.9± 7.6 18.6 65.4

AHI total (events/h) 35.3± 32.6 0.3 134

REM AHI (events/h) 35.2± 29.5 0 114.8

NREM AHI (events/h) 34.8± 33.7 0.2 135.8

Supine AHI (events/h) 39.8± 33.9 0 134

Non supine AHI (events/h) 21.6± 31.5 0 138.5

ODI (events/h) 28.1± 30.1 0 108.8

% TST SPO2 < 90% 9.8± 19.7 0 87.4

Arousal index (events/h) 29.5± 24.0 4.5 107

2.3. Protocol

Recordings were done on a Compumedics (Melbourne,

Australia) PSG recorder. Recording signals included EEG channels:

C4-A1, C3-A2, F4-A1, F3-A2, O2-A1, and O1-A2; EOG channels:

E2-A2 and E1-A2; EMG channels: bipolar EMG, and Left and Right

Leg EMG channels; and single ECG channel all sampled at 256Hz.

Respiratory channels, namely, Airflow, Pressure, Thoracic, and

Abdominal channels sampled at 32Hz. Arterial oxyhemoglobin

saturation (SpO2) was sampled at 16Hz. The recording montage

was based on recommendations of the AASM (3). The signals were

stored, viewed, and analyzed using the Compumedics Profusion

software version 4.0.

The records were scored manually by a group of trained

Registered Polysomnographic Technologist (RPSGT) at the hospital

as per the 2012 AASM guidelines (3). Each record was scored by

one of the five technologists. For the sake of simplicity, we refer

to the group of technologists as “expert 1.” The scoring was done

visually within the Compumedics Profusion software. Specifically,

for sleep staging, 30-s epochs were assigned one of the five stages

(Wake, N1, N2, N3, REM) based on patterns in the EEG/EOG/chin

EMG channels. Apneas were identified if there was a 90% or more

reduction in airflow for at least 10 s compared with the baseline.

For hypopnea, the criteria were set as a drop in thoracoabdominal

movement or airflow drop of 30% or more compared with baseline

for at least 10 s with at least 3% desaturation or an associated EEG

arousal. Arousals were scored if there was an abrupt shift in EEG

power lasting at least 3 s. The raw PSG data were also exported

to European Data Format (EDF) (13), an open standard for the

exchange of physiological data. The records were anonymized during

export. These exported data were then securely sent to a third-party

independent scoring company MBS Sleep Scoring Services, LLC

(St. Louis, MI, USA) where it was scored by an RPSGT (expert 2).

The technologist used the Philips Sleepware G3 (Philips Respironics,

Inc., PA, USA) software to view and score the data manually as per

the same 2012 AASM standards (3).

For automatic scoring (auto), an on-premise version of Neurobit

PSG was installed at the hospital. This was necessary because the

hospital did not have access to the internet in compliance with local

security guidelines. The exported EDF files were transferred to the

local machine using a secure thumb drive where they were auto-

scored, and the results were generated in a Profusion compatible

XML format. The scores were then transferred back to the Profusion

software for review by the technologists. The local version of

Neurobit PSG was installed in a headlessmode, i.e., there was no user

interface. As soon as EDF files were placed in a designated folder, the

scoring started automatically based on the preconfigured montage,

and the results were generated in the same folder. The only visual

indication provided was an external LED cube that flashed when

scoring was in progress.

2.3.1. Manual review of automatic scores
Automated scoring systems are expected to be used in

conjunction with expert review to achieve high levels of reliability.

Based on the performance and limitations of the automatic system,

a manual review can be optimized to ensure excellent reliability

while minimizing the time required to review. To avoid introducing

systematic bias into the review process, experts from the clinic

(expert 1) were instructed to review the automatic scores thoroughly.

The reviewed scores (review) were then compared with automatic

scores as well as the other expert scores to come up with an optimal

strategy to maximize the throughput of scoring while maintaining

a high degree of scoring accuracy and reliability. The time taken by

expert 1 to manually score as well as to review the automatic scores

was also logged.

2.3.2. Time motion study
Hired research assistants (RAs) were deployed at the sleep

laboratory to observe and track the time spent explicitly by sleep

technologists (expert 1) in order to complete the manual scoring of

sampled PSGs. The RAsmade sure that their presence did not distract

the technologists in their day-to-day activities. RAs were required to

differentiate tasks undertaken by the sleep technologists (expert 1)

according to whether these tasks were related to scoring of PSGs (e.g.,

answering phone calls, going to toilets, and addressing queries by

colleagues). The same set of sampled PSGs was then automatically

scored by the automated scoring system (auto), and the amount of

time spent autoscoring every PSG along with the additional time

spent by the sleep technician to manually review the auto-scored

PSGs were tracked by the RAs.

2.4. Data analysis

2.4.1. Statistical analysis
In the presence of significant variability in scoring between

experts, it is difficult to determine what should be considered the

ground truth. Instead of comparing the automatic scores with a

single expert, it is, therefore, important to compare the automatic

scores with multiple experts and stack them against the agreement

between the experts. Ideally, the agreement between automatic and
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FIGURE 1

Confusion matrix comparing sleep stages between (A) the expert 1 (rows) and expert 2 (columns), (B) expert 1 and automatic staging, (C) expert 1 and

review of the automatic scores by expert 1, (D) expert 2 and automatic staging, and (E) expert 2 and review of the automatic scores by expert 1. The

confusion table is constructed by combining sleep stages across all subjects.

experts should be indistinguishable from an agreement between

experts. In the study, we use accuracy, Cohen’s kappa (κ) and

intra-class correlation coefficient (ICC) to compare scores between

experts and automatic scoring. Accuracy quantifies the agreement
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between two raters, but it has been used as a simple measure of inter-

rater reliability (IRR) (14). Cohen’s kappa and ICC are appropriate

measures of IRR. The IRR between experts provides an upper bound

for the automatic scoring performance.

2.4.2. Sleep staging performance
For comparing sleep stages, an epoch-by-epoch comparison was

carried out between auto, expert 1, and expert 2. This was done

by combining all epochs across all subjects. A confusion matrix

was calculated along with overall accuracy and Cohen’s kappa.

Cohen’s kappa is considered to be a robust measure for IRR as

it accounts for agreement due to random chance (14). The kappa

statistic varies between −1 and 1, with values appaindicating no

agreement and 0.01–0.20 as none to slight agreement, 0.21–0.40 as

fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as

almost perfect agreement. To quantify the stage-specific agreement,

kappa was also computed for each stage across expert–expert and

expert–auto comparisons. A similar comparison was also carried out

between auto and the concordance between the two experts. This was

computed by only considering epochs where both the experts agreed

with each other. To carry out the statistical comparison, subject-

wise accuracy and kappa were also calculated. A one-way repeated-

measures ANOVA was carried out to test if mean agreement between

experts and between expert and auto was statistically different.

In addition to epoch-by-epoch comparison, derived sleep

measurements were also compared between experts and auto.

Specifically, total sleep time (TST), sleep efficiency, and time spent

(both absolute and percentage of TST) in N1, N2, N3, REM, sleep

latency, and REM latency were derived for every subject for each

rater. Agreement between the raters was accessed through ICC (15).

Based on the 95% confidence interval (CI) of the ICC estimate,

values <0.5, between 0.5 and 0.75, between 0.75 and 0.9, and >0.90

are indicative of poor, moderate, good, and excellent reliability,

respectively (15).

2.4.3. Detection of respiratory events
Respiratory events included apneas, hypopneas, arousals, and

oxygen desaturation. Apneas were further subcategorized into

central, mixed, and obstructive apneas. For each subject, the number

of events were counted and compared across raters. Agreement

between the raters was accessed through ICC (15). A comparison was

also carried out between the auto and the average of the two experts.

Indices were calculated by dividing the event count by TST. This

included AHI and ODI. For AHI and ODI, which are the primary

respiratory outcomes, Pearson’s correlation with expert estimates was

also obtained.

2.4.4. Time motion study
Manual scoring of trained experts at the hospital (expert 1) was

compared against automatic scoring coupled with the additional time

taken by the sleep technologists to manually review the automated

scores generated using the software (auto). The paired t-test was

used to assess the time difference between manual and automated

scoring. The time saved with the use of automated scoring was used

to estimate manpower FTE savings with the use of automated sleep

scoring in our healthcare setting.

TABLE 2 Table comparing stage-wise agreement in terms of Cohen’s kappa

between experts and between each expert and automatic scoring.

Wake N1 N2 N3 REM

Expert1

vs. expert

2

0.847 0.399 0.683 0.633 0.824

Expert 1

vs.

automatic

0.862 0.429 0.709 0.790 0.780

Expert2

vs.

automatic

0.843 0.442 0.696 0.600 0.800

Expert vs.

automatic

(mean)

0.853 0.436 0.703 0.695 0.790

The mean agreement between automatic scoring and the two experts are computed in the

final row.

2.4.5. Sample size calculation
The anticipated mean timing for manual scoring of a PSG is

45min (SD= 10) and automated scoring at 40min. Assuming α (type

1 error)= 0.05, β (type 2 error)= 0.9, and a group allocation ratio of

1:1, the sample size required for this analysis would be 168 patients,

with 84 patients in the manual and autoscoring groups each. As both

the manual and autoscoring were performed on the same patient, the

sample size required would be halved at 84 patients.

3. Results

A total of 87,531 epochs (729.4 h) were compared between the

experts and the auto. The confusion matrix is presented in Figure 1.

The overall agreement between the two experts (Figure 1A) was

78.29%, with κ of 0.702 indicating substantial agreement. The overall

agreement between expert 1 and auto (Figure 1B) was 79.59% with

κ 0.726 and between expert 2 and auto (Figure 1D) was 79.59% with

κ 0.713, again indicating substantial agreement. In absolute terms,

the agreement between auto and the experts was higher than between

both the experts for both accuracy and kappa. For individual sleep

stages, the results are summarized in Table 2. The agreement was

highest for wake (κ = 0.847 between experts vs. κ =0.853 between

expert and auto), followed by REM (κ = 0.824 between experts

vs. κ =0.790 between expert and auto), N2 (κ = 0.683 between

experts vs. κ =0.703 between expert and auto), N3 (κ = 0.633

between experts vs. κ =0.695 between expert and auto), and finally

N1 (κ = 0.399 between experts vs. κ =0.436 between expert and

auto). Agreement between auto and the concordance of the two

experts was 89.38%, with κ 0.850 indicating almost perfect agreement

(Figure 2B). Between the two experts, the highest agreement was

obtained for wake and REM sleep, while N3 and N1 sleep showed

the least agreement, respectively (Table 2). A similar trend was also

observed between expert and auto scores.

To statistically compare the staging agreement, subject-wise

accuracy and kappa were plotted (Figure 3). The box plot indicated

a few outliers for which the accuracy and corresponding kappa

were very low. It was also observed that few records had very low

kappa while still having high accuracy. On closer inspection, these

records were dominated by one or two stages, while other stages

were completely missing. In such scenarios, kappa measure can
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FIGURE 2

Confusion matrix comparing sleep stages between (A) the original scores generated by automatic algorithm (rows) and automatic scores obtained after

review (columns), (B) concordance of the two experts and automatic staging (for concordant epochs), and (C) concordance of the two experts and

automatic staging after review (for concordant epochs. The confusion table is constructed by combining sleep stages across all subjects. The red boxes

in (A) indicate the three largest changes made after review. The numbers in red indicate percentage of total changes made during the review.

be low, even when accuracy is high. The average and aggregate

accuracy and kappa are presented in Table 3. The average agreement

between the two experts was 78.08 ± 11.70% with κ of 0.673 ±

0.172. Agreement between expert 1 and expert 2 with auto were

79.38 ± 11.08% with κ 0.695 ± 0.172 and 79.52 ± 9.82%

with κ of 0.680 ± 0.158. Similar to the combined agreements,

subject-wise average accuracy and kappa were higher between auto

and experts as compared with between the experts. However, a

one-way repeated-measures ANOVA did not detect any statistically

significant difference between the experts as compared with between

auto and experts for both accuracy F2170 = 1.471, P = 0.233 and

kappa F2170 = 1.626, P = 0.200.

For derived sleep measures, except for N2%, all other measures

showed good to excellent ICC between the average of the two raters

and auto (Table 4). In fact, except for latency, the agreement between

auto and mean of the two raters was higher than that of agreement

between the two raters. Between the two experts, agreement remained

good to excellent for most measures, except for N1 time (ICC 0.594)

and N2% (ICC 0.607). The overall agreement along with the 95% CI

is presented in Table 4A.

For the primary respiratory outcomes including AHI and ODI,

the agreement was excellent between raters as well as between raters

and auto. For AHI, the ICC between the average of the two raters and

auto was 0.958, indicating a near-perfect agreement. The agreement

between the experts was lower at ICC 0.902, but was still close to

excellent. A similar trend was also observed for ODI (Table 5).

With regard to the individual respiratory events, the agreement

for apneas was good across the board. ICC between the experts was

0.880, while ICC between the average of the two experts and auto was

0.813. When individual apneas were subcategorized, the agreement
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FIGURE 3

Box plot of subject wise (A) accuracy and (B) Cohen’s Kappa comparing staging between experts and automatic scoring. No statistically significant

di�erence was found between expert scores and automatic scores for both accuracy and Cohen’s kappa.

TABLE 3 Table comparing accuracy and Cohen’s kappa between subject wise measures and combined sleep stages.

Accuracy Kappa

Average Combined Average Combined

Expert 1 vs. expert 2 78.08%± 11.70% 78.29% 0.673± 0.172 0.702

Expert 1 vs. automatic 79.38%± 11.08% 79.59% 0.695± 0.172 0.726

Expert 2 vs. automatic 79.52%± 9.82% 79.59% 0.680± 0.158 0.713

Expert 1 vs. review 81.91%± 13.34% 82.20% 0.740± 0.187 0.726

Expert 2 vs. review 78.20%± 11.66% 78.41% 0.671± 0.179 0.703

Mean and standard deviations are shown for subject wise measures.

dropped substantially. Between the experts as well as between auto

and average of the two experts, agreement was good for obstructive

apnea, moderate for mixed apnea, and poor for central apnea. For

hypopneas, agreement between auto and average of the two experts

was poor, although the agreement between experts was good. A

similar result was also observed for arousals. For desaturation events,

the agreement remains excellent for all raters and between auto and

raters. The results are summarized in Table 6A.

For AHI, which is the primary diagnostic criteria for sleep apnea,

a scatter plot was obtained between experts and auto as well as

between the mean of the two experts and auto (Figure 4). Pearson’s

correlation between the average of the two experts and auto was 0.972,

indicating a near-perfect correlation. The correlation between the

experts was also high at 0.929.

3.1. Manual review of automatic scores

The auto scores were thoroughly reviewed by expert 1. Following

the review, the scores were compared with both experts. Since the

review was done by expert 1, it is expected that the agreement of

the reviewed scores would match better with that of expert 1. The

agreement between expert 1 and automatic increased from 79.59 to

82.2% after the review (Figures 1B, C). Interestingly, Cohen’s kappa

remained completely unaffected by the review. Agreement with

expert 2 dropped after the review from 79.59 to 78.41% (Figures 1D,

E). The kappa also reduced from 0.713 to 0.703 following the review.

To evaluate which epochs were affected following the review, the

confusion matrix between the original auto scores and review was

plotted (Figure 2A). A total of 10,160 epochs (11.6% of all epochs)

were changed after the review. The three major changes were 1,901

epochs changed from N2 to N1, 1,634 epochs changed fromWake to

N1, and 1,233 epochs changed from N2 to N3.

The agreement between the concordance of the two experts and

automatic was excellent at 89.38%, with a kappa of 0.850 (Figure 2B).

This only increased marginally after the review (89.81%, kappa 0.857)

(Figure 2C). With regard to derived sleep measures, ICC for REM

latency improved from 0.911 to 0.967 for latency and 0.863 to 0.963

for REM latency (Table 4B).

With regard to primary respiratory outcomes, ICC improved

from 0.958 to 0.962 for AHI but declined for ODI from 0.986 to

0.934 following the review (Table 5B). For the individual respiratory

events, we saw an improvement in ICC across the board, except for

desaturation (Table 6B).

To mitigate any impact of memorization on the review process,

the review process was separated from the scoring process by at

least 6 months. Furthermore, the scoring and review were randomly
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TABLE 4 Intraclass correlation coe�cient (ICC) (A) of various derived sleep measures compared against each pair of scorers, (B) between experts and

average of the experts and automatic scores after review.

A.

Measurement Expert 1 vs. expert 2 Average vs. automatic Expert 1 vs. automatic Expert 2 vs. automatic

TST 0.873 (0.810± 0.920) 0.945 (0.920 ± 0.960) 0.904 (0.860± 0.940) 0.927 (0.890± 0.950)

Efficiency 0.844 (0.770± 0.900) 0.935 (0.900 ± 0.960) 0.879 (0.820± 0.920) 0.920 (0.880± 0.950)

N1 time 0.594 (0.440± 0.710) 0.827 (0.750 ± 0.880) 0.687 (0.560± 0.780) 0.796(0.700± 0.860)

N2 time 0.806 (0.720± 0.870) 0.829 (0.750 ± 0.880) 0.764 (0.660± 0.840) 0.806 (0.720± 0.870)

N3 time 0.756 (0.650± 0.830) 0.857 (0.790 ± 0.900) 0.855 (0.790± 0.900) 0.766 (0.660± 0.840)

REM time 0.793 (0.700± 0.860) 0.873 (0.810 ± 0.920) 0.775 (0.670± 0.850) 0.883 (0.830± 0.920)

N1% 0.753 (0.640± 0.830) 0.896 (0.840 ± 0.930) 0.807 (0.720± 0.870) 0.872 (0.810± 0.910)

N2% 0.607 (0.450± 0.730) 0.713 (0.590 ± 0.800) 0.539 (0.370± 0.670) 0.732(0.620± 0.820)

N3% 0.763 (0.660± 0.840) 0.837 (0.760 ± 0.890) 0.837 (0.760± 0.890) 0.746 (0.640± 0.830)

REM% 0.782 (0.680± 0.850) 0.829 (0.750 ± 0.890) 0.700 (0.570± 0.790) 0.869 (0.810± 0.910)

Latency 0.972 (0.960 ± 0.980) 0.911 (0.870± 0.940) 0.920 (0.880± 0.950) 0.889 (0.830± 0.930)

REM latency 0.963 (0.940 ± 0.980) 0.863 (0.800± 0.910) 0.867 (0.800± 0.910) 0.843 (0.770± 0.900)

B.

Measurement Expert 1 vs. expert 2 Average vs. review

TST 0.873 (0.810± 0.920) 0.951 (0.930 ± 0.970)

Efficiency 0.844 (0.770± 0.900) 0.940 (0.910 ± 0.960)

N1 time 0.594 (0.440± 0.710) 0.831 (0.750 ± 0.890)

N2 time 0.806 (0.720± 0.870) 0.853 (0.780 ± 0.900)

N3 time 0.756 (0.650± 0.830) 0.826 (0.740 ± 0.880)

REM time 0.793 (0.700± 0.860) 0.902 (0.850 ± 0.930)

N1% 0.753 (0.640± 0.830) 0.886 (0.830 ± 0.920)

N2% 0.607 (0.450± 0.730) 0.703 (0.580 ± 0.800)

N3% 0.763 (0.660± 0.840) 0.815 (0.730 ± 0.880)

REM% 0.782 (0.680± 0.850) 0.878 (0.820 ± 0.920)

Latency 0.972 (0.960 ± 0.980) 0.967 (0.950± 0.980)

REM latency 0.963 (0.940± 0.980) 0.963 (0.940± 0.980)

Numbers in brackets indicate 95% confidence interval. When comparing ICC between (A) experts and automatic vs. average and (B) the experts and automatic against the average after review, bold

figures indicate better performance.

assigned to a given technologist based on operational constraints.

This further reduces the chances that the same technician scores and

reviews the same record.

3.2. Time motion study and productivity
gains

Manual scoring by expert 1 took an average of 4,243 s (70.7min).

Automatic scoring took an average of 42.7 s per record. The

time taken for autoscoring coupled with a thorough review of

the scores by expert 1 took an average of 1,929 s (32.1min),

representing average time savings of 2,314 s (38.6min) per patient

PSG report generated (p < 0.001). With an estimated saving

of 38.6min per patient PSG report, total savings amounts to

28,950min per year (482.5 h) or a total of 0.25 FTE savings

per year based on an estimated load of 750 patients per year

requiring sleep disorder-related investigations at an acute care

institution in Singapore and FTE of one nurse being equivalent

to 1,940.4 h per annum. This is equivalent to 0.33 FTE per

1,000 patients-year.

4. Discussion

The AASM in a recent position statement stated that PSG is

well-suited for analysis using AI and has the potential to improve

sleep laboratory efficiency and yield greater clinical insights (16).

The position statement comes in light of recent advances in machine

learning (ML) algorithms, specifically DL-based algorithms that have

demonstrated phenomenal performance improvements across the

spectrum of applications (17). DL algorithms train models directly

from data without relying on hand-engineered features or rules (18).
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TABLE 5 Intraclass correlation coe�cient (ICC) of (A) important respiratory indices compared against each pair of scorers, (B) automatic scores before and

after review as compared with average of the two experts.

A.

Expert 1 vs. expert 2 Average vs. automatic Expert 1 vs. automatic Expert 2 vs. automatic

AHI 0.902 (0.850± 0.930) 0.958 (0.940 ± 0.970) 0.972 (0.960± 0.980) 0.891 (0.840± 0.930)

ODI 0.870 (0.810± 0.910) 0.986 (0.980 ± 0.990) 0.957 (0.930± 0.970) 0.948 (0.920± 0.970)

B.

Average vs. automatic Average vs. review

AHI 0.958 (0.940± 0.970) 0.962 (0.940 ± 0.980)

ODI 0.986 (0.980 ± 0.990) 0.934 (0.900± 0.960)

Numbers in brackets indicate 95% confidence interval. When comparing ICC between (A) experts and automatic vs. average, and (B) automatic against the average, before and after review, bold

figures indicate better performance.

TABLE 6 Intraclass correlation coe�cient (ICC) of (A) various respiratory counts compared against each pair of scorers, (B) automatic scores before and after

review as compared with average of the two experts.

A.

Expert 1 vs. expert 2 Average vs. automatic Expert 1 vs. automatic Expert 2 vs. automatic

Apneas 0.880 (0.820 ± 0.920) 0.813 (0.730± 0.870) 0.743 (0.630± 0.820) 0.767 (0.660± 0.840)

Central apneas 0.453 (0.270 ± 0.610) 0.390 (0.200± 0.560) 0.522 (0.350± 0.660) 0.496 (0.320± 0.640)

Obstructive apneas 0.780 (0.680 ± 0.850) 0.753 (0.640± 0.830) 0.689 (0.560± 0.790) 0.720 (0.600±0.810)

Mixed apneas 0.812 (0.730 ± 0.870) 0.637 (0.490± 0.750) 0.663 (0.530± 0.770) 0.658 (0.520± 0.760)

Hypopneas 0.846 (0.770 ± 0.900) 0.307 (0.100± 0.490) 0.332 (0.130± 0.510) 0.665 (0.530±0.770)

Arousals 0.778 (0.680 ± 0.850) 0.458 (0.270± 0.610) 0.314 (0.110± 0.490) 0.742 (0.630± 0.820)

Desaturations 0.987 (0.980± 0.990) 0.996 (0.990 ± 1.000) 0.993 (0.990±1.000) 0.970 (0.950± 0.980)

B.

Average vs. automatic Average vs. review

Apneas 0.813 (0.730±0.870) 0.833 (0.750 ± 0.890)

Central apneas 0.390 (0.200± 0.560) 0.655 (0.520 ± 0.760)

Obstructive apneas 0.753 (0.640±0.830) 0.823 (0.740 ± 0.880)

Mixed apneas 0.637 (0.490± 0.750) 0.667 (0.530 ± 0.770)

Hypopneas 0.307 (0.100± 0.490) 0.622 (0.470 ± 0.740)

Arousals 0.458 (0.270±0.610) 0.889 (0.830 ± 0.930)

Desaturations 0.996 (0.990 ± 1.000) 0.976 (0.960± 0.980)

Numbers in brackets indicate 95% confidence interval. When comparing ICC between (A) experts and automatic vs. average and (B) automatic against the average, before and after review, bold

figures indicate better performance.

As per the AASM, the goal of AI should be to augment expert

evaluation of sleep data. While accuracy and reliability are important

considerations for such an AI, there are other considerations that

are equally important, including logistical, security, ethical, and legal.

Commercial systems must address all these considerations before

they are allowed to be marketed by the regulators. It is not surprising

that despite the strong interest in AI-based sleep scoring within the

academic field (19, 20), only a handful of commercial AI scoring

solution exists in the market that fully exploits these recent advances

in AI. It is, therefore, important to benchmark the performance of

such commercial systems as they potentially have a huge impact on

clinical practice.

In the present study, we benchmarked the performance of an

automatic sleep scoring system called Neurobit PSG on patients

referred to a sleep lab with a suspected sleep disorder. The software

is trained on large and highly diverse PSG datasets with a good

mix of healthy and patient population. To establish a baseline for

the scoring, we scored the records independently by two different

sets of scorers. Expert 1 was a set of expert sleep technologists at

the sleep lab, while expert 2 was a single RPSGT at a commercial

scoring company. To avoid any systematic bias in the training of the

experts, we ensured that the two sets of experts were geographically

isolated. We demonstrated a high degree of concordance between the

automatic system and expert scorers. With regard to sleep staging,

at an epoch-by-epoch level, the agreement between automatic and

experts was consistently higher than the agreement between the two

experts. However, no statistically significant difference was observed

between expert and manual scoring. With regard to key derived
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FIGURE 4

Scatter plot of subject wise apnea-hypopnea index (AHI) estimated between (A) the two experts, (B) automatic and expert 1, (C) automatic staging and

expert 2, (D) automatic staging and average of both experts, and (E) automatic staging after review and average of the two experts. AHI is computed by

counting the number of apneas and hypopneas and dividing it by the total sleep time. ρ indicates Pearson’s correlation.

sleep measurements, including TST, sleep efficiency, time spent in

various sleep stages, WASO, and latency, the agreement between

auto and the experts was excellent. For most measures, there was a

higher agreement between auto and the experts than between the two

experts. There was excellent agreement between auto and the experts

for primary respiratory indices, including AHI and ODI. However,

agreement for individual respiratory events can improve.

A thorough review of the scores (including sleep stages and

respiratory events) was carried out by expert 1. It was observed

that a thorough review of staging introduced bias into the

scores and had a negligible or negative impact on agreement. A

similar trend was observed for oxygen desaturation events. For

the primary respiratory outcome, agreement for AHI improved

while that for ODI reduced. For individual respiratory events,

Frontiers inNeurology 10 frontiersin.org

https://doi.org/10.3389/fneur.2023.1123935
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Choo et al. 10.3389/fneur.2023.1123935

we observed significant improvement in agreement following the

review. Based on these observations, an optimal review strategy

is proposed.

In the following sections, we discuss these results in greater detail.

4.1. Sleep staging performance

The overall agreement between the two experts was 78.29%, with

κ = 0.702 when epochs across all subjects were combined. This is

in line with the previously reported IRR for subjects with suspected

sleep disorders. In a study comparing IRR between experienced

scorers from eight European sleep laboratories within a large sample

of patients with various sleep disorders (7), the overall level of

agreement was found to be 76.8%, with κ = 0.682. The authors

observed that the IRR varied significantly across different disease

conditions. For individual sleep stages, the highest agreement was

for REM, followed by wake, N3, N2, and N1. The study relied on an

outdated standard for sleep scoring rules published by Rechtschaffen

and Kales (21). The R&K standard has significant limitations (22) and

has been superseded by the modern AASM standards. A more recent

study (9) was carried out involving experts from nine center members

of the Sleep Apnea Genetics International Consortium (SAGIC) to

establish IRR across international sleep centers. The scoring was

done on 15 previously recorded PSGs as per the AASM guidelines.

The overall agreement across all epochs was found to be κ = 0.63

(95% CI 0.62–0.63), indicating substantial agreement. Agreement for

REM and wake was similar (κ = 0.78), followed by N3 (κ = 0.67),

N2 (κ = 0.6), and finally N1 (κ = 0.31). In another study, inter-

lab reliability between US and Chinese sleep centers was accessed.

Five doctors from China and two doctors from the USA scored

40 overnight PSG records as per the AASM standard. The overall

agreement was observed at κ =0.75. Agreement was highest for

REM and wake and lowest for N1. To quantify and improve IRR,

the AASM started an inter-scorer reliability program (11). A small

dataset comprising 9 record fragments (1,800 epochs) was scored by

more than 2,500 scorers, most with 3 or more years of experience.

The overall agreement across all epochs and scorers was 82.6%. Again,

agreement was highest for REM (90.5%), followed very closely by N2

and wake (85.2 and 84.1%, respectively). Agreement was lower for

N3 (67.4%) and lowest for N1 (63%). Unfortunately, Cohen’s kappa

statistic was not provided in the study.

The IRR between the independent experts provided us with a

benchmark to compare against for automatic staging. We observed

that the staging performance of the automatic system was similar

to that of experts and consistent with prior findings. A stage-wise

comparison was also consistent with prior observations, with the

highest agreement being for wake, followed by REM, N2, N3, and

N1. Both subject level and combined agreement were higher between

auto and the expert as compared with between the experts. This

was also reflected in the derived measures like TST, WASO, and

time spent in individual stages. This is not surprising as most

of the derived measures are directly linked to epoch-by-epoch

accuracy. The only derived measure where experts had a better

agreement compared with between expert and auto was latency.

This is interesting as a single incorrectly identified sleep epoch can

widely affect latency measurement, even if, at a statistical level,

epoch-by-epoch staging accuracy of an automatic system might be

indistinguishable from experts. ICC for auto vs. experts was good

to excellent (ICC 0.945 for TST and ICC 0.863 for REM latency),

there is value in the expert spending some time cross-checking

the first sleep and REM stages detected by the autoscoring system.

The AASM inter-scorer reliability program also observed that one

of the epochs of highest disagreement was REM after N2 (10).

We discuss data-driven recommendations for expert review in a

later section.

4.2. Scoring of respiratory events

The IRR for detecting respiratory events is not as extensively

studied as IRR for sleep staging. For respiratory events, the exact

location and duration of the events are of less value. Instead, clinical

outcomes are associated with the count of such events, sometimes

normalized by the TST in the form of indices. Therefore, IRR for

respiratory events is evaluated by comparing the event counts/indices

across scorers. The AHI and ODI are two such primary outcome

measures of sleep-disordered breathing. ICC is usually the metric

used to quantify reliability.

IRR for respiratory events is strongly dependent on the rules and

specifications. For instance, IRR across three sleep technologists at

one centralized scoring center was excellent when the respiratory

events were associated with a desaturation event, rather than the

presence of an associated EEG arousal (23). This is not surprising

as IRR for EEG arousals is usually low to moderate (9, 24, 25).

Despite this, the AASM introduced a major change in the definition

of hypopnea in 2012. Compared to the 2007 standard (6) where

hypopneas were associated with a≥ 4% drop in oxygen desaturation,

the 2012 standard (3) required the presence of ≥ 3% drop in oxygen

desaturation and/or an associated EEG arousal. It was observed that

the 2012 standard almost always resulted in a higher number of

hypopnea events (26). Despite a potential reduction in IRR, the 2012

definition is clinically more relevant (27). Therefore, in the present

analysis, we scored the studies based on the updated 2012 definition

of hypopnea.

Prior work has shown IRR to be excellent for primary respiratory

outcomes, even though agreement can vary widely for individual

respiratory events. Within the SAGIC study, Magalang et al. tried to

assess the respiratory IRR in addition to staging agreements among

the international sleep centers. For AHI, they observed an ICC of 0.95

(95% CI: 0.91–0.98) and for ODI, ICC was 0.97 (95% CI 0.93–0.99),

indicating excellent agreement across raters. For individual events,

the ICC was lower. ICC was 0.73 (95% CI 0.55–0.88) for total apneas

and 0.80 (95% CI 0.65–0.91) for total hypopneas. Subcategorizing

apneas further reduced the agreements: 0.70 for obstructive, 0.46 for

central, and 0.42 formixed. In another study, 28 determined the inter-

site agreement in respiratory events. They scored a set of 70 records

by 10 technologists from five different sleep centers, using three

different hypopnea criteria described in the 2007 AASM standards.

For AHI, the across-site ICC was excellent at 0.984 (95% CI 0.977–

0.990). Across-site ICC for obstructive apnea was 0.861 (95% CI

0.837–0.881) and for central apnea was 0.683 (95% CI 0.640–0.722).

For hypopneas, as per the 2007 recommended definitions, the inter-

site ICC was 0.843 (95% CI 0.820–0.870). It must be noted that both

studies used the conservative definition of hypopnea and oxygen

desaturation in the 2007 recommendations. In addition, the second
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study marked mixed apneas as obstructive (28). Therefore, their

results might be inflated compared with scoring using the 2012 rules.

The AASM inter-scorer reliability program also explored

respiratory events (11). The sample included 15 monthly records

with 200 epochs each. These were scored by over 3,500 scorers.

Instead of identifying the location and count of the events, the scorers

had to identify if a particular event happened in a shown epoch.

Therefore, although the outcome gave an indication of agreement,

it is not directly translatable to the actual detection of respiratory

events which relies on the count of such events. Nonetheless, within

this framework, the correct event type was designated as the majority

score and the percentage agreement was used as a proxy for IRR.

Overall, 3,000 epochs were included in the analysis, of which 364

(12%) were scored to have a respiratory event by the majority. Out of

364, 172 were hypopnea, 150 were obstructive apnea, 41 were central

apnea, and only 1 was mixed apnea. For hypopnea, agreement was

65.4%, obstructive apnea was 77.1%, central was 52.4%, and mixed

apnea was 39.8%. The overall agreement for detecting any respiratory

event was 88.4%. In other words, while the overall agreement was very

good, disagreements in scoring apnea vs. hypopnea and type of apnea

were common.

In this study, we observed excellent agreement between automatic

and expert scores for both AHI and ODI (ICC 0.958 and 0.986,

respectively). In both the key measures, agreement between auto

and the experts was higher than agreement between the two experts.

Pearson’s correlation between average of the two experts and auto

was near-perfect, with ρ = 0.962. The IRR dropped for individual

respiratory events both between the experts and between expert and

auto. For all apneas, obstructive apneas, and oxygen desaturation

events, the agreement between auto and the experts was close to

between the experts. For central apneas, mixed apneas, hypopneas,

and arousal, auto appeared to perform much worse than expert

scorers. Even though the overall performance of auto for primary

measures was excellent, the performance on these specific respiratory

events can be improved further. Expert review of these events might

play a significant role in improving these aspects.

4.3. Augmenting the sleep technologist

The primary goal of AI-based automatic scoring system is to

empower sleep technologists by augmenting their capabilities. To

achieve the highest levels of accuracy, reliability, and consistency, the

experts must work in concert with AI. To fulfill this, it is important

to understand the limitations of both manual and automatic scoring.

Therefore, we carried out a thorough review of the scores by the

experts at the clinic (expert 1). We did not optimize the review at this

stage as the limitations of the auto scores were not known a priori and

doing so would introduce bias into the process. Once the limitations

were well understood, we proposed a data-driven approach to review

the scores optimally.

Another reason why expert supervision is important is because

AI-based systems can fail in ways that are counter-intuitive to

humans. Under specific edge cases, AI can make mistakes that an

expert would never make. For instance, on one occasion (outside

the scope of the current study), due to an incorrect export of the

PSG record, the data were incorrectly encoded in microvolts when in

reality it was in volts. An error like this would be easily caught by the

expert, although the AI failed to recognize it. Although the system

was updated to handle such errors in the future, it is impossible to

account for other such unforeseen edge cases.

4.4. Impact of a thorough review on staging

We already demonstrated that epoch-by-epoch staging was

indistinguishable from experts. The only area where there is a scope

to improve is latency. Following the thorough review, we observed

that the majority of changes made by the experts was from N2 to N1,

Wake to N1, and N2 to N3. These three changes accounted for nearly

half of all the changes. This is in line with prior findings (10), where

most of the confusion occurs betweenWake, N2, andN1. The authors

found that disagreement with stage N3 is almost entirely based on

confusion with N2. Interestingly after review, the agreement with

expert 1 did not change in terms of kappa, although there was an

increase in accuracy from 79.59 to 82.2%. The agreement with expert

2 actually dropped from 79.59 to 78.41%. For the concordant epochs

where both experts agree, it appears that the review had minimal

to no effect (Figures 2B, C). Most epochs affected by the review

probably did not have a clear classification. In a study analyzing

inter-scorer variability (12), the authors observed that most of the

variability is largely due to epochs that are difficult to classify and

may not have a clear classification. This would explain why agreement

following the review did not improve. As the automatic scores

were already indistinguishable from the experts, the thorough review

simply introduced a bias toward expert 1 while reducing agreement

with expert 2.

While looking at derived sleep measures, agreement of automatic

with expert was already better than between the experts for most

measures, except for latency. Following review, we observed an

increase in agreement for the latency measures. Therefore, we

recommend a quick scan of the automatic scores with a focus on the

first sleep and REM stages following wake as a strategy to optimally

review sleep stages.

4.5. Impact of a thorough review on
respiratory events

For respiratory events, automatic measurement of primary

outcomes shows excellent agreement with experts, but there is

significant scope for improvement for individual respiratory events.

This is evident from the significant improvement in agreement for

most respiratory events following the review. The only event that was

negatively affected by the review was desaturation. ICC agreement for

oxygen desaturation events is already almost perfect for automatic

scoring. Therefore, our recommendation is to do a thorough review

of respiratory events with a specific focus on arousals and apnea

subtypes, while ignoring desaturation events.

Despite an additional review of sleep scoring manually by expert

1 after completion of a first round of autoscoring, the average

scoring time was reduced from 71 to 32min. With the proposed

optimal review strategy, we expect the scoring time to further reduce

to ∼15min. We expect the automatic scoring system to have a

significant impact on the economics and throughput of a sleep lab.

A detailed analysis will be conducted and will be reported elsewhere.
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4.6. Time motion study findings and impact
on productivity

To the best of our knowledge, this is the first study to report

potential productivity gains with the use of an automated software

assessing PSG reports from patients with suspected sleep disorders.

As highlighted earlier, with an estimated saving of 38.6min per

patient PSG report, this amounts to a total of 0.25 FTE savings per

year based on an estimated load of 750 patients per year, assuming

no improvements to the software over time and a stagnant patient

workload. A further increase in productivity gains could be realized

through improvements in software capability and accuracy, which

would allow the sleep technologists to make fewer amendments

during their manual checks on the automated PSG scorings, as

well as a potential increase in patient workload due to the increase

in suspected sleep disorders in the population. In the absence

of any manual review, automatic scoring took only 42.7 s on

average compared to 4,243 s for manual scoring, representing a

99.0% reduction in scoring time. With the rapid advancement in

ML and increasing trust in AI systems, scoring might become an

instantaneous or even a real-time process in the future.

5. Comparison with other commercial
autoscoring systems

Most PSG data acquisition software includes some form of

autoscoring system. Unfortunately, the performance of these systems

has been less than satisfactory. These systems are mostly used

to automatically identify oxygen desaturation events and leg

movements. Most existing sleep-scoring solutions are based on rules

or hand-engineered features and do not exploit recent advances

in DL. DL-based algorithms in general perform better than rules

or feature-based methods and generalize well beyond the training

dataset. This is especially true when sufficiently large training datasets

are available. To the best of our knowledge, EnsoSleep (Ensodata, WI,

USA) is the only commercial solution cleared by the FDA that utilizes

modern AI technologies. The most recent scoring performance of

EnsoSleep is published in an abstract (29). The validation was carried

out on 100 adult patients. The PSG records were scored by three

RPSGTs and a 2/3 consensus was used as the ground truth. The

automatic scoring showed very good agreement with the consensus

scores. For respiratory events, a 30-s epoch was marked to contain

an event if 2/3 of the experts agreed on the presence of it within the

epoch. This was an unusual way of comparing respiratory scoring

performance. Nonetheless, they demonstrated good performance

for standard AHI thresholds. Commercial solutions that are well

validated include Philips Somnolyzer (Philips Respironics, PA, USA),

Morpheus 1 (WideMed, IL, USA), and Michele (Cerebra Health Inc.,

Winnipeg, Manitoba, Canada).

The most up-to-date validation (30) of the Philips Somnolyzer

system was carried out on 97 records and scored by certified

technologists from four sleep laboratories. The average correlation

between expert-reviewed Somnolyzer scored AHI and experts was

0.930. For the hypopnea index, the pair-wise correlation varied

between 0.570 and 0.940; for the central apnea index, the pair-wise

correlation varied between 0.800 and 0.920; and for the obstructive

apnea index, the pair-wise correlation varied between 0.790 and

0.880. For sleep staging, pair-wise ICC between expert reviewed

Somnolyzer and the four experts varied between 0.30 and 0.60 for

N1, 0.03 and 0.26 for N2, 0.10 and 0.24 for N3, 0.89 and 0.94 for REM,

and 0.17 and 0.82 for the arousal index. Except for REM, differences

were observed between automated and experts for the percentage of

sleep in N1, N2, N3, and arousal index. Most metrics provided in the

study were already reviewed by experts, and the scoring was carried

out usingmore conservative 2007 AASM standards, whichmight also

inflate agreement.

Validation for Michele’s scoring system was carried out on 70

records (24) and scored by ten experts from five different sleep labs.

The ICC agreement was 0.96 for AHI, 0.63 for central apnea, and 0.94

for obstructive apnea. For arousals, ICC was 0.39 for REM arousals

and 0.83 for NREM arousals. ICC agreement for TST was 0.87, time

in N1 was 0.56, time in N2 was 0.84, time in N3 was 0.47, time in

REM was 0.64, sleep efficiency was 0.74, and REM latency was 0.55.

An epoch-by-epoch agreement was not presented. An important

limitation of the study was that a majority of the participants were

healthy. The authors countedmixed apnea as obstructive. In addition,

the records were scored as per the 2007 AASM standards, which

could again inflate the agreement.

Morpheus 1 is the oldest of the three systems. The validation

was carried out on 31 diagnostic PSG records and scored by two

experts (25). Agreement between the two experts and Morpheus 1

was 77.7% with κ = 0.67 and 73.3% with κ = 0.61, while agreement

between the two experts was 82.1% with κ = 0.73. The ICC for

Morpheus 1 and expert 1 and expert 2 was 0.72 and 0.58, respectively,

for the arousal index and 0.95 for both the experts for the respiratory

disturbance index. The performance of Morpheus 1 was not on par

with the experts.

Notwithstanding the fact that a direct comparison between

Neurobit PSG with these systems is not possible given the

datasets and the raters were different, Neurobit PSG consistently

performed better across all measures for sleep staging despite

scoring according to the more stringent 2012 AASM rules. Notably,

for most key sleep and respiratory measurements, the agreement

between auto and the experts was higher than that between the

two experts.

6. Strengths and limitations

Some of the key strengths of the study are the relatively

large and representative dataset, which was scored by trained

sleep technologists independently. The two experts were from

completely different continents to remove any potential training bias.

The scoring was conducted in compliance with the latest AASM

guidelines, which are more demanding as compared with previous

standards. We provided an epoch-by-epoch comparison for staging

including accuracy and kappa measures at both an aggregate and

subject level. For respiratory events, we used a two-way random-

effects model based on a single rater for absolute agreement to

ensure the generalizability of our results beyond the raters involved

in the study. The dataset used for benchmarking was completely

independent of any training or testing data used in the development

of the AI algorithm. This is important, as training, testing, and

validating AI algorithms on the same dataset can introduce bias and

significantly inflate the results. The study also provides productivity

gain estimates through a thorough assessment using a time motion

study. Despite all the strengths, the study has some limitations.
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There are only two sets of raters to estimate the baseline agreements.

A larger number of raters could help make better IRR estimates

for events that are less frequent, like mixed and central apnea

and measures where agreements are known to be low between the

experts like arousals and N1 duration. Another limitation of the

study is that the scoring solution cannot be directly compared with

existing commercial solutions. The AASM is currently working on a

new platform to evaluate the performance of AI scoring packages.

This is an excellent way to transparently evaluate commercial

software solutions.

7. Conclusion

We benchmarked the performance of a new commercial

sleep-scoring solution on a representative sample of patients

with suspected sleep disorders. We demonstrated performance

indistinguishable from experts in terms of staging and primary

respiratory outcomes. Based on the review of the automatic scores

by the experts, we observed the marginal utility of a thorough

review of the staging. Although an extensive review of arousals,

hypopnea, and apnea subtypes will improve scoring performance.

We expect a significant benefit of AI-augmented sleep scoring in

improving lab efficiency and scoring standardization, as well as

potentially improving work productivity for sleep technologists in the

healthcare setting.
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