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Throughout our adult lives there is a decline in peripheral hearing, auditory 
processing and elements of cognition that support listening ability. Audiometry 
provides no information about the status of auditory processing and cognition, 
and older adults often struggle with complex listening situations, such as 
speech in noise perception, even if their peripheral hearing appears normal. 
Hearing aids can address some aspects of peripheral hearing impairment and 
improve signal-to-noise ratios. However, they cannot directly enhance central 
processes and may introduce distortion to sound that might act to undermine 
listening ability. This review paper highlights the need to consider the distortion 
introduced by hearing aids, specifically when considering normally-ageing 
older adults. We  focus on patients with age-related hearing loss because 
they represent the vast majority of the population attending audiology 
clinics. We  believe that it is important to recognize that the combination of 
peripheral and central, auditory and cognitive decline make older adults some 
of the most complex patients seen in audiology services, so they should not 
be  treated as “standard” despite the high prevalence of age-related hearing 
loss. We argue that a primary concern should be to avoid hearing aid settings 
that introduce distortion to speech envelope cues, which is not a new concept. 
The primary cause of distortion is the speed and range of change to hearing 
aid amplification (i.e., compression). We argue that slow-acting compression 
should be  considered as a default for some users and that other advanced 
features should be reconsidered as they may also introduce distortion that some 
users may not be able to tolerate. We discuss how this can be incorporated into 
a pragmatic approach to hearing aid fitting that does not require increased 
loading on audiology services.
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1. Introduction

In this review paper, we  highlight the importance of 
recognizing the effects of normal ageing on hearing aid fitting 
because it has a considerable impact on an individual’s 
understanding of speech and ability to benefit from hearing aids. 
Auditory processing and cognition decline throughout early, 
middle and late adult life and undermine our ability to hear in all 
types of listening situations. “Normal ageing” refers to 
non-pathological changes in cognition and auditory ability with 
age (1). We do not discuss pathological changes with age such as 
mild cognitive impairment or dementia. Whilst considerable 
research efforts continue to be  deployed to understand the 
association between hearing loss and dementia, we believe it is 
particularly important to address normally-ageing older adults 
because they represent the vast majority of patients attending 
audiology clinics. In the UK National Health Service (NHS), older 
adults (over 55 years of age) represent 78% of adult audiology 
attendances and 87% of those fitted with hearing aids (2); and 
reported hearing problems appear more strongly associated with 
age than the degree of peripheral hearing loss, which suggests that 
processes other than peripheral hearing play a role (2, 3). For the 
purposes of this review we define “peripheral” changes as those 
restricted to the outer, middle and inner ear and auditory nerve. 
We define “central” changes as those within the central auditory 
nervous system, from the level of the cochlear nucleus up to the 
cortex, which includes elements of cognition. The aim of this 
review is to determine the relevant factors in auditory processing 
and cognition that might have implications for the way in which 
we  set hearing aids, and to define the best approach to setting 
hearing aids for normally-ageing older adults based on the 
evidence in the literature. Whilst we do not discuss the relationship 
between hearing and dementia, it is likely that any 
recommendations regarding setting hearing aids for those with 
reduced degrees of cognition due to normal ageing will 
be  particularly applicable to those with pathological 
cognitive decline.

We first provide a brief review of age-related change to central 
auditory processing and how this alters dependence on different 
elements of speech (Section 2). We then offer a short review of the 
basic concepts of cognitive change with age (Section 3), and how a 
decline in some elements of cognition also alters speech perception, 
particularly undermining listening in more challenging circumstances 
(Section 4). This understanding then enables us to determine how 
hearing aid parameters and fitting procedures might affect older 
adults’ listening ability. In Section 5, we derive a set of evidence-based 
principles for fitting hearing aids to older adults, and assess specific 
hearing aid parameters against these principles. We review evidence 
for an association between some elements of cognition and the benefit, 
or increased impairment, that may be caused by hearing aid processing 
strategies. We  particularly focus on evidence that addresses the 
benefit, or harm, caused by fast or slow-acting compression speeds for 
those with different degrees of cognition. We  also assess why the 
evidence may not always appear consistent. We then offer a discussion 
of how one might determine practical fitting guidelines for 
audiologists who predominantly see older adults in clinic (Section 6). 
Finally, we discuss gaps in the current evidence-base and what further 
research might be needed (Section 7).

2. The effects of ageing on auditory 
processing

The central auditory nervous system (referred to simply as the 
“auditory system” in subsequent text) is a uniquely complex sensory 
network, engaging peripheral sensory organs, multiple processing 
layers in the brainstem, the auditory cortex and wider cortex, 
culminating in conscious perception and understanding, as well as 
extensive “top-down” control. The processing of different aspects of 
speech is distributed across the auditory system. For example, some 
neurons are tuned to overall amplitude modulation from lower to 
higher levels of the system (4) and others are phase-locked to 
periodic patterns in the acoustic detail of speech (5, 6). Segregating 
and grouping sounds depends on multiple binaural processes from 
the cochlear nucleus up to the cortex, dependent on effective neural 
synchrony (7). Multiple pathways in the cortex, largely between 
temporal and frontal lobes, support a hierarchical process of word 
recognition, integration into phrases and sentences, syntax 
(grammar) and semantics (meaning) (8–10). Higher-level processes 
also depend on the relevance of sounds and lower-level processes 
can be  enhanced via top-down control, enabling selective 
processing (11).

Age-related changes to the underlying neural infrastructure cause 
progressive “central” auditory deficits with increasing age (1, 12–17). 
As “lower” and “higher” level processes are interrelated, the effects of 
peripheral and central decline can be difficult to dissociate. Age-related 
cochlear damage generates a degraded input to the auditory system. 
The degraded nature of the input is exacerbated by the loss of synapses 
and auditory nerve fibers, often referred to as “hidden hearing loss.” 
This synaptic loss particularly affects fibers that are sensitive to louder 
sounds and may particularly impair speech-in-noise (SIN) perception 
(18–20). With increasing age there is a general reduction in the density 
of connections in the brainstem and cortical structures involved in 
auditory processing (14, 21). A deterioration in brainstem structures 
and the cortex impairs timing information, gap detection, localization, 
spectral processing and efferent control of the hair cells (22–25). These 
combined changes can undermine auditory scene analysis, impair an 
individual’s ability to attend to a target speaker (26) and reduce the 
ability to distinguish elements of speech in quiet (SIQ), non-familiar 
accents and SIN (27, 28).

Temporal information in speech cues can be differentiated across 
a number of frequency bands (29): information about the speech 
envelope (ENV) is carried primarily in the frequency band below 
50Hz; information about voicing and periodicity primarily in the 
frequency band between 50 and 500Hz; and information about 
temporal fine structure (TFS) in the frequency band above 500Hz. 
ENV and TFS are the most important cues forming the basis of speech 
perception, frequency perception and localization (30). However, for 
those with sufficient hearing, ENV and TFS provide redundant cues 
that support processing of the speech signal (31). A difference in the 
pitch of voicing helps differentiate individuals in multi-talker 
situations (32). Vocoder experiments that replaced TFS with a carrier 
signal or noise, which was modulated by ENV, demonstrated that only 
a small number of frequency bands are required for successful speech 
perception in quiet even when TFS was lacking (33). However, the 
same was not true when speech was presented in a noisy background. 
Adding back TFS to a signal progressively improved SIN performance 
(34, 35). The ability to make use of ENV with little TFS can also be 
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evidenced by the success of cochlear implants, which provide a grossly 
reduced representation of spectral detail (29, 36). Besides supporting 
speech perception in noise (36–38), TFS also supports binaural 
localization and separation of competing sounds (39), perception of 
pitch and music (29, 30) and perception of motion (40). Individuals 
with peripheral hearing impairment cannot make good use of TFS 
which can lead to difficulties hearing in noisy situations (41).

Comparisons between young and old listeners with matched 
normal hearing, intelligence and education suggest that speech 
perception declines with age, demonstrating a greater effect than can 
be  predicted by hearing thresholds (3, 42–44). Monaural TFS 
sensitivity declines constantly throughout early-to-late adulthood 
(45), whereas monaural processing of ENV is less affected (46, 47). 
Binaural processing of both TFS and ENV declines with age, although 
declining TFS sensitivity has some association with the degree of 
hearing loss whereas the association between ENV sensitivity and 
hearing loss is weak (46, 47). Besides TFS, cognitive performance has 
also been found to predict speech perception. Although both TFS 
sensitivity and some cognitive domains decline with age, they do not 
appear to be directly related to each other once the effect of age is 
removed (48). TFS sensitivity was found to be a stronger factor than 
cognitive ability and ENV sensitivity in predicting speech perception 
in quiet for normal hearing listeners, and cognition the stronger factor 
for predicting performance in noise (3). Reduced SIN perception with 
increasing age can be  more generally associated with reduced 
cognitive abilities (49), reduced coding accuracy and TFS sensitivity 
(50, 51), poorer binaural processing (52) and sound segregation (26). 
Sensitivity to periodicity perception also declines with age, affecting 
the perception of intonation (53), discrimination of voicing (54) and 
the emotional content of speech (55, 56). Some elements of speech 
perception are therefore specific to auditory processing, whereas 
others are dependent on domains of cognition not specific to 
auditory processing.

3. Cognitive change during normal 
ageing

“Cognition” refers to the processes of acquiring, retaining and 
using knowledge (57) and has many constituent elements, including 
reasoning, memory, speed, knowledge, reading, writing, maths, 
sensory, and motor abilities (58). One can differentiate cognition from 
auditory processing because the latter is specific to the analysis of 
sound, whereas the former is not. Whilst the auditory system 
processes sound, cognitive processes develop meaning and 
understanding from the sound. However, it should be recognized that 
this is a simplistic description because of the inter-related nature of the 
systems which together deploy “bottom-up” and “top-down” 
processes. Some elements of cognition decline with age, but some 
remain stable or improve (59). Cognitive abilities can be separated 
into two basic domains (60, 61): “fluid intelligence,” characterized as 
the speed and ability to resolve problems in novel situations; and 
“crystallized intelligence” that is an accumulation and use of skills, 
knowledge and experience. Fluid intelligence generally peaks at about 
20 years of age and declines at a consistent rate throughout adult life, 
whereas crystallized intelligence increases with age. As a result, an 
individual’s overall performance in psychometric tests of intelligence 
remains largely stable through most of adult life (60, 62). It should 

be noted that the range of ability between individuals also increases 
with age (21, 60, 63) so age alone is not a good measure of specific 
elements of cognitive function. Individuals of different ages may 
therefore perform equally well at a complex task, but may be using a 
different blend of cognitive abilities to complete the task based on the 
strength of different cognitive domains (64). Accordingly, an overall 
measure of “general cognition” is not a useful concept when 
considering a specific complex task, such as listening. Cognitive 
reserve, developed through education and other lifetime experiences, 
appears to provide some individuals with greater resilience against 
cognitive decline (65). This, and other genetic, environmental, health 
and lifestyle factors, will mediate any cognitive change with age (63) 
and an individual might further modify function via cognitive 
training and physical exercise (66). In short, it is important to 
determine the specific elements of cognition that relate to different 
tasks rather than make any assumption of homogeneity amongst an 
age group.

Several theories have been proposed to describe the process of 
decline in some cognitive abilities. The processing-speed theory (67) 
suggests that a decline in speed results in processes failing to complete 
in time to be useful, and that slower processes reduce the amount of 
available processing capacity. A reduction in processing capacity, 
caused either by a reduction in processing speed or by other processes 
of decline, could undermine episodic memory (recollection of 
personal experiences) and the initiation of more complex processes 
(68). Note that episodic memory declines more with age compared to 
semantic memory (recollection of facts) and procedural memory 
(unconscious performance of tasks) (59). A second theory suggests 
that there is a limit on the amount of processing resources (69). Based 
on this idea, Baddeley & Hitch (70) introduced the concept of 
“working memory” (WM) as a system that stores and processes 
information relevant to a current task. A third theory postulates that 
an age-related failure to filter out irrelevant information is the cause 
for WM to become “cluttered,” thus reducing available capacity (71). 
Each of the individual theories cannot explain all of the features of 
cognitive decline and it is likely that there are multiple processes with 
cumulative effects (59).

One way to categorize the basic concepts of fluid and crystallized 
intelligence into further subtypes of cognition, particularly useful in 
relating specific processes to speech perception, is provided by the 
Cattell-Horn-Carroll model (72, 73) (Figure 1). The model describes 
a three-level hierarchy of cognitive abilities: general ability, broad 
domains and narrow domains. Broad domains are basic characteristics 
that manage a range of behaviors. Narrow domains are highly 
specialized and may be  specific to certain types of task. Auditory 
processing (Ga) is included as a broad domain in the CHC model 
(Figure 1). Some elements of overall sound processing and perception 
are specific to Ga, whereas some elements rely on other narrow 
domains. Note that the generalized concept of fluid intelligence is not 
specifically shown in the model, but includes most of the broad 
domains of the model, i.e., those other than crystallized intelligence 
(Gc). Nevertheless, in general terms, abilities in the wide domain of 
fluid intelligence are those that tend to decline with increasing age.

Note that ongoing refinements to the model introduce further 
broad and narrow domains beyond those shown here (72). Episodic 
memory is contained within the definition of learning/encoding 
efficiency (Gl) in the CHC model (Figure 1) (73). Executive function 
is not commonly included in the Cattell-Horn-Carroll model and 
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there is no clear consensus on its definition (73). It may be thought of 
as a cognitive “control” function that mediates narrow domain 
abilities, although its three core elements may be  considered as 
separate domains that: enable “shifting” between tasks; monitoring 
tasks and “updating” WM as necessary; and “inhibiting” other tasks 
or automated responses in order to complete a task (74).

4. The effects of cognitive change on 
speech perception

In this section we focus on the elements of cognition that may 
underlie impaired listening ability. Not enough is currently known 
about how specific narrow domains of cognitive ability (Figure 1) 
relate to auditory performance in specific listening situations. 
However we do know that WM often plays a role and is frequently 
associated with SIN performance (75, 76), understanding fast speech 
(77) or with general auditory performance across a range of tasks (78, 
79). WM is more predictive of SIN performance in older age groups 
compared to younger groups (80) or in more challenging conditions, 
such as a lower signal-to-noise ratio (81). Older adults with greater 
WM resources may be  better able to adapt to difficult listening 
situations (78, 82). WM is often used as a broad term and encompasses 
both storage and processing-dependent WM tasks. These different 
types of tasks can have different associations to different types of 
listening situations (75, 83–85). Executive function is another 
cognitive factor that is often associated with listening and the degree 
of listening effort (86). Inhibition, which a sub-domain of executive 
function (Figure 1), and processing speed are also cognitive functions 
associated with reduced auditory performance (87–89). Different 
domains of cognition appear to be  more strongly predictive of 
listening ability for more difficult listening tasks (90, 91). A 

meta-analysis (92) provided an overview over various cognitive 
functions and their association with different SIN tasks. It showed that 
SIN performance correlated with measures of processing speed 
(r = 0.39), inhibition (r = 0.34), WM (r = 0.28), and episodic memory 
(r = 0.26). These are all narrow cognitive domains that deteriorate 
throughout adulthood (62, 67, 68, 71, 93) and their effects may be, in 
part, additive.

One consequence of the changes to hearing and cognition may 
be an increase in effort when listening (94, 95). Listening effort is 
defined in the Framework for Understanding Effortful Listening 
(FUEL) (96) as an allocation of cognitive resources to overcome 
listening obstacles. It is a finite resource and its capacity will 
be expended at different rates dependent on the inherent difficulty of 
a task and an individual’s motivation to overcome obstacles in 
listening. Listening effort likely engages multiple neurological systems 
(97) and is an important factor in speech perception. It should 
be considered in the context of age-related cognitive decline because 
it may also affect the motivation of individuals to comply with 
treatment or engage socially (98, 99). In addition, hearing aids have 
the potential to reduce, or increase, listening effort (100–104).

The relative importance of hearing loss, auditory processing and 
cognitive function for predicting overall auditory performance will 
depend on the specific listening situations encountered (76), which 
will vary in real-life (105). Different forms of SIN test engage different 
narrow cognitive domains (92). SIN tasks can be  distinguished 
according to the target and masker signal, and both of these affect the 
type of processing needed for successful listening (92). The type of 
masking noise has a considerable effect; individuals perform better in 
steady-state noise compared to multi-talker babble and the latter 
yields stronger associations with cognitive function (85, 92, 106–108). 
An intelligible masking signal provides both energetic and 
informational masking, and is most likely to divide the attention of a 

FIGURE 1

A partial representation of the Cattell-Horn-Carroll (CHC) theory of cognitive abilities showing general intelligence (g) consisting of broad domains of 
cognitive function, under which there are narrow domains that can be assessed with specific tests. Figure developed from (72, 73). Note that there are 
a greater number of broad domains and the narrow domains shown are only selected examples of those in each broad domain (24).
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listener, offering the greatest cognitive challenge (75), although other 
cues such as the different gender or fundamental frequency of the 
signal and noise source can overcome some effects (109).

A number of speech models have attempted to conceptualize the 
role of different cognitive functions within the pathway of speech 
understanding. Gordon-Salant et al. (21) adapted a theoretical model 
(110) to describe a bottom-up process of hierarchical signal 
processing. The “sensory system” undertakes spectral and temporal 
processing to discriminate between sound sources. This is further 
refined by the “perceptual system,” employing inhibition to direct 
attention, and the “cognitive system” that analyses and identifies 
words, and develops meaning, feeding back to lower levels of the 
system, requiring processing speed, WM capacity and semantic 
knowledge, also engaging long-term memory (Glr). The model by 
Bronkhorst (11) is broadly similar in principle and highlights the role 
of attention control, an element of executive function, in which 
attention is triggered by certain signal characteristics, that then 
engenders selective processing at lower levels, or “pre-attentive” stages, 
of the auditory system. The Ease of Language Understanding (ELU) 
model (111, 112) largely focusses on situations in which there is 
conflict between an input signal and lexical information stored in 
memory, e.g., due to an unusual accent, which then requires 
engagement of a feedback loop to resolve it, particularly requiring 
WM, executive function and learning/encoding efficiency. Taken as a 
whole, these models highlight the critical dependence of listening on 
certain specific narrow cognitive domains. However, given that 
research studies cannot assess all real-life listening situations, one 
cannot conclude that these are the only cognitive domains of 
relevance, but that they represent those most commonly measured in 
the context of the limited listening tasks employed in studies, and 
there may well be  other confounding factors such as alternative 
cognitive strategies that individuals use to compensate (64). The 
models also highlight that poor fidelity of the input signal (via hearing 
loss or inappropriate hearing aid processing) can cause greater conflict 
in resolving speech and, ultimately, a failure to do so. Overall, the 
models support the finding that speech intelligibility is associated with 
processing speed, inhibition, WM and long-term storage and retrieval 
(92) and will consequently decline with age as these narrow cognitive 
domains deteriorate. It should also be pointed out that a decline in 
some cognitive domains will not only undermine speech intelligibility, 
but may also impair the perception of speech quality (113), even 
where intelligibility is unaffected (114), and undermine an individual’s 
perception of aided speech.

In summary, certain narrow cognitive domains (Figure 1) will 
be associated with different types of auditory task. A wide array of 
cognitive tasks are employed across different studies (92), so the 
presence and strength of associations between cognition and auditory 
performance will depend on the narrow cognition domains assessed 
and the task used to assess them, as well as the type of auditory task, 
its level of difficulty, the type of stimulus, noise and other cues used 
(64, 115), the degree of context, vocabulary and visual cues (116–118). 
Furthermore, there is an association between hearing loss and 
cognitive decline (119) that may act as a confound in studies. Sensory 
impairment can affect an individual’s performance on cognitive tests, 
often requiring recall of spoken words or text-based tests, dependent 
on hearing and vision, so that it is possible that this causes falsely 
enhanced associations (61, 120, 121). It may therefore be considered 

unsurprising that the outcomes of research studies are not wholly 
consistent because they do not employ consistent paradigms.

5. Implications for hearing aid fitting

5.1. Principles

The preceding sections have summarized the effects of ageing on 
peripheral hearing, auditory processing and cognition. It is now 
important to determine which of these factors are relevant to hearing 
aid fitting and how some signal processing strategies may create 
benefit or impediment for individuals with differing degrees of 
cognition and auditory processing. The “optimum” hearing aid fitting 
should not solely consider peripheral hearing loss, but should aim to 
deliver maximum benefit over time, considering hearing loss, auditory 
processing, cognition and non-auditory factors that affect an 
individual, their perception of treatment and ability or intention to 
comply with it. For example, no amount of fine-tuning of a hearing 
aid’s gain will deliver benefit if there is a perception of unacceptable 
distortion or if individuals feel unable or unwilling to use their hearing 
aids. As a result, too many hearing aids remain under-utilized or 
unused (122). Selection of hearing aid parameters must take all of 
these factors into account.

Hearing loss degrades the fidelity of the input to the auditory 
system, undermining its ability to take advantage of temporal and 
spectral cues and requiring additional effort to resolve mismatches. It 
is unreasonable to expect that hearing aids can fully restore this input 
(123). Hearing aids can only address some of the loss in peripheral 
sensitivity. They cannot directly improve elements of auditory 
processing or cognition, but they may enhance the signal-to-noise 
ratio or suppress noise that might distract from the signal or increase 
listening effort. However, some hearing aid settings may significantly 
degrade the input signal in ways that hamper auditory processing, 
undermine speech perception or listening comfort, and increase 
listening effort (124, 125). The primary role of audiologists should 
be to address the concerns of, and provide benefit to, the individual 
patient, so it is important that the patient is given the opportunity for 
input and that these signal enhancement principles are understood 
and alternative settings considered (126). In general, hearing aid users 
with greater cognitive ability appear to benefit more from hearing aids 
(127). It is therefore important to derive some clear evidence-based 
principles for hearing aid settings for older adults. Accordingly, for 
those older adults with reduced auditory processing and cognitive 
abilities in relevant narrow domains, we  can state the following 
principles based on the preceding review:

 1. Older adults will generally be more dependent than younger 
adults on ENV for speech perception, which is less impaired 
than TFS with increasing age for monaural listening (46, 47, 
128). Older adults will therefore be more susceptible to ENV 
distortion (124, 129). A primary aim of hearing aid fitting 
should therefore be to ensure that speech is audible but with 
minimal distortion to ENV (130).

 2. Given that a reduced temporal accuracy with age undermines 
gap detection (23, 131), quiet gaps between elements of speech 
should be maintained.
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 3. Binaural processing of TFS and ENV is degraded with age (46, 
47, 52) and impairs interaural level difference (ILD) and 
interaural time difference (ITD) cues (23, 132). Use of bilateral 
hearing aids should not further disrupt theses cues, e.g., via fast 
gain changes that particularly diminish the aided 
level difference.

 4. Reduced binaural processing makes older adults more 
susceptible to binaural interference (132, 133). There is 
evidence that some individuals may perform better in noisy 
situations with a unilateral aid (134) although this is not 
consistent across studies (135). Unilateral aiding should 
be  considered where there is any indication of binaural 
interference (136). There should not be a presumption that 
bilateral aiding is best in every case.

 5. General impairment of SIN performance with age (21, 27, 49) 
indicates a need to improve the signal-to-noise ratio through 
the use of directionality.

 6. Introducing distortion to ENV may increase listening effort 
and diminish the capacity for listening (100–103). Hearing aid 
processing should aim to minimize cognitive load and listening 
effort (86, 96) by avoiding unnecessary distortion to the speech 
signal, loudness discomfort or other perceptual sound 
difficulties. Noise reduction settings should be considered (104).

These principles should not be  regarded as novel in any way. 
Directionality has been employed for many years in analogue and 
digital hearing aids. However, since the inception of digital hearing 
aids it has been suggested that audiologists should pay greater 
attention to the distortional aspects of hearing aid processing, rather 
than solely considering the amplification needed to correct peripheral 
hearing loss (137, 138). This has also previously been applied 
specifically to hearing aid fittings for older adults (130). It has long 
been recognized that hearing aid settings, the associated aided speech 
recognition and overall satisfaction will be, in part, dependent on 
cognitive ability (139–141) and that different hearing aid processing 
strategies will have different advantages and disadvantages for 
individuals with varying degrees of cognitive function (96). The 
following sections will consider various hearing aid parameters, how 
they affect the principles above, and the effect of cognitive change on 
the fitting process.

Before doing so, it is worth considering more carefully what is 
meant by “distortion.” In simple terms, distortion can be defined as 
any non-linear change from the original signal, although the inherent 
purpose of hearing aids is to modify sound. Multiple signal processing 
strategies alter speech signals in many ways and it is not a 
straightforward exercise to measure distortion across its different 
forms (142), and even less so to equate any measure of disruptive 
distortion to the perception of a hearing aid user. For example, if one 
were to measure the distortion introduced by compression, one is 
immediately faced with the issue of how to combine a measure of 
change to ENV and a measure of change to TFS, and whether these 
have detrimental effects after processing in the auditory system. 
Korhonen et al. (143) suggested a method of assessing modulation in 
frequency bands, but this only evaluates changes to ENV. Hearing aids 
introduce multiple sources of distortion and widely-available test box 
measures, such as total harmonic distortion, are unrepresentative of 
the overall distorting effects of a hearing aid on the speech signal. The 
loss of differentiation between the modulation of the speech signal and 

that of a competing talker or background noise when they are 
compressed together in a hearing aid is known as “cross-modulation.” 
This undermines the auditory system’s ability to separate sounds 
because shared modulation will be interpreted as originating from a 
single source (144), and can be considered as a loss of information 
from the original signal. There is more recent evidence that, for 
complex speech signals, the auditory system uses the interaction 
between modulations in the frequency and time domains, known as 
“spectrotemporal modulation,” which is an important determinant in 
speech intelligibility. Spectrotemporal modulation is undermined by 
a combination of reduced frequency-tuning and TFS sensitivity (145, 
146), although it is unclear how it is distorted by hearing aid 
processing (147).

There have been numerous initiatives that have attempted to 
quantify overall distortion and relate it to speech intelligibility and 
perceived quality; see Kates and Arehart (148) for a summary. Perhaps 
most promising are the Hearing Aid Speech Perception Index 
(HASPI) and the Hearing Aid Speech Quality Index (HASQI) (148). 
These are neural-network models incorporating assumptions of 
peripheral and central auditory processes, then fit to measurement 
data for hearing impaired and normal-hearing listeners. The models 
offer clear differentiation in quality and intelligibility between hearing 
aids from different manufacturers and between different hearing aid 
settings (149). It is therefore possible that HASPI and HASQI could 
become clinical tools that can be used to evaluate distortion. However, 
to be most useful they would need to be validated against different 
patient groups because optimal settings are likely dependent on an 
individual’s cognition or other factors. Moreover, even after validation, 
there may remain considerable variation between individual 
preferences. Likewise, it is unclear what trade-off there should 
be  between intelligibility and quality scores, or how this would 
be determined on an individual basis.

5.2. Compression speed

Reducing the dynamic range of sound to match that of a hearing-
impaired person, i.e., compression, is a fundamental feature of digital 
hearing aids. Hearing aids filter sound into frequency bands, or 
frequency channels, such that different degrees of compression, and 
other types of processing, can be  differently applied within each 
channel. Wide-dynamic range compression (WDRC) with short time 
constants, or fast-acting compression (FAC), was employed to enable 
exaggeration of quieter syllables or phonemes within words by quickly 
applying greater gain, so is often referred to as “syllabic compression.” 
This type of compression is based on the fact that some elements of 
speech may be inaccessible to a hearing-impaired listener, typically 
high-pitched fricatives for those with a high-frequency hearing loss. 
FAC aims to restore normal loudness perception across the frequency 
range (150). Hearing aids with slow-acting compression (SAC) 
enhance high-frequency sounds solely via the application of different 
amounts of gain in each frequency channel. In practice, most systems 
employ similar attack times (1–10 ms), which was to protect patients 
from sudden loud sounds (150), so “fast” and “slow” hearing aids are 
largely differentiated by the release times (151). FAC is usually 
characterized by attack times of 0.5–20 ms and release times of 
5–200 ms, whereas the release times for SAC are typically between 
500 ms and 2 s (150). The instantaneous gain for any input level and 
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frequency will accordingly be determined by both the gain settings for 
quiet and loud input levels (i.e., that which should be applied for a 
long-duration sound) and the compression speed (i.e., whether the aid 
reacts fast enough to reach the gain setting). It should be recognized 
that simply comparing fast and slow compression speeds is a 
simplification. There are various approaches to the implementation of 
compression speeds in hearing aids that may be applied differently by 
frequency channel, by direction of change in sound intensity (150), or 
adaptive systems that change compression speed by acoustic situation 
(152–157). Furthermore, fast-acting impulse noise protection may 
be employed as a separate system to WDRC, although the details of 
these approaches are usually proprietary (158).

FAC can be interpreted as contravening many of the principles 
suggested above for individuals with reduced degrees of cognitive 
function. In general terms, FAC has the effect of “flattening” ENV, 
whereas ENV is preserved by SAC (Figure 2) (150, 159). FAC may 
therefore impair speech perception by changing the speech signal in 
a number of ways: distorting speech envelope cues; amplifying the 
noise in gaps, undermining gap detection; and reducing modulation 
detection that enables separation of individual speakers (150, 160–
166). FAC might also impair sound localization based on interaural 
differences, although the evidence for this is weak (167). FAC also 
impairs localization of sounds in reverberant conditions (168). Even 
in quiet situations, increasing the number of frequency channels, as is 
typically deployed in almost all hearing aids, reduces the spectral 
contrast of vowels and associated speech intelligibility with FAC (159, 
169). Proponents of FAC contended that listeners cannot be aware of 

contrasts in amplitude if a signal is presented below the threshold of 
the cochlea at a particular frequency (170). However, this argument 
was largely based on evidence from two-channel systems. In modern 
multi-channel hearing aids, increasing the number of channels 
increases the amount of distortion when using FAC (159). Hearing aid 
users prefer fewer channels when FAC is used, whereas the number of 
channels does not make a difference with SAC (159). In principle, FAC 
should only be employed to make weak phonemes audible in quiet 
conditions for those with mild-to-moderate degrees of hearing loss 
(171) and does not offer benefit in noisy situations (151, 172). Overall, 
those with greater degrees of hearing loss tend to benefit less from 
FAC (173). In truth, to make a proper comparison between FAC and 
SAC, one should consider the speech signal as presented to the 
auditory system after processing via the cochlea. As we are unable to 
do this in humans, we must seek to determine objective or subjective 
measures of performance from the patient population, such as 
performance in speech intelligibility tests or self-reported benefit and 
satisfaction. Other evidence can be sought from animal models in 
which neural responses can be measured with hearing aid-processed 
sound (174), suggesting that FAC acts to undermine spectral and 
temporal contrasts, leading to a failure to restore consonant 
identification in quiet. Computational models of the auditory system 
might also be  used to assess the effects of different hearing aid 
processing strategies. These suggest that slow compression leads to a 
greater restoration of the neural representation of speech than fast 
compression (175). The HASPI-HASQI model, discussed above, can 
be  employed to compare intelligibility and quality in different 

FIGURE 2

The effect of compression speed on speech envelope cues, reproduced with permission from Holube et al. (159). The original speech signal (top left) is 
processed through a 16-channel system with an exaggerated compression ratio of 8:1 using various release times (τrel) from long (1,400 ms, slow-
acting compression) to short (15 ms, fast-acting compression).
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scenarios, although it has not been specifically used to compare 
compression speeds. However, it does suggest that increased 
processing complexity does not inherently provide better 
performance (149).

There are a considerable number of studies that compare the 
outcomes of using hearing aids with FAC and SAC and relate it to 
individuals’ cognitive scores. A seminal set of studies by Gatehouse 
et  al. (141, 172, 176) compared five linear and non-linear fitting 
strategies using FAC and SAC, with a crossover design, for older adults 
with mild-to-moderate sensorineural hearing loss. Three non-linear 
strategies were employed: slow-slow, using slow-acting release times 
across low and high frequency bands respectively; fast-slow, a hybrid 
strategy using fast release times for low frequencies (<1,500 Hz) and 
slow times for high frequencies; fast-fast, using fast release times in 
both bands. Speech intelligibility was measured in several conditions, 
altering the speech presentation level and signal-to-noise ratio. 
Non-linear hearing aid strategies provided better aided speech 
recognition than linear approaches, with FAC offering greater benefit 
than SAC, but the degree of benefit declined with increasing speech 
presentation level or reduced signal-to-noise ratio. The slow-slow 
paradigm offered significantly greater listening comfort, and slow-
slow and fast-slow were significantly preferred by users. Conversely, 
fast-fast and fast-slow paradigms had significantly better speech 
intelligibility, both user-reported and measured. However, whilst the 
level of a subject’s cognition had no influence on speech tests scores 
when using SAC (slow-slow or fast-slow), fast-fast compression 
generated a significant negative correlation between cognition and 
speech perception, resulting in a wider range of benefit and 
impediment to patients. In summary, the benefits of FAC over SAC 
were only accessible to those with better cognitive scores, able to take 
advantage of increased audibility at the cost of reduced “temporal 
contrasts,” whereas SAC offered greater benefit than FAC for those 
with lower cognitive scores. It is notable that these studies used 
hearing aids with only two channels so, based on the discussion above, 
one might speculate that the difference observed may have been 
greater with multichannel hearing aids. The study was replicated with 
much the same result, further demonstrating that the association 
between SIN performance and cognitive test scores was stronger when 
more demanding listening tasks were used (106). Hearing loss was the 
stronger predictor of SIN performance, relative to WM, when SAC 
was employed; whereas WM was a stronger predictor than hearing 
loss when using FAC. Other studies have found WM to predict SIN 
performance in difficult situations when FAC was applied (177–179), 
concluding that FAC created a disadvantage relative to SAC for those 
with lower WM (125). Likewise, stronger preference for SAC relative 
to FAC, when listening to speech and music, can be associated with 
individuals with lower TFS sensitivity (180). Hearing aid users with 
poor TFS sensitivity are also affected more by ENV distortion (129). 
There is also some interaction between different elements of hearing 
aid processing. For example, adults may prefer SAC when mild noise 
reduction is employed, but FAC when strong noise reduction was 
applied, although the effect sizes were small (181). Conversely, a 
number of similar studies have found that the relationship between 
compression speed and SIN performance was not affected by the 
variation in cognitive scores (177, 182–188). One study suggested that 
FAC offers greater benefit than SAC in quiet and noisy situations for 
all users (189), irrespective of cognitive scores, although this showed 
linear amplification to be better than FAC or SAC, and significant 

differences were only seen at lower presentation levels. In any case, the 
researchers went on to suggest adaptive compression speeds that 
utilized SAC in noisy environments (155).

It is difficult to compare studies because of the different paradigms 
used for testing speech and cognition, as discussed in Section 4. This 
is further confounded by variable application of algorithms, the 
number of channels employed in commercial and research hearing 
aids, and situations that may not be representative of a user’s daily 
experience (190). Studies also vary widely in the amount of 
acclimatization allowed for research participants, if any, and results 
vary between new and experienced hearing aid users (107, 191). 
Complete consistency can therefore hardly be  expected between 
studies and a systematic review found it difficult to draw clear lessons 
(192). On balance, the studies suggest that individuals with lower 
degrees of cognition will fare worse with FAC, compared to SAC, in 
some listening situations that are challenging. Those with high 
cognitive scores will derive benefit from FAC, compared to SAC, in 
quiet situations. Audiologists must consider audibility, distortion to 
ENV and listening comfort when setting a hearing aid, amongst other 
things. Furthermore, the preceding discussion largely addressed only 
objective benefit, i.e., aided speech intelligibility, in various situations, 
but not the perceptions of users that will affect outcomes, not least in 
mediating compliance with treatment. A number of studies show that 
users generally prefer SAC in noisy, or all, situations (107, 141, 184, 
193) or that different individuals have different preferences, with a 
greater average preference towards SAC (180).

5.3. Compression ratio

The compression ratio defines the range of gain applied within a 
hearing aid channel. A higher compression ratio increases the range 
of input levels that, after amplification, are audible without being 
uncomfortably loud and should improve speech intelligibility in quiet, 
but will reduce intelligibility in background noise (151, 171). The 
effective compression ratio is dependent on the compression speed. In 
simple terms, SAC reacts too slowly to reach the highest levels of gain 
determined by the compression ratio within a short timeframe, such 
as a word, so the distorting effect on ENV for that word is smaller than 
FAC (Figure  2), where gain may change within the full range 
determined by the compression ratio during each word spoken. 
Consequently, the same compression ratio cannot be set for FAC and 
SAC systems. A compression ratio of 3.0 or less will have little effect 
on speech envelope cues for SAC (194). However, the amount of 
distortion introduced by FAC will be broadly proportional to the 
compression ratio and it is generally recommended that it is not set 
greater than 3.0 (195) or 5.0 (151, 152). Distortion will be further 
exaggerated by increasing the number of frequency channels (159). 
Increasing the compression ratio can reduce consonant recognition 
(196) and overall speech recognition (197). When asked to subjectively 
rate the quality of speech, listeners tend to prefer lower compression 
ratios in quiet and even more so (CR ≤ 2.0) in noise (159, 197, 198). It 
should also be noted that that the compression ratio is measured with 
steady-state signals and the effective compression for a fluctuating 
signal like speech is lower (199); hence, the longer the release time, the 
lower the effective compression ratio (151, 152). A greater compression 
ratio can therefore be set for SAC without noticeable distortion, and 
the additional comfort availed can be interpreted as a benefit of SAC 
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(150). In order to avoid distortion to ENV for older adults, 
compression ratio must be reduced significantly if FAC is used.

5.4. Noise reduction

Noise reduction algorithms aim to reduce the level of non-speech 
sounds and increase comfort. A meta-analysis found that noise 
reduction does not consistently improve speech intelligibility, but is 
moderately beneficial for sound quality and comfort (200). Noise 
reduction can be fast or slow-acting and can cause disruption to the 
speech signal by alterations to gain in specific frequency channels, and 
this may be differently tolerated by those with different degrees of 
cognition. As noted above, the strength of noise reduction employed 
interacts with the preference for FAC or SAC (181). Nevertheless, 
those with relatively good cognitive scores benefit from stronger noise 
reduction, whereas it may be detrimental to those with lower scores 
(125). Background noise impairs WM function, making it harder to 
recall words, especially for more complex listening challenges. Noise 
reduction may overcome this problem by reducing the demands on 
WM, but may mainly apply to those with higher degrees of WM in 
more challenging tasks (201). Some studies suggest that it may apply 
to those with lower degrees of WM only in less challenging tasks (202, 
203). Strong noise reduction likely impairs speech intelligibility for 
those with low WM or executive function (204, 205), although 
moderate noise reduction is preferred in most situations and some 
users prefer strong noise reduction despite the loss in intelligibility 
(206). Overall, moderate noise reduction likely improves listening 
comfort without undermining speech intelligibility in most cases, 
although there is some variability in individual preference.

5.5. Other hearing aid parameters

Hearing aids, by their nature, alter a sound signal and inherently 
introduce some form of distortion relative to the original. Other 
features manipulate the sound, including frequency-dependent gain, 
directional microphones, feedback management, frequency lowering, 
expansion and wind-noise reduction. Any hearing aid processing that 
distorts ENV may impair speech perception and this may be especially 
detrimental to those with lower degrees of cognition (207). However, 
there is less evidence relating the benefits or drawbacks of these 
features in relation to cognition.

There is some evidence that frequency-lowering, or frequency 
compression, can benefit those with higher WM scores but it might 
act to undermine intelligibility in those with lower WM scores (124). 
A meta-analysis of frequency-lowering suggested that it has a small 
benefit in quiet situations, although results were inconsistent and 
situation-dependent (208), and it may impair speech perception in 
noise (209). However, frequency lowering might be beneficial in noise 
for younger adults or those with steeply-sloping hearing loss (103). 
Frequency-lowering might be trialed as an option, but may impair 
listening for those with lower cognitive scores.

One dimension of hearing aid setting that has well-established 
benefits and consistently positive outcomes is the use of directionality 
to improve signal-to-noise ratio (206) so it is not considered in any 
detail here. Whilst directionality applies gain preferentially to sounds 
based on direction, it does not inherently distort the sound in the 

same way as non-linear processing schemes. There is a similar benefit 
from directionality for any compression speed irrespective of the 
degree of WM function (210).

5.6. Non-auditory factors

This review is focused on hearing aid parameters and their effect 
on aided outcomes for older adults with cognitive change related to 
normal ageing. Whilst not a subject of this review, we  should 
be cognizant of the fact that hearing care for older adults must include 
a wider appreciation of their needs including physical and listening 
comfort, psychological, social, behavioral and environmental 
considerations, and these have implications on hearing aid settings, 
acceptance and outcomes (211). For example, despite a declining 
ability to make use of multi-sensory inputs (212), older adults still 
benefit from visual inputs for speech perception (118) so visual deficits 
should be  corrected. Education of families and careers should 
incorporate some understanding of auditory decline and enable them 
to make adjustments, e.g., via avoidance of fast speech (212), use of 
clear speech, providing cues before speaking (109), maximizing 
context (213), familiarity (214) and environmental adjustments to 
reduce background noise. Other non-auditory factors associated with 
the comorbidities of age and reduced cognition that can inhibit 
successful use of hearing aids include dexterity, self-efficacy, attitude, 
motivation, family support and self-image (98, 99, 215, 216) as well as 
the “simple” or “complex” manner in which a hearing aid is configured 
(e.g., with or without programs or control buttons). The cognitive 
status of individuals will also affect clinical interactions because higher 
degrees of fluid intelligence enable them to engage more with life 
(217), handle problems such as acclimatizing to a hearing aid, and to 
be more proactive in taking action to address their health (218). In 
short, a hearing aid fitting must provide the patient with a solution 
that they find manageable and acceptable and, as seen in much of the 
research discussed above, patients’ preferences are not always aligned 
with the solution that gives maximum speech intelligibility. In 
summary, whilst we attempt to determine the best approach to setting 
hearing aid parameters in this review, we  recognize that these 
recommendations should be interpreted within the broader scope of 
an individual’s needs.

6. Discussion: a pragmatic approach 
to setting hearing aids for older adults

The preceding sections of this paper have reviewed the literature 
to determine how age-related changes to cognitive domains and 
auditory processing alter speech perception and, in particular, an 
individual’s relative dependence on different speech cues that might 
be disrupted by different approaches to hearing aid processing. In this 
section, we aim to apply the evidence to the clinical hearing aid fitting 
process in order to provide pragmatic guidance to clinicians.

As part of a patient-centered care model (219) the audiologist’s 
primary role is to offer support and provide benefit to each individual, 
where the total benefit can be considered as a combination of objective 
and perceived benefit, preference, and ability to comply with 
treatment. This perspective means that the “optimal hearing aid 
fitting” must therefore address all of these aspects of care. In 
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consequence, audiologists require a broad skill set that includes 
counselling (219) and some level of technical understanding. However, 
some relevant technical factors, not least compression speed, are rarely 
provided by hearing aid manufacturers in specification sheets, nor is 
it easy in our experience for audiologists to acquire such information. 
This is a fundamental concern because compression speed and 
compression ratio are primary determinants for the amount of 
distortion introduced to ENV. Given that audiologists are, in part, 
dealing with the hearing aid as a “black box,” and that research 
findings are not always consistent, it is perhaps unsurprising that there 
are no clear technical guidelines for fitting hearing aids to older 
adults (220).

However, the research is broadly consistent in a number of ways. 
First, older adults are more likely dependent on ENV for 
understanding speech. FAC causes distortion to ENV that can 
undermine speech perception, whilst emphasizing elements of TFS 
that cannot be utilized by many older hearing aid users, and might 
disrupt binaural inputs. Second, hearing aid users tend to prefer SAC 
on average, although individuals have different preferences. FAC is 
likely better in quiet for those with good cognitive processes related to 
hearing, but likely degrades speech intelligibility and the acceptability 
of hearing aids for those with lower degrees of cognition. Third, the 
variation in cognitive processes between individuals increases with 
age, so we cannot know which specific settings offer the most benefit 
for an individual, nor whether objective benefit will be aligned with 
their preference.

The combination of peripheral and central auditory decline 
therefore means that older adults represent some of the most complex 
patients, as well as the most numerous. Consequently, age-related 
hearing loss should never be treated as “standard care” simply because 
of its high prevalence. Determining the correct hearing aid strategy 
for an individual hearing aid user is therefore a major challenge. One 
might think that it would be useful to undertake tests of cognition or 
TFS sensitivity in clinic. However, it is uncertain that a test score could 
usefully indicate a specific course of action, nor which cognitive tests 
should be  used. Verbally-delivered cognitive tests are affected by 
hearing loss and there is no well-established test that has been shown 
to be unaffected by sensory impairment (61, 120, 221). It is unclear 
whether audiologists are able to conduct cognitive tests sufficiently 
well and their utility in clinical situations needs evidencing (222). 
Speech testing might give some indication of overall ability and it has 
been suggested that it be more widely used (223) because standard 
audiometry provides no useful evidence regarding auditory processing 
and cognition. However, it is equally unlikely that a speech test score 
could equate directly to a specific hearing aid setting and user 
preference. It is also unclear whether clinical speech-testing is 
sufficiently sensitive to determine any benefit derived from alternative 
hearing aid settings. Consequently, in addition to the current lack of 
applicable tools, it is debatable whether the additional loading on 
clinical time would yield sufficient benefit to be justified. In any case, 
many audiology services face demand and resource pressures, 
particularly in public sector systems with universal treatment, so 
extending the test battery significantly may not be implementable.

We therefore propose a pragmatic approach to hearing aid setting 
that could be implemented within typical current fitting appointments. 
The principles above can be employed to ensure that relevant factors 
are considered for older adults, which we define nominally as those 
over 55 years of age in line with the English NHS definition of 

age-related hearing loss. We  believe the following statements 
concerning hearing aid settings for older adults follow directly from 
the evidence:

 1. All factors that introduce distortion to ENV should be explicitly 
considered in hearing aid fittings. This should primarily 
include compression speed and compression ratio, but also 
noise reduction, frequency lowering and other 
advanced features.

 2. Compression speed and compression ratio are primary 
determinants of the degree of distortion introduced to 
ENV. This indicates a need for hearing aid manufacturers to 
publish compression speeds as part of their standard product 
information, and provide products that allow clinicians to 
change compression speed, or offer adaptive compression 
speed algorithms that can be  selected appropriately for 
each individual.

 3. SAC should be considered as the default setting for older adults 
and should be employed in noisy environments for all hearing 
aid users. However, recognizing the variation in preference 
between individuals, both SAC and FAC approaches can 
be  provided in separate hearing aid programs and the 
audiologist can employ validation techniques to assess which 
is best set as the default program. There is no good reason that 
hearing aids should default to FAC for older adults.

 4. If FAC is used, the compression ratio should be reduced to 
levels that avoid ENV distortion. There is no clear evidence that 
suggests a specific value, so it is difficult to provide robust 
guidance. Our own clinical experience and discussions with 
hearing aid manufacturers suggests a value as low as 1.5. This 
is, admittedly, anecdotal but there is some evidence to suggest 
that linear aids are preferred over WDRC aids with FAC and a 
compression ratio of 2.0 when subjectively rating the quality of 
aided speech (159). Users also prefer CR ≤ 2.0  in noise 
(197, 198).

 5. Directionality is always beneficial to improve the signal-to-
noise ratio. This might also include a consideration of 
ear-molds in place of open-fittings, because the latter reduces 
directional benefit (224, 225). Alternatively, other assistive 
devices and accessories may be  considered to improve 
directionality or enhance the signal-to-noise ratio.

 6. Noise reduction is likely best set to moderate, although this 
depends on each hearing aid manufacturer’s approach and the 
evidence base is not strong. Strong noise reduction may well 
impair speech perception, especially for those with lower 
degrees of cognition. However, the user may be offered options 
or multiple programs because some may prefer stronger noise 
reduction in some situations.

 7. Other advanced hearing aid features, such as frequency 
lowering, may also distort the signal in ways that further impair 
speech intelligibility for those with reduced abilities in some 
cognitive domains. The evidence is generally weak, so these 
should be considered as options for each individual.

 8. Unilateral aiding should be  considered where binaural 
interference is suspected. This is easily achieved in clinic by 
comparisons of speech intelligibility and listening comfort with 
bilateral hearing aids versus the left and right hearing aid 
working unilaterally. In some cases, clinicians may find that the 
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individual’s speech intelligibility is significantly better when 
aiding only one of the ears, and intelligibility may be impaired 
or the sound distorted whenever gain is applied to the other ear.

One should recognize that any recommendation regarding 
hearing aid parameters cannot be prescriptive given the current state 
of knowledge and considering the wide variability in individual 
needs. This implies that there must be some process of ensuring that 
hearing aid settings are optimal, or at least acceptable, for each 
individual. Overall, we believe that a full consideration of hearing aid 
parameters needs to be combined with the over-riding principles of 
patient centered care. This engenders a need to balance the key 
elements of the hearing aid fitting process, including verification, 
validation and counselling. “Verification” is the process of matching 
hearing aid gain to a prescribed target using real ear measurements 
(REMs). “Validation” should aim to provide evidence that all hearing 
aid settings are suitable for an individual. This may include simple 
tests of loudness discomfort and speech intelligibility, more advanced 
techniques such as speech mapping, paired comparison approaches 
(226), or questionnaires and self-reporting tools (227). Finally, 
“counselling” addresses non-audiometric factors such as the patient’s 
expectations, self-image and self-efficacy (228). This approach will 
likely improve the rate of treatment compliance (229, 230). The 
following statements are not novel, but we believe they are worth 
re-stating in light of the principles discussed above for setting hearing 
aids for older adults:

 9. Conducting verification and matching gain to a prescription 
target does not, in itself, make a good hearing aid fitting. The 
verification process is solely aimed at setting individualized 
hearing aid gain and does not encourage a consideration of the 
other parameters highlighted in this review. For example, 
setting the gain to a prescription target for 50, 65, and 80 dB 
input levels may lead to high compression ratios where FAC is 
used, causing inappropriate ENV distortion. Verification is an 
important step that may offer a large (231) or small (232) 
benefit, but the resulting gain settings must be considered in 
the light of the other parameters discussed above and 
adjusted appropriately.

 10. The only clinical process that can evaluate overall hearing aid 
settings and their suitability for an individual is validation 
(233). Accordingly, we  believe that it is important that 
verification is always followed by proper validation in clinic 
(234) and that clinicians should consider the balance of time 
given to each process during fitting appointments. The hearing 
aid user should not perceive distortion and loudness 
discomfort, and sufficient speech intelligibility and sound 
acceptability should be  demonstrated. In short, clinicians 
should consider both the intelligibility and quality of speech 
(235). However, it is recognized that current validation 
techniques, e.g., using live voice or speech mapping, are 
subjective and more objective methods of assessing the likely 
perception of overall distortion would be helpful. Appropriate 
objective methods are currently lacking in clinical practice.

 11. Hearing aids cannot overcome all of the peripheral and central 
auditory deficits discussed in this review, so wider 
considerations should be addressed to achieve the optimum 
outcome in the perception of the individual user. Audiologists 

must, of course, consider other non-auditory factors. 
Informational counselling regarding central auditory decline 
should aim to set reasonable expectations for the hearing aid 
user and their families or careers (236, 237) and can promote 
modification of the environment and behaviors related to the 
elements of decline in central auditory processing discussed 
above. This may include use of clear speech, visibility of mouth 
movements and reducing background noise.

7. Implications for further research

Research studies use a wide array of both cognitive and listening 
tasks, so the associations observed between them are variable. 
Although WM tasks predominate in many studies, it is not the only 
domain of cognition that is relevant (92) and we  are yet to fully 
understand which elements of cognition might relate to every listening 
condition (64). It would seem prudent to consolidate a range of 
cognitive tests in research studies. There is also a lack of validated 
cognitive tests for those with a sensory impairment, because many 
tasks are delivered verbally or visually, so hearing loss may be  a 
confounding factor (61, 120, 121) and must be considered as part of 
research design. In large part, studies relate cognitive status to 
performance in listening tasks, although some studies relate it to user 
preference. It should be  clear that individual preferences are not 
always aligned to objective performance and may be based more on 
listening comfort, effort or some other perception of quality, so it 
would seem sensible to measure both objective performance and 
subjective benefit in research studies.

Whilst there is variation in the evidence, it appears to us that the 
balance of evidence suggests that slow-acting compression may be the 
best default position for most older adults along with other cautious 
settings for compression ratios and noise reduction, although 
accepting there will be  individual variations. However, further 
research should seek to confirm the size of the effect. Furthermore, 
most research on the effect of hearing aid settings considers one 
parameter in isolation whilst other parameters are held constant. This 
is unlikely to reflect the overall function of commercial hearing aids 
and assess the interaction between different hearing aid features. 
Recent work has demonstrated the interactions between compression 
speed and other settings, such as noise reduction and directionality 
(181, 210), so further research should establish whether combinations 
of hearing aid processing strategies negate the overall effect of 
individual settings in the user’s perception. It is also important to 
be able to evaluate balanced measures of speech intelligibility and 
quality, and relate them to the overall perception of distortion. This 
indicates a need to further develop clinical tools, such as HASQI and 
HASPI (148, 149), to determine an objective measure of distortion 
appropriate for individuals with varying degrees of hearing loss and 
cognitive ability, that also aligns with user perception. This further 
begs the question of whether some test of cognitive ability is useful or 
implementable within clinical practice.

In this paper we have proposed an approach to setting hearing 
aids for older adults. Whilst this may be derived from the balance of 
evidence, it is not specifically validated. We have therefore designed 
a randomized control trial based on the principles discussed in this 
paper, pre-registered on the Center for Open Science’s Open Science 
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Framework (OSF), at https://osf.io/fdzeh. The SHAOA (Setting 
Hearing Aids for Older Adults) study has been approved by the UK 
Health Research Authority and National Health Service (NHS) 
Research Ethics Committee (IRAS ID 313159), and it has been 
adopted onto the NHS National Institute for Health Research 
(NIHR) portfolio. Finally, in suggesting this approach, we make an 
implicit assumption that audiologists may not consider all of the 
factors that have been highlighted here, which we  have not 
evidenced. Accordingly, we will also complete an online survey of 
UK clinicians to evaluate this, under University of Manchester 
ethics approval.
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