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Spasticity is a complex neurological disorder, causing significant physical

disabilities and a�ecting patients’ independence and quality of daily lives.

Current spasticity assessment methods are questioned for their non-standardized

measurement protocols, limited reliabilities, and capabilities in distinguishing

neuron or non-neuron factors in upper motor neuron lesion. A series of

new approaches are developed for improving the e�ectiveness of current

clinical used spasticity assessment methods with the developing technology

in biosensors, robotics, medical imaging, biomechanics, telemedicine, and

artificial intelligence. We investigated the reliabilities and e�ectiveness of current

spasticity measures employed in clinical environments and the newly developed

approaches, published from 2016 to date, which have the potential to be used in

clinical environments. The new spasticity scales, taking advantage of quantified

information such as torque, or echo intensity, the velocity-dependent feature

and patients’ self-reported information, grade spasticity semi-quantitatively,

have competitive or better reliability than previous spasticity scales. Medical

imaging technologies, including near-infrared spectroscopy, magnetic resonance

imaging, ultrasound and thermography, can measure muscle hemodynamics

and metabolism, muscle tissue properties, or temperature of tissue. Medical

imaging-based methods are feasible to provide quantitative information in

assessing and monitoring muscle spasticity. Portable devices, robotic based

equipment or myotonometry, using information from angular, inertial, torque

or surface EMG sensors, can quantify spasticity with the help of machine

learning algorithms. However, spasticity measures using those devices are

normally not physiological sound. Repetitive peripheral magnetic stimulation

can assess patients with severe spasticity, which lost voluntary contractions.

Neuromusculoskeletal modeling evaluates the neural and non-neural properties

and may gain insights into the underlying pathology of spasticity muscles.

Telemedicine technology enables outpatient spasticity assessment. The newly

developed spasticity methods aim to standardize experimental protocols and

outcome measures and enable quantified, accurate, and intelligent assessment.

However, more work is needed to investigate and improve the e�ectiveness and

accuracy of spasticity assessment.
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Introduction

Spasticity is one of many sensory-motor signs and symptoms

that may be present following an upper motor neuron (UMN)

lesion, causing significant clinical problems such as physical

disabilities, abnormal gait or motor disorders (1, 2). Spasticity is

accompanied by both positive symptoms (e.g., excessive muscle

tonus, stretch reflex, clonus, and spasms) (3) and negative

symptoms (e.g., incoordination, fatigue, weakness, and impaired

motor control) (4), affecting patient’s quality of daily lives and

increase the financial burden on families.

In clinical practice, spasticity is defined as a velocity-

dependent increase in tonic stretch reflexes with exaggerated

tendon jerks resulting from hyper-excitability (5). According

to Lance’s definition, assessing spasticity depends on velocity-

dependent stretch reflex using passive motions. However, other

reflex mechanisms such as cutaneous or nociceptive could also

contribute to increased muscle activations and are difficult to

distinguish from the proprioceptive reflex mechanisms described

by Lance (1). Another study defined spasticity as a sensorimotor

control disorder due to damage to upper motor neurons that

involves intermittent or persistent involuntary muscular activity

(6). The definition is based on disordered sensorimotor control,

which causing involuntary contraction or inappropriate activity of

skeletal muscles, not rely on velocity-dependent or tonic stretch

reflexes (6).

There is no consensus on valid and reliable clinical spasticity

measures, due to the patient’s neurophysiological complexity and

peripheral changes (7). Measurements of spasticity include clinical

scales (3), biomechanical assessment (8) and neurophysiological

methods (9). Clinical scales are easy to use and are not restricted to

additional tools (10). However, the clinical assessment of spasticity

using scales solely depends on physical rehabilitation therapist

experience. The reliability and validity of spasticity scale are

questioned by researchers (3, 11–14).

Objective assessment of spasticity using biomechanical

techniques such as isokinetic dynamometer or pendulum test is

considered a valid measurement in multiple joints and makes

it possible for standardization of assessment protocols (15–

17). Biomechanical methods can measure joint motions and

resistance changes at different angles and speeds during passive

motions (18, 19). Muscle mechanics during active motions are

not considered during spasticity assessment (4). Quantifying

spastic muscles during voluntary contractions is important for

investigating the disordered neuromuscular properties of the

target muscle groups (20). A recent study assessed the voluntary

activation properties of muscles by calculating peak torque, keep

time of the peak torque, and rise time (16). However, there are few

studies investigating spastic muscles under voluntary functional

tasks. The relationship between the spasticity muscle tone and

muscle voluntary activation remains unclear (16, 21).

The mechanisms of spasticity are investigated mostly

from neurophysiological studies (9). Researchers use surface

electromyography (sEMG) to analyze the responses of spastic

muscle groups to active or passive movements or electrical

stimulations (9). The shown by sEMG responses that muscle fiber

conduction velocity, median frequency and mean power frequency

are found smaller on the paretic side than on the unaffected side in

patients with spasticity (4, 22). Other neurophysiological methods

such as Hoffmann reflex (H-reflex) (9) and F-wave (23) were also

used for spasticity measurement. H-reflex and F-wave involve

excitability in the reflex arc and excitability in the alpha-motor

neuron, respectively (23). The mean latency of H-reflex in patients

ranked as 1 or 1+ using the Modified Ashworth Scale (MAS) is

longer than in patients with MAS of 2 (24). The mean amplitude

and mean duration of F-wave are significantly longer in patients

with spasticity than in healthy patients (25). But H-reflex and

F-wave are not used routinely in clinical practice due to the lack of

standardized protocol and outcome indicator (23, 26).

Balci and Luo et al. reviewed previously used methods for

spasticity assessment, such as clinical scales, gait analysis and neural

and non-neural contributionmeasurements (4, 10). However, there

have been many new developments that have not been summarized

since 2016 due to the improvement of evaluation techniques and

growing interest in spasticity research. New developments include

new spasticity scales, medical imaging technologies, spasticity

assessment devices, repetitive peripheral magnetic stimulation

(rPMS), neuromusculoskeletal models and telemedicine-based

spasticity assessments. The recently developed methods provide

alternative or better solutions in spasticity assessment. Our review

aims to investigate spasticity assessment approaches from 2016 to

2022, which can be used as spastic tools in clinics and provide

valuable information for future spasticity research and assessment

tool development. In addition, we believe this time period is

appropriate because it allows us to capture recent advancements

and innovations in spasticity assessment that have emerged over

the past few years. However, we acknowledge the impact of the

COVID-19 pandemic on research and development in various

fields, including spasticity assessment. While it is true that our

chosen time period covers the period affected by the pandemic,

it is important to emphasize that the literature published during

this time still offers valuable insights and contributions to spasticity

assessment. In particular, this period has provided enough data

and research to support our understanding of new spasticity

assessment methods.

Methods

We conducted a web-based search for relevant literature using

the following electronic databases: Scopus, PubMed and Web of

Science. We employed a query based on the following keywords

(‘All fields’ and MeSH): (1) spas∗, (2) hyperton∗, (3) measur∗ or

assess∗ or evaluation (4) cerebral palsy or stroke or spinal cord

injury or multiple sclerosis. The formal logical query was (1 OR 2)

AND 3 AND 4. The search was conducted up until December 4th,

2022.

To be included, the screened papers had to satisfy the following

criteria: (A) inclusion of the specified query in the abstract and/or

title and/or in the keywords, (B) full-paper articles published in

in peer-reviewed journals between 2016 and 2022, (C) availability

in English, and (D) recruitment of human participants affected

by spasticity conditions such as stroke, cerebral palsy, spinal cord

injury and multiple sclerosis.
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After removing duplicate articles, one author screened the

remaining articles based on their titles and abstracts. Subsequently,

two authors conducted a full-text screening to determine the

eligibility of the remaining articles. In cases where the two authors

disagreed on the results for the same article, a third author was

involved in the evaluation process.

A flow chart depicting the selection process is presented in

Figure 1. A total of 185 potential full-text articles were selected

following keyword screening in the database, after accounting

for duplicates articles and evaluating related titles and abstracts.

Further screening of these full-text articles revealed that 94

articles used previous clinical scales such as MAS, MTS, or

MMAS for spasticity assessment. Moreover, 57 articles presented

concepts or trends without reporting new approaches, but only.

Finally, 34 articles were included in the final analysis, and the

spasticity methods proposed in the included studies were classified

into six types (new clinical spasticity scale, medical imaging,

spasticity evaluation device, magnetic stimulation, musculoskeletal

model and telemedicine), which were discussed separately.

Additionally, prior to the discussion, we conducted a review of

the reliability studies of the commonly used clinical spasticity

assessment methods.

Reliability of current clinical spasticity
assessment approaches

Most clinical spastic evaluations depend on changes in

resistance during passive motions at constant such as Ashworth

Scale (AS) (27), Modified Ashworth Scale (MAS) (28) or various

stretch speeds such as Tardieu Scale (TS) (29), Modified Tardieu

Scale (MTS) (30) and Composite spasticity scale (CSS) (31).

Beside clinical scales, the pendulum test is also employed for

spasticity assessment (15). The reliability of these clinical spasticity

assessment methods in different studies has been shown to be

moderate to good (see Table 1).

An examiner moves patient’s joint quickly to rate the level of

resistance and then spasticity level for the target muscle group using

AS and MAS (18). The AS and MAS are rated on a 0–4 scale, with

the MAS having an extra score of 1+, which is described as slight

increase in muscle resistance throughout the range of motion (40).

However, AS demonstrates significant variability among raters (33).

In addition, MAS in the scoring system and related terminology is

vague (28). An updated version of MAS, called Modified Modified

Ashworth Scale (MMAS), is published (11). MMAS removed Grade

1+ and redefined Grade 2. By comparing the reliability of AS and

MAS, it is found that the reliability of AS in measuring spasticity is

poor (11). The Kappa values for AS is 0.17 (SE = 0.21, p = 0.41)

in elbow flexors (11). It is necessary to discontinuing the use of AS

to assess spasticity (33). MAS shows moderate to good reliability in

the hip flexors (ICC = 0.61∼0.87) (32). The reliability of MMAS

in assessing knee extensor spasticity of patients with post-stroke is

more reliable in comparison with AS and MAS, with Kappa values

of 0.72∼0.82 (41).

TS andMTS take into account passive range ofmotion (PROM)

and muscle responses to passive stretch at the possible fastest

stretching rate (30). TS and MTS measure spasticity using two

parameters: the spasticity angle at different stretching speeds (V1,

V2, and V3) and the spasticity grade. The angle is the difference

between the angles of arrest at slower than the natural drop of

the extremity segment due to gravity effect (V1) and of catch-

and-release or clonus at as fast as possible (V3), but V2, which

is the velocity of the limb segment naturally falling under gravity,

is only practical in severely paretic patients (10, 42). Spasticity

grade [0–5] is an ordinal variable that grades the intensity and thus

measures the gain of themuscle reaction to fast stretch (42). A grade

of 0 represents no resistance during passive motion; 1 represents

minimal resistance during passivemotion; 2 represents a clear catch

at a precise angle, followed by release; 3 represents fatigable clonus

occurring at a precise angle lasting <10 s under pressure, followed

by release; 4 represents unfatigable clonus occurring at a precise

angle lasting >10 s under pressure occurring at a precise angle;

and 5 represents the joint cannot be moved. MTS as an updated

version of TS that increases extremities evaluation positions and

the relative difference between slow and fast passive stretching

determines the dynamic component of muscle contracture (43–

45). A study evaluated the intra-rater reliability of MTS in assessing

elbow flexors and ankle plantar flexors of adult stroke patients via

angle of muscle reaction (R1), passive ROM (R2) and dynamic

component (R2-R1) (37). The results showed MTS has very good

reliability in R1, R2, and R2-R1 (ICC = 0.847). MTS is more

appropriate than AS or MAS due to the velocity-dependence

in assessment protocol (29, 45). However, TS and MTS takes

slightly longer time during evaluation spasticity than that AS

and MAS (29). MTS is also difficult to identify clonus reliance

at the higher end of tones, and may exacerbate clonus after an

intervention (46).

The CSS has been shown better to describe plantarflexor

spasticity and to correlate with stretch reflex areas in adults with

hemiplegia (47). CSS assess the three clinical indicators, which

involves scores of tendon jerk, resistance and clonus, respectively

(31). Adding these three scores provided composite spasticity

scores ranging from 0 to 9, 10 to 12, and 13 to 16. This

corresponds to mild, moderate and severe spasticity, respectively.

When evaluation typically developing children and children with

spastic CP, CSS was found to be highly consistent (r > 0.89)

with stretch reflex, M-response areas, and EMG co-contraction

ratios during ankle dorsiflexion (31). Additionally, a significant

negative correlation (r = −0.65, p < 0.05) was found between

elbow flexors spasticity and stretch reflex threshold using CSS

measurements (39).

The pendulum test, which is often applied to the knee extensor

muscles (e.g., the quadriceps), evaluates spasticity by observing

a muscle’s response to a rapid stretch imposed by gravity and

the resulting oscillations between flexion and extension (18).

The pendulum test is subjective, simple, quick to implement,

reproducible, non-invasive, and non-intimidating to patients with

cognitive impairments (48). A recent study used pendulum test

to investigate the relationship between quadriceps spasticity and

gait abnormalities in children with cerebral palsy (CP) (15). The

results showed that swing excursion and relaxation index based on

the pendulum test could differentiate the level of knee extensor

spasticity in children with CP. The test-retest and inter-rater

reliability of pendulum test are good in the children with spasticity

CP and in the typically developing children (ICC = 0.79∼0.95 and

0.88∼0.99, respectively) (15).
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FIGURE 1

Flow chart of article search and selection strategy.

TABLE 1 Reliability of commonly used clinical scales in spasticity assessment.

Scales Muscle groups Reliability References

AS HAM; GAS Three raters assess (ICC= 0.54∼0.78) (32)

EF; KE Three raters assess EF (ICC= 0.58) and KE (ICC= 0.63) (33)

MAS HAM; GAS Three raters assess (ICC= 0.61∼0.87) (32)

HA; KE; KF; APF Two raters assess (ICC= 0.41∼0.73) (34)

MMAS KE Two raters use Cohen kappa test (k= 0.72∼0.82) (35)

WF Two raters use quadratic weighted kappa test (k= 0.92) (36)

TS EF; APF Related to laboratory measurement EF (r= 0.86) and APF (r= 0.62) (29)

MTS EF; APF Rater assess it twice (ICC>0.85) (37)

ADF; KE; HA Two raters assess (ICC= 0.7) (38)

CSS SOL; APF; AD With SR and EMG co-contraction ratios highly consistent (r>0.89) (31)

EF With SR threshold of EF spastic negative correlation (r=−0.65) (39)

AS, Ashworth Scale; MAS, modified Ashworth Scale; MMAS, modified modified Ashworth Scale; TS, Tardieu Scale; MTS, modified Tardieu Scale; CSS, Composite spasticity scale; HAM,

hamstrings; GAS, gastrocnemius; EF, elbow flexor; KE, knee extensor; HA, hip adductors; KF, knee flexor; APF, ankle plantar flexors; WF, wrist flexor; ADF, ankle dorsiflexor; SOL, soleus; SR,

stretch reflex; EMG, electromyography.

Recently developed clinical spastic
scales

Scales are preferred methods in clinical spasticity assessment,

even though the reliability of scales has been questioned by

researchers (49). A series of new scales (50–53), including more

information related to spasticity, are developed to improve the

effectiveness of clinical spasticity assessment (see Table 2).

Patients may use different terms than clinicians to describe

spasticity in clinical practice (56). Clinicians need to gather

information from those patients to differentiate neurological

sensations from specific spasticity symptoms (18). The Numeric

Rating Scale (NRS) is developed to collect information about

spasticity from the patient’s perspective and is a great self-reported

clinical assessment tool. The NRS rates spasticity from 0 to 10

based on patients’ subjective perception, in which 0 stands for no

spasticity and 10 stands for the severe spasticity (50). A recent

study used NRS to assess patient’s self-reported pain and spasticity

and found that the prevalence of spastic disorders can be reported

using NRS (2). Additionally, the test-retest reliability of NRS is
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TABLE 2 Clinical spasticity scales developed in recent years.

Scales Compared
tests

Subjects
(sample
size)

Muscle
groups

Results Characteristics References

NRS AS; MAS ND (23) / Validity of NRS is supported by a

consistent association with PGIC scores;

mean scores of NRS are high than MAS

(4.03 vs. 1.30)

Combined with Patients use

self-reports

(50)

SPAS MAS SCI (6) QUA; HAM SPAS and MAS are correlated; SPAS has

more precise gradation

Based on quantitative data from

two inertial and two EMG units

during pendulum test

(52)

TSS MAS; MTS Stroke (84) EF; WF; APF Agrees with MAS and MTS (r=

0.840∼0.946, r= 0.715∼0.795); TSS

scores are higher during standing

Muscle tone change at different

stretch rates, clonus; dynamic

muscle length

(51)

ASAS MAS; MTS; TS ABI (16)

CP (22)

Stroke (85)

SOL; BIC; WE;

WF; TB-P;

HAM; GAS;

APF

ASAS have a good reliability between

muscle groups (k= 0.75∼0.92) and

between raters (k= 0.87)

Combined merits of TS and MTS;

ASAS confirming a

velocity-dependent increased

response to rapid passive

movement

(53–55)

NRS, numeric rating scale; SPAS, SPAsticity scale; TSS, triple spasticity scale; ASAS, Australian spasticity assessment scale; AS, Ashworth Scale; MAS, modified Ashworth Scale; MTS, modified

Tardieu Scale; TS, Tardieu Scale; ND, neurological disorders; SCI, spinal cord injury; CP, cerebral palsy; ABI, acquired brain injury;/, no description; QUA, quadriceps; HAM, hamstrings; EF,

elbow flexor; WF, wrist flexor; APF, ankle plantar flexor; GAS, gastrocnemius; SOL, soleus; BIC, biceps; WE, wrist extensor; TB-P, tibialis posterior; PGIG, Patient Global Impression of Change;

EMG, electromyography.

considerably better than that of AS (ICC 0.83 vs. 0.53) for assessing

multiple sclerosis (MS) patients with spasticity (57).

The SPAsticity Scale (SPAS) is developed based on torque

measurements during pendulum test (52). The data used to

calculate SPAS were collected by two inertial sensors and two

sEMG recording units. Based inertial information and sEMG

signals, SPAS defines two parameters a and b involving spastic

torque resulting from involuntary reflexive activation of paralyzed

muscles during the pendulum test (52). Parameter a correlates

with the strength of the torque and b with the duration of the

relaxation to the neutral position (52). The results suggested that

SPAS and MAS are correlated in six subjects. Interestingly, SPAS

give a more precise gradation (SPAS involving rational number,

MAS involving integer) for spasticity assessment due to objective

measure. However, the reliability of SPAS is unknown, studies

involving most sample sizes and randomized control trial (RCT)

are necessary to evaluate the effectiveness of SPAS.

The Triple Spasticity Scale (TSS) takes into account movement

speeds, clonus states and dynamic muscle length to capture mild

change in spastic limbs (58). TSS includes the following three

subsections: (1) the increased resistance, which is scored according

to two stretches (very slow (r2; <5◦/s) and as fast as possible (R1))

and the increased speed (R1–R2), which is scored according to the

assessor’s perception; (2) clonus, which is divided into three levels

according to the sustained time of the clonus; and (3) dynamic

muscle length, also known as angle difference between R1 and R2,

which is converted into 5 grades (58). TSS scores range from 0 to

10, in which 0 indicating no spasticity and 10 representing severe

spasticity. The test-retest reliability of TSS total score is good (ICC

= 0.905∼0.918) (51). Moreover, MTS and TSS scores are similar (r

= 0.840∼0.946, p= 0.000) in upper limb spasticity when evaluating

different body positions such as sitting and standing in patients

with post-stroke hemiplegic (51). TSS is also more sensitive to

standing posture changes in spastic hemiplegia such as TSS scores

are significantly higher in standing than sitting (P < 0.05) (51).

Australian Spasticity Assessment Scale (ASAS) takes into

account the velocity –dependent features of TS and MTS and uses

the similar scoring framework to MAS for clinical compliance (54).

ASAS only considers two factors, the presence or position of the

“catch” and the presence of resistance after the capture (55). ASAS

has a prescribed test procedure, is quick and easy to perform,

and has an unambiguous five-grades scoring system (54). ASAS

has found good reliability (ICCs = 0.86∼0.90) in its assessment

of upper and lower limb spasms (53). Additionally, the inter-

rater reliability of ASAS in adult stroke patients with spasticity is

good in elbow flexors (kappa = 0.77∼0.87), wrist flexors (kappa =

0.72∼0.82) and ankle plantar flexors (kappa= 0.72∼0.85) (55).

Clinical scales are the preferredmethod of spasticity assessment

in a simple and convenient manner, especially MAS and MTS

are used more frequently in the clinical evaluation of spasticity

than spasticity scales. It is now widely used in different settings

such as outpatient and scientific research. Although these clinical

scales have reported good reliability in the assessment of spasticity,

a combination of objective methods such as instrumentation

is necessary.

Medical imaging based spasticity
assessment

Medical imaging technologies, such as near-infrared

spectroscopy (NIRS) (59), magnetic resonance imaging (MRI)

(60), quantitative ultrasound technology (QUS) (61) thermography

(62) and spasticity scale based on ultrasonography (63, 64), are

used to assess spasticity (see Table 3).

NIRS is a non-invasive optical technique for detecting

real-time muscle hemodynamics and metabolism (73). The

widely used outcome measures of NIRS include oxygenated

hemoglobin (O2Hb) concentration, deoxygenated hemoglobin

(HHb) concentration, total hemoglobin (tHb) concentration, and
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TABLE 3 Medical imaging methods based on spasticity assessment.

Methods Compared
tests

Subjects
(Sample
size)

Muscle
groups

Results Characteristics References

NIRS MAS Stroke (23) FAF Spastic muscles the pattern of change

was not the same for (tHb)and (O2Hb)

compared normal muscle same

direction

Detect blood volume and oxidative

capacity changes

(65)

MRI MAS CP

[TB (45)]

[PB (48)]

Lower limb

muscles

Differentiate preterm spastic types and

neuroimaging patterns using MRI

scanning

Compare the cross-sectional area

and volume of spasticity muscles

(60)

PI MAS Stroke (24)

Normal (16)

BBM Spastic muscle appears more echogenic

and higher PI than healthy muscle

Measure morphology, structure

and echogenicity of muscles

(61, 66)

USI MAS; TS Stroke/normal

(7/8)

Normal (10)

BBM Strain rates of spasticity muscles is

lower; intraobserver reliability is good in

stroke patients (r= 0.85); good

reliability in BBM (ICCs>0.75)

The strain of USI varies with the

deformation of spastic tissue

(67, 68)

SWE MAS; MTS Normal (19)

Stroke/normal

(31/21)

BBM; QM Faster through stiff tissues; SWV

increases with the level of spasticity;

good reliability in BBM and QM (ICC >

0.75)

Measure mechanical properties of

tissues

(69, 70)

TG MAS Stroke (40)

Stroke (100)

Pemiplegia

(33)

Lower limb

muscles

Temperature of spasticity side is lower;

temperature is affected by level of

spasticity

Observe changes of temperature in

spasticity muscles

(62, 71, 72)

HS CMFCS CP (60) GAS; SOL Weak correlation to GMFCS; moderate

inter-rater reliability (kappa=

0.60∼0.73).

Evaluate echo intensity of muscles (63)

MHS MAS; UI; GS Spasticity (45)

Normal (5)

Muscles

affected by

spastic

Significantly correlates with GS (r=

0.829); excellent reliability (ICCs=

0.76∼0.81)

Grades 2 and 3 are clearly defined (64)

NIRS, near-infrared spectroscopy; MRI, magnetic resonance imaging; PI, pixel intensity; USI, ultrasound strain imaging; SWE, shear wave elastography; TG, Termography; HS, heckmatt scale;

MHS, modified heckmatt scale; MAS, modified Ashworth Scale; TS, Tardieu Scale; MTS, modified Tardieu Scale; CMFCS, gross motor function classification system; UI, ultrasound imaging;

GS, grayscale scores;CP, cerebral palsy; TB, term born; PB, preterm born; FAF, forearm flexors; BBM, biceps brachii muscle; QM, quadriceps muscle; GAS, gastrocnemius; SOL, soleus; tHB, total

hemoglobin; O2HB, oxygenated hemoglobin; SWV, shear wave velocity.

the tissue oxygenation index (TOI%), (an index of local tissue

oxygenation calculated from O2Hb and HHb) (59). In addition,

NIRS can detect blood volume differences and oxidative capacity

changes between normal and dysfunctional muscles (74). NIRS

is easy to use in clinics (59). Although lack of high-quality

RCT studies, preliminary results have shown that NIRS correlates

with other spastic measures such as the MAS and sEMG (59).

However, it is important to note that NIRS can provide direct

information on muscle metabolism, but its measurement depth

is limited to the superficial layer of muscle tissue (75, 76).

Therefore, due to the limited of themeasurement depth of the NIRS

technique, its relationship with the MAS scale and the myographic

electromyographic signal is only applicable to superficial muscles.

For deep muscle research, other techniques or methods are needed.

MRI can provide information on muscles’ elastic parameters

and changes in muscle tissue properties before and after an exercise

(77). A standard MRI scanner applies mechanical vibration to

muscle via the skin, creating shear waves that penetrate the tissue

and propagate along muscle fibers (77). Spasticity can be assessed

by comparing the cross-sectional area and volume of spasticity

muscle using MRI (61). For example, when comparing children

with CP and adult with spasticity hemiplegia, a reduction in the

volume of lower extremity muscles that are more affected by

spasticity was found (78). Additionally, MRI can be used to identify

various neuroradiologic patterns in children with spastic diplegia

(60). A higher-resolution MRI could reveal previously unnoticed

abnormalities in these children, particularly when using more

sophisticated imaging protocols (60).

QUS techniques, including pixel intensity (PI) of grayscale

image (61), ultrasound strain imaging (USI) (67), and shear

wave elastography (SWE) (79), can identify the echogenicity

and mechanical properties of normal and spastic tissues. PI of

grayscale image can evaluate muscles’ morphology, structure, and

echogenicity by quantifying tissue echogenicity using computer-

aided computation (61). Spastic muscles appear more echogenic

and have a higher PI in comparison with healthy muscles (80).

Additionally, the PI of grayscale image values is also significantly

higher in the post-stroke spastic biceps brachii muscle than those

in post-stroke non-spastic and healthy biceps brachii muscles (66).

This result is consistent with results of Stecco et al. (80). However,

the correlation between PI of grayscale image values and MAS

and TS scores for biceps brachii muscle are poor (R2 = 0.01,

p= 0.95) (66).

Quantitative echogenicity alone cannot assess the mechanical

properties of the spastic muscles, muscle’s architectural parameters,

such as muscle thickness, fascicle length and pennation angle, have

a closer relation to spasticity (61, 81). USI may be a better choice.

USI is defined as the strain caused by ultrasound transducers or
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other devices compressive force on tissue (82). However, a variety

of strain with the depth of tissue deformation (61). Strain is higher

in softer tissues because it can withstand greater deformation and

is lower in stiff tissue due to limited deformation. A recent study

used USI to compare the strain of spasticity muscles (e.g., biceps

brachii) to those of healthy muscles (67). USI has a good inter and

intra-observer reliability in the assessment of biceps brachii muscle

spasticity (ICCs > 0.75) (68). It is worth noting that USI focus on

spasticity muscles on the upper limbs and lack of studies on lower

limb muscle groups.

SWE also can be used as a tool for measuring the

mechanical properties of tissues (61). Measurements of SWE often

use propagated waves (also called shear waves), produced by

ultrasound push pulses when operation (83), traveling laterally and

perpendicular to the transducer’s acoustic ultrasound waves (84).

Shear waves travel more easily longitudinally along muscle fibers

than to perpendicularly (85) and also faster through stiff tissue

than soft tissue (86). The identification of spasticity by SWE is

firstly established by quantifying muscle stiffness (61) such as a

greater shear wave velocity (SWV) in stiff biceps (69). A recent

study found that SWV is increased when the ROM of a spasticity

muscle decreased (66). Additionally, a positive correlation was

found between SWV and MTS and MAS (R2 = 0.662, P < 0.001

and R2 = 0.536, P = 0.002), and also found that SWV increases

with the increased level of spasticity (70).

Thermography measures infrared radiation emitted by the

surface of the body being studied (87). Lower limbs of patients

with hemiplegia have lower temperatures than healthy subjects

(71). The temperature of normal tissues, including skin, is affected

by spasticity in pathological tissues. Therefore, the temperature

of the spasticity limb is lower than the non-spasticity side (62).

A new dynamic thermography technique assesses the quadriceps

during a static load for healthy subjects and patients with spastic

quadriplegia (72). The results found that the local temperature at

the end of muscle contraction an increased in healthy subjects, and

decreased in patients with spasticity (72). However, thermography

is limited to the specific testing environment (such as controlled

indoor temperature and air flow speed) (62).

The scale based on medical imaging has brought new findings

for the assessment of spasticity. The Heckmatt Scale (HS) visually

evaluates spasticity by echo intensity (EI) of the spastic muscles in

the transverse view using a B-type real-time ultrasonography with

a linear probe (63, 88). The spasticity is graded semi-quantitatively

according to HS, Grade I is normal, grade II represents an increase

in EI while bone echo is still distinct, grade III indicates a marked

increase in muscle EI with a reduced bone echo and grade IV

indicates a very high muscle EI and a complete loss of bone echo

(89). This result prove that the echogenicity of themuscle measured

with the HS is related to the diagnostic nerve block (DNB)

outcomes confirming the relationship between the echogenicity

and rheological muscle properties and between DNB and spasticity.

To a more Heckmatt grade relates a lower DNB outcome. This is

in accordance with the ability in differentiating contracture from

the spasticity of the two methods. HS has moderate inter-rater

reliability (kappa = 0.60∼0.73) in assessment spasticity muscles

(63). However, HS is difficult to differentiate spasticity at Grades

2 and 3 since muscles normally are not homogenously affected

throughout its length, hindering precise distinctions (90). Modified

Heckmatt Scale (MHS) is developed to obtain greater precision

between grades, especially for muscles with mild to moderately

increased EI (e.g., Grades 2 and 3) (64). MHS had moderate

inter- and intra-rater reliability in assessing muscle echogenicity for

patients with upper and lower limb spasticity (ICCs = 0.76∼0.81)

and was consistent with quantitative grayscale scores (r = 0.829,

p < 0.001) (64). However, it should be noted that although the

MHS is widely used for spasticity, its validation was conducted

only 2 years ago. The validation of MHS holds significant value

for advancing spasticity assessment and treatment. Additionally,

information about nerve blocks is also provided, which can

contribute to a better understanding of spasticity pathology.

Medical imaging techniques enable physicians to rely less on

subjective tests such as MAS and MTS when managing spasticity.

Medical imaging is feasible to provide quantitative information

in the assessment and monitor the treatment effects of muscle

spasticity (61). It is noteworthy that although medical imaging

techniques can assess the properties of spasticity muscles, they do

not seem to be able to quantify their resistance changes. Therefore,

it is necessary to combine with other methods to quantify tension

when using medical imaging techniques to evaluate spasticity.

Spasticity assessment devices

Developing tools suitable for spasticity evaluation is a goal

that clinicians or researchers are committed to. Many spasticity

evaluation devices are developed such as portable-sensor based

devices (49), robots-assisted equipment (91) and myotonometry

(92) (see Table 4).

Portable-sensor based spasticity assessment devices are

generally developed based on angular (99), inertial (95), torque

(93) or sEMG sensors (49). Inertial sensors are a popular choice for

human motion tracking due to their small size, light weight, and

high accuracy (100). A recent study developed several supervised

learning classifiers, using linear discriminant analysis, support

vector machines, decision tree, random forests, and multilayer

perceptrons, to discriminate spasticity levels of elbow muscle

group based on data from three inertial sensors placed on the

dorsal side of the elbow (94). The results showed that machine

learning algorithms based on inertial data performed well in

classification spasticity of the elbow muscle with the accuracy

of 95.4%. Additionally, visual biofeedback was added to the

inertial sensor-based device to provide additional information

such as abnormal muscle response in addition to the passive

stretching velocity of the lower extremities (95). The device has

good test-retest reliability in knee flexor and extensor, and ankle

plantar-flexor (ICCs > 0.8).

Robot-aided spastic devices may improve the accuracy of

spasticity assessment and also can be used in clinical settings for

patient-specific rehabilitation (91). Robot-assisted devices are often

developed based on a variety of equipment such as goniometers,

pressure sensors and EMG electrodes (101). A recent study

found that it is possible to automate the assessment of spasticity

using robotic exoskeletons (96). The robot can assess upper limb

spasticity under several active- or passive-motion conditions, such
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TABLE 4 Devices used for spasticity assessment in recent years.

Devices Compared
tests

Subjects
(sample
size)

Muscle
groups

Results Characteristics References

Portable-

Sensors

EMG; TSRT Stroke/normal

(16/10)

EF; EE

BBM

Strong correlations with clinical scales (r

= 0.86) and TSRT (r=−0.89)

Record data of spasticity limbs

when stretched at low, moderate

and high velocities

(93)

MAS; ST CVA/SCI

(45/3)

EF; EE; Up to 95.4% for accuracy Machine-learning algorithms;

monitoring spasticity changes

(94)

MTS CP (28) APF; KF

KE

Good test-retest and inter-rater

reliabilities (ICC>0.8).

Monitoring spasticity changes;

small size; high accuracy

(95)

Robot-Aided MTS; ROM Normal (15) WF; WE Promising in assessing wrist spasticity Allows three degree of freedom

wrist movements

(91)

MAS; EMG Stroke (5) EF; EE Detect changes in MAS; recording

spasticity parameters

Automatically assessing spastic

muscles during active and passive

motions

(96)

MAS; MTS;

GMFCS

CP (16) HF; HE

KF; KE

Inter-tester ICC 0.32∼0.70; better

reliability at fast and medium speeds

Moves the lower limb at a

controlled velocity; recording joint

resistance

(97)

Myotonometry MAS; ST Hemiplegia

(14)

BBM Negative correlation with ST (r < −0.5) High sensitivity (92)

ROM; ST CP/MS/normal

(9/8/8)

AF Inter- and intra-rater reliability in all

groups (ICC= 0.62∼0.91)

Recognize spasticity by short pulses

not depend on resistance changes

in stretching

(98)

EMG, electromyography; TSRT, tonic stretch reflex threshold; ST, Stretch test; MAS, modified Ashworth Scale; MST, modified Tardieu Scale; ROM, range of motion; GMFCS, gross motor

function classification system; CVA, cerebral vascular accident; SCI, spinal cord injury; CP, cerebral palsy; MS, multiple sclerosis; EF, elbow flexor; EE, elbow extensor; BBM, biceps brachii

muscle; APF, ankle plantar flexor; KF, knee flexor; KE, knee extensor; WF, wrist flexor; WE, wrist extensor; HF, hip flexor; HE, hip extensor; AF, ankle dorsiflexor.

as recording elbow joint angles and flexion and extension torques.

For example, a pediatric exoskeleton was used to assess hip and

knee flexor and extensor spasm while standing in children with CP

(97). The exoskeleton measured subject’s joint resistance to passive

movements at controlled velocities. The inter-rater reliability is

better during fast and medium movement speed compared to

slow speeds in assessing lower limb spasticity with the ICC

ranged between 0.32 to 0.70 (all p ≤ 0.01). It has been suggested

that automatically robot-assisted devices could be alternatives for

clinical spasticity evaluation.

Myotonometry is a new technology in quantifying spasticity by

investigating the pathophysiological mechanisms of spastic muscles

(10, 92). Myotonometry differs from traditional stretch techniques,

using a myotonometry probe to send many brief pulses to spastic

muscles, rather than to detect the change in resistance during

passive stretching (4). Rydahl and Brouwer found that the ankle

stiffness, measurement by myotonometry, in patients with chronic

stroke is significantly higher (P < 0.02) than in healthy individuals

(102). Yamaguchi et al. evaluated passive muscle-tendon-joint

stiffness, reflex mediated stiffness and range of movement using

myotonometry for spastic patients and demonstrated a good to

excellent inter- and intra-rater reliability (ICCs = 0.62∼0.91) (98).

However, Li et al. compared the validity of myotonometry and

passive stretch measurements in spasticity assessment and found

significant negative relationships between the stretch test and the

myotonometer measurements (r < −0.5, p < 0.05) (92). More

studies are needed to evaluate the effectiveness of myotonometry.

Although these instruments (wearable sensor, robot-assisted

devices and myotonometry) based on spasticity assessment have

shown reliability. However, they are not as widely used as clinical

scales. The main limitation is the lack of well-equipped laboratories

and experienced practitioners. In addition, these devicesmay not be

as suitable for clinical settings. For example, this may increase the

burden on clinical physiotherapists learning to operate spasticity

assessment equipment and may be more suitable for scientific

studies to explore the pathological mechanism of spasticity rather

than for outpatient spasticity assessment.

Repetitive peripheral magnetic
stimulation

Electrical stimulation is often used to stimulate muscles

and nerves. Motion can be stimulated by providing enhanced

sensory input to the paretic limb (103). High frequency repetitive

peripheral magnetic stimulation (rPMS) can induce muscular

contractions by stimulating of the terminal branches of motor

nerves (104) (see Table 5). rPMS has been successfully applied

in neurologically impaired adults and CP children to assess

spasticity, to improve ranges of motions and motor functions

(112, 113). Han et al. compared the effect between magnetic

and electrical stimulation and found that the average maximum

peak torque from each subject induced by magnetic stimulation

is higher than that of electrical stimulation (9.5 ± 4.8 vs. 4.4 ±

2.9Nm) (114).

rPMS is an effective approach since some patients with severe

spasticity are unable to perform sustained voluntary-contraction

movements (105). rPMS can activate specific muscle groups such as

quadriceps (114) and elbow flexors (115) by using a figure-of-eight

coil. Researcher assessed spasticity of wrist flexors by calculating
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TABLE 5 Other spasticity assessment methods.

Methods Compared
tests

Subjects
(sample
size)

Muscle
groups

Results Characteristics References

rPMS MAS; MTS

FMS; PMS

Stroke (32)

Stroke/normal

(24/12)

EF; EE; SF; SE;

WF

Reduce spasticity; very good test-retest

reliability (ICC= 0.85∼0.99); reduced

amplitude, velocity and acceleration of

rPMS-induced movement for stroke

group

Painless and non-invasive; can

assess and treat spasticity;

induce muscle contractions

(104, 105)

NMSM GMFCS; MTS CP/TD (11/9) HAM; VAS;

RF; BFS; GAS

Predict knee angle, muscle activity, and

fiber length and velocity; hamstrings of

CP are stiffer than TD

Predict muscle behavior at

different speeds

(106)

MAS; EMG Stroke/normal

(3/3)

EF; EE EF activated small; only one EMG

parameter need to be adjusted in this

model compared other model

Uses muscle activation and

musculotendon dynamics to

calculate internal torque

(107)

MAS Stroke (18) EF; EE Clinicians can perceive the resistance

from the simulator, but larger than

actual resistance

Building spasticity simulator;

mimics and measure resistance

and joint motion according to

patients’ actual response

(108)

Tele-

medicine

MAS Spasticity/normal

(26/35)

WF; WE; SA;

AF

94% agreement between two

tele-neurologists in remote screening

spasticity (kappa= 0.875)

Telemedicine and in-person

screen spasticity

(109)

PROM; MAS Stroke (12) EF The agreements for the strength and

the spasticity of EF between in-person

and remote assessments are (k= 0.643)

and (k= 0.308), respectively

In-person vs. remotely

assessment for spasticity

(110)

QOL Stroke/TBI

(123/28)

EF 72.2% of patient-perceived increase in

spasticity and 72.9% perceived decrease

of quality of life; 7.3% of patients use

telemedicine tools

Self-report based on

questionnaire

(111)

rPMS, repetitive peripheral magnetic stimulation; NMSM, neuromusculoskeletal model; FMS, Fugl–Meyer scale; PMS, passive motion stretch; MAS, modified Ashworth Scale; MTS, modified

Tardieu Scale; GMFCS, Gross Motor Function Classification System; EMG, electromyography; PROM, passive range of motion; QOL, quality of life; CP, cerebral palsy; TD, typically developing

children; TBI, Traumatic brain injury; EF, elbow flexor; EE, elbow extensor; SF, shoulder flexor; SE, shoulder extensor; HAM, hamstring; VAS, vastus lateralis, medialis and intermedius; RF,

rectus femoris; BFS, biceps femoris short head; GAS, gastrocnemius; WE, wrist extensor; SA, shoulder adductor; AF, ankle dorsiflexor.

the difference between the maximum passive ROM and the rPMS-

induced movement and showed a good test-retest reliability (ICC

> 0.85) (105).

Numerous studies have also explored the effect of rPMS on

rehabilitation, in which rPMS can significantly reduce spasticity

in patients with central nervous injuries regardless of single

or multiple stimulations (116, 117). Conforto et al. found

that rPMS can improve motor performance of the paretic

upper limb in patients with stroke, and has no reported

serious adverse events such as pain and joint deformity

(103). The evaluation protocol of rPMS is similar to MTS,

involving ROM measurement. The main difference between

rPMS and MTS is that rPMS can induce physiological muscle

contraction rather than passive stretches (105). Use of rPMS will

predictably improve spasticity assessment and rehabilitation in

the future.

It is should be noted that current studies using rPMS in the

assessment of spasticity are limited to the upper extremities, and

rPMS may not be appropriate for the assessment of patients with

lower limb spasticity. Although current studies have demonstrated

its reliability in the assessment of upper extremity spasticity,

validation in the assessment of lower extremity spasticity is

also needed.

Neuro-musculoskeletal model-based
spasticity assessment

Neuromusculoskeletal models could gain insights into the

underlying pathology of spastic muscles (118) (see Table 5).

Analyzing spastic muscle behaviors using neuromusculoskeletal

model could yield valuable information on tissue and muscle reflex

activities (106). However, developing valid neuromusculoskeletal

models is very challenging due to the complexity of spasticity

muscle behaviors. Moreover, evaluating the neuromusculoskeletal

models are also complex, need validating and training with several

types of experimental data (e.g., joint angle, angular velocity,

resistance or passive ROM) (119).

van der Krogt et al. conducted spasticity and contracture

assessment of the hamstring muscles in children with CP using a

neuromusculoskeletal model (106). The model is modified from

Gait 2392 in OpenSim platform. The model is used to evaluate the

left knee, which could move freely, and all muscles were removed

except for those around the left knee. Researchers simulated

muscle spasticity behavior during slow and fast passive stretches

using forward dynamics algorithms based on the modified model.

During on the simulation, sEMG signals recorded are used as

the input and the internal torques are calculated using muscle
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activation dynamics and muscle-tendon dynamics (106, 107).

A new study has introduced a neuromusculoskeletal model to

simulate a passive wrist extension test to evaluate the neural and

non-neural properties of spastic wrist flexors by modeling the

stretch reflex pathway (120). The results showed that patients with

moderate and severe spasticity had significantly higher stiffness

than controls.

A recent study simulated actual spasticity responses in patients

with stroke based on a haptic model of MAS (108). This requires

the use of MAS to assess patient’s spasticity response involving

resistance and joint motion. Each grade of MAS was quantified

by using three spasticity parameters (e.g., catch angle index,

catch magnitude index and post-catch torque shape index) (108).

A model of MAS elbow spasticity was developed based on

the parameters. The results showed that the duration of the

catch was successfully mimicked by two experienced clinicians,

but not the magnitude of elbow resistance. The elbow model

may lack reliability in spasticity measurement and thus further

investigation is needed. Therefore, the existing results show that

the musculoskeletal model is feasible to evaluate spasm, but at

present, most of the research is focused on scientific research, and

few clinical reports.

Telemedicine based spasticity
assessment

The COVID-19 pandemic has impacted the field of physical

medicine, especially in the spasticity outpatient evaluation, making

the diagnosis more difficult. The emergence of telemedicine may

be one of the solutions to solve this dilemma (see Table 5). A

recent study introduced the procedure of conducting an outpatient

telemedicine rehabilitation or rehabilitation visit based on a

virtual framework in which the clinician guides the caregiver

through using tele-communication technologies in the evaluation

of spasticity (121).

A number of studies have focused on and investigated the

reliability of tele-evaluation of spasticity. Harper et al. (109) used

telemedicine technology to screen spasticity and compared the

results with in-person evaluation. They found that telemedicine

assessment is similar to in-person evaluation (e.g., two examiners

in this study) with the accuracy of 94% (kappa = 0.875, 95% CI:

0.640–1.000). Verduzco-Gutierrez et al. guided caregivers through

remote access technology for outpatient assessment of spasticity

(122). The evaluation includes active or passive motions as well as

functional movement tasks, quality of life and self-report spasticity

assessment (122). However, the tele-assessment of spasticity lacks

reliability verifications and only some non-urgent evaluations were

performed such as routine follow-up.

Kim et al. discovered that the agreements for the strength

and the spasticity of elbow flexor between in-person and remote

assessments were substantial (kappa = 0.643) and fair (kappa

= 0.308), respectively (110). De Donno et al. showed that tele-

evaluation of spasticity is inadequate and only 7.3% of patients can

be accessed, as it involves a lot of ethical, medico-legal and technical

issues (111).

A recent study summarized the potential, challenges and

recommendations for telemedicine in long-term neurological

diseases and investigated how telemedicine can be used effectively

(123). Patients can easily access medical services through tele-

communication technology during the COVID-19 pandemic, and

look forward to continue to develop after the pandemic ends.

The development of telemedicine needs multilateral cooperation

among patients, caregivers and health care professionals especially

with government support. Therefore, expanding the use of

telemedicine has profound implication for those with spasticity

who have mobility impairments. The current use of telemedicine to

assess spasticity lacks systematic procedures and checklists. More

studies on the validity and reliability of telemedicine in spasticity

assessment are needed in the future. It is important to note that

a telemedicine assessment requires the participation of several

people, such as a guardian or caregiver who are remotely guided by

a physical therapist. It may be more suitable for bedridden patients

with spasticity. In addition, there is no effective consensus on

telemedicine assessment as a transitionalmethod for the assessment

of spasticity in the context of the COVID-19 pandemic. The

telemedicine assessment mechanism should be further improved in

the future.

Conclusion

This review article has presented an overview the methods

developed for the assessment of spasticity from 2016 to 2022

and explores their feasibility. The newly developed spasticity

methods aim to standardize experimental protocols and outcome

measures, enabling quantified, accurate, and intelligent assessment.

However, it is important to note that spasticity patients often

exhibit more pronounced pathological during active movements

rather than passive movements. The current evaluation methods

tend to prioritize passive evaluation while overlooking assessment

during active motion. Therefore, future research should focus on

combining active and passive motor assessments and incorporating

patient self-reports to provide a comprehensive evaluation of

spasticity. By considering both active and passive aspects, we can

obtain a more holistic understanding of spasticity and improve the

accuracy of assessment. Further exploration in this direction will

contribute to advancing the field of spasticity assessment.
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