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Introduction: Acute ischemic stroke (AIS) and lung adenocarcinoma (LUAD) are

associated with some of the highest morbidity and mortality rates worldwide.

Despite reports on their strong correlation, the causal relationship is not fully

understood. The study aimed to identify and annotate the biological functions of

hub genes with clinical diagnostic e�cacy in AIS and LUAD.

Methods: Transcriptome and single-cell datasets were obtained from the Gene

Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). We identified

the di�erentially expressed genes (DEGs) upregulated in AIS and LUAD and

found 372 genes intersecting both datasets. Hub genes were identified using

protein-protein interaction (PPI) networks, and the diagnostic and prognostic

utility of these hub genes was then investigated using receiver operating

characteristic (ROC) curves, survival analysis, and univariable Cox proportional

hazard regression. Single-cell analysis was used to detect whether the hub genes

were expressed in tumor epithelial cells. The immune microenvironment of AIS

and LUADwas assessed using theCIBERSORT algorithm. The protein expression of

these hub genes was tracked using the Human Protein Atlas (HPA). We calculated

the number of positive cells using the digital pathology software QuPath. Finally,

we performed molecular docking after using the Enrichr database to predict

possible medicines.

Results: We identified themolecular mechanisms underlying hub genes in AIS and

LUAD and found that CCNA2, CCNB1, CDKN2A, and CDK1 were highly expressed

in AIS and LUAD tissue samples compared to controls. The hub genes were

mainly involved in the following pathways: the cell cycle, cellular senescence,

and the HIF-1 signaling pathway. Using immunohistochemical slices from the HPA

database, we confirmed that these hub genes have a high diagnostic capability for

AIS and LUAD. Further, their high expression is associated with poor prognosis.

Finally, curcumin was tested as a potential medication using molecular docking

modeling.

Discussion: Our findings suggest that the hub genes we found in this study

contribute to the development and progression of AIS and LUAD by altering the

cellular senescence pathway. Thus, they may be promising markers for diagnosis

and prognosis.
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1. Introduction

Human health is in peril from conditions like cancer and

stroke (1). Over 795,000 acute ischemic stroke (AIS) occurrences

are reported each year in the United States alone, making it the

second most frequent cause of mortality and long-term disability

worldwide (2). A study found that in 2020, the incidence and

mortality rates of stroke in China were 505.2 and 343.4 per 100,000

person-years, respectively (3). The proportions of acute ischemic

stroke due to atherosclerosis and cardiogenic embolism were 39%

and 22%, respectively (4). AIS is a multifactorial disease influenced

by atherosclerosis, hypertension, alcohol consumption, smoking,

and D-dimer levels. In many low-income and middle-income

nations, stroke incidence and fatality rates have increased in recent

decades (5). Genetic variables, which are essential for determining

the etiology of AIS, are suggested by epidemiological research to be

connected to the prevalence of stroke (6).

One of the molecular mechanisms of AIS includes immune

activation, which can lead to both neuroprotective and neurotoxic

effects (7, 8). Thrombolysis and antiplatelet therapy are currently

the main treatment methods for stroke, but it is unclear

whether these treatments improve prognosis in patients (9). Lung

cancer is the leading cause of cancer-related deaths globally.

Additionally, lung cancer has a terrible prognosis (10, 11). The

most common histological subtype of malignant lung cancer is

lung adenocarcinoma (LUAD). Deaths are mostly attributed to

cancer cell invasion and distant metastasis (12). Gene abnormalities

are the initial factors that influence the biological behavioral

changes of heterogenic cancer cells, including cell signaling and

the immune microenvironment. According to reports, several

genes play a role in the development of LUAD tumors (13–

15). During tumor progression, changes in genes that mediate

important biological processes can occur, resulting in the rapid

proliferation of malignant cells. However, the mechanism by which

this process occurs is still unclear (16). As a result of studies on

the molecular basis of lung cancer, programmed death ligand 1

and epidermal growth factor receptor tyrosine kinase inhibitors are

two newly emerging treatment targets. Even though lung cancer

treatment choices have increased thanks to genetic testing, novel

targeted therapy, and immunotherapy, its 5-year survival rate is

as low as 20% in many nations (10, 17), and the recurrence rate

remains high (18). Recently, an increasing number of reports

have documented AIS caused by malignant tumors (19) and

demonstrated that patients with lung cancer and metastatic cancer

display a higher risk of stroke. Notably, the cumulative incidence of

stroke among lung cancer patients was 5.1% (20). The connection

between lung cancer and stroke significantly decreased the patients’

life longevity and quality (19). LUAD may lead to multiple acute

cerebral infarction lesions involving multiple arterial blood supply

areas (21). CCNB2 may be a possible target against lung cancer

and AIS, according to earlier research (22). Moreover, the stroke

is the second most frequent neurological condition associated with

death in cancer patients. Risk factors for cancer-related AIS include

high levels of D-dimer, fibrinogen breakdown products, and C-

reactive protein (23). LUAD and AIS are closely associated with

the occurrence of gene abnormalities. However, the regulatory

mechanisms of the genes involved have not yet been elucidated.

Therefore, it is crucial to comprehend how they interact and find

relevant indicators to provide a plan for diagnosis and treatment.

In this study, we used bioinformatics to identify hub genes in AIS

and LUAD, investigated their biological functions, and determined

their clinical significance.

2. Materials and methods

2.1. Data sources

Using the expression data of AIS in the GEO database, we

discovered the expression data and clinical details about LUAD

on the Xena platform. The inclusion criteria were as follows: (i)

case and control groups, (ii) microarray data of mRNA, (iii) the

specimen was a peripheral blood sample or tissue, and (iv) Homo

sapiens. The GSE122709 dataset was included according to the

above criteria, including five control peripheral blood samples

and 10 AIS peripheral blood samples. The Cancer Genome Atlas

(TCGA)-LUAD array from the Xena platform was selected, which

included 59 surrounding normal samples and 524 tumor samples.

Furthermore, we also downloaded LUAD validation datasets

GSE42127, GSE68465, GSE50081, GSE13231, and GSE31210. In

addition, we downloaded the validation datasets of AIS (GSE58294

and GSE140275) from GEO. All of these datasets met the above

inclusion criteria. Datasets obtained were subjected to logarithmic-

scale conversion and other data processing. We downloaded the

single-cell dataset GSE146100 and then did quality assurance and

data filtering.

2.2. Di�erential gene expression analysis

We performed a difference analysis using the R package

“limma”. Differential genes were defined as those with a P-value

< 0.05 and |log2FC (fold change)| ≥ 1 values. The number of 372

differentially expressed genes (DEGs) was found after using a Venn

diagram to find the intersecting genes.

2.3. Functional analysis

We examined the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) of the elevated

DEGs using the R package “clusterProfiler.” P-values < 0.05

were used to determine whether an enrichment function was

significant. Cellular components, molecular functions, and

biological processes are all included in the GO category. The top

10 GO biological processes were chosen in ascending order of

P-values. Ten significant KEGG in total were found. The increased

DEGs were annotated using the disease ontology (DO) analysis R

package “DOSE”. Gene set enrichment analysis (GSEA) was used

to define hub genes to pinpoint the signaling pathways connected

to AIS and LUAD. Patients were split into two groups (control

and case group) based on the levels of expression of the four hub

genes. GSEA analysis reveals differences in signaling pathways.

The gene sets with a significant enrichment were then sorted.
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FIGURE 1

The flow chart for this study.

GSEA was used to investigate the relationship between illness

categories and biological processes. The cutoff was established at

P < 0.05.

2.4. Building a protein-protein interaction
(PPI) network and choosing hub genes

We chose DEGs from the KEGG pathway for cellular

senescence for the PPI network. Using the STRING internet

database (http://stringdb.org), we looked for connections between

proteins. We constructed a PPI network for genes with a rating

scale >0.4 using Cytoscape.

2.5. Immune infiltration analysis

CIBRSORT was used to estimate the proportion of immune

cells in the AIS gene expression matrix. We use the R package

“ggplot2” to draw the boxplots. Statistics were deemed significant

at P < 0.05.

2.6. Receiver operating characteristic (ROC)
analysis

We investigated the mRNA expression levels of the hub

genes in patients with AIS and LUAD using ROC curves

TABLE 1 The sample information of AIS and LUAD.

Accession Controls Patients Upregulated genes

GSE122709 5 10 4,452

TCGA-LUAD 59 524 2,013

and boxplots. To create the ROC curves, we utilized the

R package “pROC”.

2.7. Survival analysis

TCGA-LUAD expression data and clinical data were used to

conduct a survival analysis using the R packages “survminer” and

“survival”. The prognosis of LUAD patients was examined using

Kaplan-Meier (KM) analysis. The time-dependent ROC curve

(timeROC) method was applied to assess the hub genes prediction

accuracy at 1, 3, and 5 years.

2.8. Analysis of single-cell data and
identification of cell subpopulations

We downloaded the scRNA-seq dataset GSE146100 of LUAD.

We used the TISCH database (http://tisch.comp-genomics.org)

and Maestro analysis for quality control, clustering and cell type

annotation, making the expression of four hub genes in the

epithelial cell type comparable.
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FIGURE 2

KEGG and GSEA. (A) KEGG of 372 upregulated DEGs in AIS and LUAD. (B) We conducted GSEA on 372 upregulated DEGs in LUAD.

2.9. Protein expression and validation

Information about the distribution of proteins in human

organs and cells can be found in the HPA database (https://

www.proteinatlas.org). We acquired immunohistochemistry

(IHC) pictures of LUAD tissues and investigated the differential

protein expression of hub genes in matched HPA normal

tissues. QuPath, a program for digital pathology, was utilized to

count the positive cells. We analyzed The Clinical Proteomic

Tumor Analysis Consortium (CPTAC) dataset using the

UALCAN tool (https://ualcan.path.uab.edu). The protein

levels of the four hub genes were compared between LUAD and

normal tissues.

2.10. Drug prediction and molecular
docking

We used the DSigDB dataset in Enrichr (http://

amp.pharm.mssm.edu/Enrichr) for drug prediction of

hub genes. Structural information of curcumin was

downloaded from the pubChem compound database
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FIGURE 3

GSEA of CDKN2A in AIS and LUAD. (A) CDKN2A is involved in the

main pathway of AIS. (B) CDKN2A is involved in the main pathway of

LUAD.

(https://pubchem.ncbi.nlm.nih.gov). The 3D structures

of the proteins of the four hub genes were downloaded

using the PDB database (https://www.rcsb.org). “Dockeasy”

(https://www.dockeasy.cn/) was used to achieve

molecular docking.

2.11. Statistical analysis

All data were analyzed using R version 4.2.1. Statistics were

deemed significant at P < 0.05.

TABLE 2 The top 10 genes in the PPI network for LUAD and AIS.

Rank Node

1 CCNA2

1 CCNB1

1 CDKN2A

1 CDK1

5 CCNE2

5 CCNB2

5 FOXM1

5 E2F1

9 MYBL2

9 CHEK2

3. Results

3.1. Di�erently expressed genes (DEGs) in
AIS and LUAD

The flowchart of our study is as follows (Figure 1). The

GEO database provided the AIS-related GSE122709 dataset.

Expression data for LUAD were obtained from the Xena

database. The specific sample information for the two datasets

is listed below (Table 1). Using the standard of |log2FC| >

1 and P < 0.05, 4452 and 2013 upregulated DEGs were

identified in the AIS and TCGA-LUAD datasets, respectively.

We found 372 upregulated DEGs intersecting the two datasets,

which may be connected to the pathophysiology of AIS

and LUAD.

3.2. Functional analyses

The 372 elevated DEGs were examined to seek into the

shared biological processes and signaling pathways. The GO

analysis revealed that these genes were mainly enriched in

nuclear, organic fission, and mitotic nuclear divisions. The

main KEGG enrichment pathways were the cell cycle, cellular

senescence, and the HIF-1 signaling pathway in AIS and LUAD

(Figure 2A). DO analysis revealed that the DEGs were linked

to many malignancies. These results imply that LUAD and AIS

development and incidence may be caused by the differential

expression of these genes. These pathways were primarily

enriched in the cell cycle, cellular senescence, and human T-

cell leukemia virus 1 infection in LUAD, according to the 372

elevated DEGs discovered by GSEA (Figure 2B). In contrast, no

related pathways were enriched in the 372 upregulated DEGs

in AIS. In AIS, CDKN2A is mainly localized in the calcium

signaling pathway, NOD-like receptor signaling pathway and

olfactory transduction pathway (Figure 3A). In LUAD, CDKN2A

was mostly implicated in alpha-linolenic acid metabolism, drug
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FIGURE 4

Boxplots and ROC curves of four hub genes in AIS and LUAD. (A) Boxplots of the four hub genes in AIS. (B) Boxplots of the four hub genes in LUAD.

(C) ROC curves of the four hub genes in AIS. (D) ROC curves of the four hub genes in LUAD (***, p < 0.001; ****, p < 0.0001; N, normal; T, tumor).

metabolism-cytochrome P450, and Linoleic acid metabolism

(Figure 3B). We selected DEGs in the cellular senescence pathway

using KEGG for analysis. We discovered hub genes and elucidated

the potential link between DEG-encoded proteins. Using the

STRING database, we built a PPI network and identified the

top 10 genes (Table 2), and then we defined four hub genes

CCNA2, CCNB1, CDKN2A, and CDK1 from the top 10 genes

using Cytoscape.

3.3. Validation of hub genes expression and
assessment of diagnostic value

The hub genes displayed considerably higher expression in

LUAD and AIS patients compared to the control group. In

addition, we checked the expression of four hub genes in

AIS using the validation datasets (GSE58294 and GSE140275).

According to our findings, AIS patients had higher levels of
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FIGURE 5

Immunohistochemistry slices of CCNA2 and CCNB1. (A) Immunohistochemistry slices of normal lung tissues of CCNA2. (B) Immunohistochemistry

slices of LUAD of CCNA2. (C) Immunohistochemistry slices of normal lung tissues of CCNB1. (D) Immunohistochemistry slices of LUAD of CCNB1.
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FIGURE 6

Immunohistochemistry slices of CDK1 and CDKN2A. (A) Immunohistochemistry slices of normal lung tissues of CDK1. (B) Immunohistochemistry

slices of LUAD of CDK1. (C) Immunohistochemistry slices of normal lung tissues of CDKN2A. (D) Immunohistochemistry slices of LUAD of CDKN2A.
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FIGURE 7

Survival analysis of LUAD. (A) Survival analysis of CCNA2. (B) Survival

analysis of CCNB1. (C) Survival analysis of CDK1. (D) Survival analysis

of CDKN2A.

CCNA2, CCNB1, and CDK1 expression compared to the control

group (Supplementary Figure 1). However, the four hub genes are

insignificant in the GSE140275 dataset, which would account for

the limited sample size. Single-cell data analysis revealed that

10996 cells were divided into 11 clusters. The results indicated

that CCNA2, CCNB1, CDK1 and CDKN2A were expressed in

cancer epithelial cells (Supplementary Figure 2). The diagnostic

effectiveness of these hub genes was further investigated using

ROC curves, which revealed that these genes have great diagnostic

efficacy for LUAD and AIS (Figure 4). This work analyzed

immunohistochemistry slices from LUAD patients and typical

tissues from healthy people. The four hub genes’ protein expression

levels were higher in LUAD tissues than those in healthy tissues

(Figures 5, 6). We used the digital pathology software QuPath to

count the number of positive cells in LUAD and normal lung tissue

figures. As a result, we observed that there were more positive

cells overall in the LUAD field than there were in the normal lung

tissue (Supplementary Figure 3). It’s showed that four hub genes

had higher protein levels in LUAD compared with normal tissues

(Supplementary Figure 4).

3.4. Survival analysis and validation

We performed a survival study where patients were classified

into high-risk and low-risk groups depending on their gene

expression level to confirm the prognosis of the four hub genes in

LUAD. The findings revealed that hub genes with high expression

have a poor prognosis in LUAD (Figure 7). It was revealed that the

OS time of patients with a high risk score was significantly shorter

than that of patients with a low risk score. The AUC values of

1,3 and 5 years of four hub genes were about 0.5–0.6 (Figure 8).

By plotting KM curves and univariate Cox regression analysis, we

obtained 5-year AUC, HR and 95% CI (Supplementary Table 1).

3.5. Immune infiltration analysis in LUAD
and AIS

Immune infiltration is essential for the onset, prognosis,

and treatment of numerous disorders. While the control group

had higher levels of neutrophils, AIS patients had higher levels

of resident memory CD4+ T cells, monocytes, and eosinophils

(Figure 9A). As seen in the image, several immune cells are involved

in the formation of LUAD (Figure 9B). In AIS patients, only CDK1

is associated with CD8+ T cells (Figure 10A). In LUAD patients,

infiltration levels of resident memory CD4+ T cells, and activated

dendritic cells were positively linkedwithCDKN2A overexpression.

The immunological infiltration of resident memory CD4+ T cells,

macrophage, activated dendritic cells, mast cells resting, activated

NK cells and neutrophils were favorably connected with CDK1

and CCNA2 overexpression. However, it was not discovered that

CCNB1 was connected to immune cells (Figure 10B).

3.6. Molecular docking of curcumin with
hub genes

Potential medicines were identified based on transcriptome

features in the DSigDB database of Enrichr. Curcumin is

considered as a potential drug for AIS treatment and later analysis.

Moreover, we predicted the binding mechanism of curcumin with

four hub genes using molecular docking. It is commonly accepted

that the likelihood of action increases with decreasing ligand

and receptor binding energies. The binding energies of curcumin

with four hub genes (CCNA2, CCNB1, CDK1, CDKN2A) were

−6.999 kcal/mol,−5.87 kcal/mol,−7.1 kcal/mol,−5.366 kcal/ mol,

respectively. These findings demonstrate the highly stable binding

of curcumin to four hub genes (Figure 11).

Frontiers inNeurology 09 frontiersin.org

https://doi.org/10.3389/fneur.2023.1119160
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Qin et al. 10.3389/fneur.2023.1119160

FIGURE 8

The ROC curves of four hub genes for predicting 1, 3, and 5-year mortality risk in the TCGA-LUAD dataset. (A) CCNA2. (B) CCNB1. (C) CDK1. (D)

CDKN2A.

3.7. DEGs of di�erent etiologies of AIS

According to the analysis above, CCNA2, CCNB1, CDK1,

CDKN2A are the hub genes for AIS and LUAD. Results of DEGs

of AIS caused by atherosclerosis and cardiac embolism shown by

heatmaps (Supplementary Figure 5).

4. Discussion

The leading cause of adult disability and the second leading

cause of death globally, behind ischemic heart disease, is stroke

(24). Nearly 85% of lung cancer cases are non-small cell lung cancer

(NSCLC), with the most prevalent histological subtype, LUAD,

having a high mortality and recurrence rate (25). Stroke patients

have an increased incidence of cancer, including lung cancer (26).

A previous clinical study indicated that AIS may be a unique

precursor to LUAD. In patients with LUAD combined with AIS,

LUAD occurs due to the occurrence of AIS. The prevalence of

lung cancer in the stroke cohort was 5.3 per 1000 person-years

(27, 28). Lung cancer patients are most likely to experience a stroke

within one year after diagnosis. The risk of stroke occurring in lung

cancer patients is more than two times higher than that in people

without cancer (HR 2.40, 95% CI 1.53–3.78) (23, 29). However,

the causal relationship, genetic mechanisms, and their interactions

between LUAD and AIS are still unclear. It is crucial to study the

biological processes that underlie AIS and LUAD. The cerebral

atherosclerosis-related gene PITX2, RGS7, NKX2-5, NKX2-5, and

ZFHX3 are involved in AIS. The genes of AIS brought on by

cardiogenic embolism are TM4SF4-TM4SF1, EDNRA, HDAC9-

TWIST1, and LINC01492 (30). Our study shows that the hub genes

of AIS with LUAD are CCNA2, CCNB1, CDK1, and CDKN2A.

Meanwhile, our findings suggest that LUAD-induced AIS is distinct

from AIS produced by large artery atherosclerosis and cardiac

embolism in terms of genes. These genes’ prognostic and diagnostic

capabilities in LUAD were examined, and their mRNA levels were

significantly elevated in AIS and LUAD. Herein, we investigated

the link between AIS and LUAD using our four hub genes and

explored the underlying biological mechanisms shared between

these two diseases.
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FIGURE 9

Immune infiltration of AIS and LUAD. (A) AIS. (B) LUAD (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant; N, normal; T, tumor).
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FIGURE 10

Immune correlation heatmaps of four hub genes in AIS and LUAD. (A) AIS. (B) LUAD (*, P < 0.05; **, P < 0.01; ***, P < 0.001).
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FIGURE 11

Molecular docking of curcumin with four hub genes. (A) CCNA2. (B) CCNB1. (C) CDK1. (D) CDKN2A.
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GO, KEGG, and DO enrichment analyses were performed

on the 372 DEGs that intersecting both datasets. DEGs are

mainly enriched in nuclear division, organelle fission and mitotic

nuclear division, and they are associated with the biological

behavior of LUAD and the neuroprotective inhibition observed

in AIS. The primary enriched pathways in KEGG are the cell

cycle, cellular senescence, and the HIF-1 signaling pathway.

The cellular senescence pathway was highlighted as the main

contributor of this study, and the overexpression of four

cellular senescence-related genes was closely related to AIS

and LUAD. HIF-1 was found to have a positive connection

with infarct size in AIS (31). However, HIF’s impact on

neuronal survival following a stroke is still debatable (32).

HIF-1-α is associated with aggressiveness in lung cancer (33).

Our investigation revealed that the DEGs were linked to

many malignancies.

According to one definition, cellular senescence is an ongoing

proliferative arrest brought on by various stressors. Furthermore,

senescence and hyperplastic pathology are both related to a type

of stress response known as cellular senescence (34). Numerous

neurological diseases, including neurodegenerative conditions like

Alzheimer’s disease, Parkinson’s disease, and stroke, are linked

to cellular senescence (35). Cellular senescence of the cells

happens as AIS, which develops and progresses (36). AIS and

neurological damage are impacted by the senescence-associated

secretory phenotype (SASP) (37). Cellular senescence is considered

the new hallmark of cancer, as malignant and non-malignant

tumor cells develop a SASP that stimulates cancer recurrence

and metastasis (38). However, it was once believed that cellular

senescence contributed to the prevention of tumors; therefore, the

mechanism of cellular senescence in cancer is not welldefined and

should be further explored (39). Recently, it was demonstrated

that a high expression of cellular senescence genes correlates with

a poor LUAD prognosis (40). This is in line with our study,

where our four hub genes CCNA2, CCNB1, CDKN2A, and CDK1

were related to cellular senescence pathways. We investigated

genes that were highly expressed in LUAD and that were linked

to poor prognosis. It is crucial to deepen our understanding

of how cellular senescence in AIS and LUAD functions, how it

interacts with the immune system, and how it affects prognosis

because the mechanism underlying these diseases has not yet been

fully uncovered.

CCNB1 combines with CDK1 to form a complex that

enables cells to enter the G2/M phase to promote mitosis (41,

42). Numerous malignancies have high CCNB1 expression (43),

increase apoptosis and cell death via controlling the p53 signaling

pathway (44), accumulate in the degenerating brain regions of

stroke patients, and can participate in neuronal death (45). The

regulation of the mitotic cell cycle is influenced by CDK1 (46).

According to studies, CDK1 may contribute to stroke through

an oxidative mode of damage (47) and may also be a potential

biomarker for NSCLC (48). CDK1 is upregulated in patients

with LUAD and accelerates tumor progression (49). CCNB1 and

CDK1 enable the sustained proliferation of NSCLC by regulating

the pRb protein (50). In our study, survival analysis showed

that LUAD and AIS patients with overexpression of CCNA2,

CCNB1, and CDK1 had a poor prognosis and that these genes

can be used as predictors of prognosis. In addition, these

genes have high diagnostic abilities in patients with LUAD and

AIS and could later serve as biomarkers for predicting these

two diseases.

The cell cycle is regulated by CDKN2A, a cyclin-dependent

kinase inhibitor that encodes the p16 protein (51). CDKN2A

is a ferroptosis and cuproptosis gene (52, 53). When iron-

dependent lipid hydroperoxides build up to deadly amounts,

controlled cell death known as ferroptosis occurs (54). Cuproptosis

is another type in which excess copper leads to cell death by

aggregation of mitochondrial proteins (55). According to reports,

CDKN2A is a locus for AIS risk. It has been linked to an

elevated risk of AIS in the Han Chinese population and in

native West African men. Genetic variation at the CDKN2A

locus also predicts stroke in hypertensive patients (56–58). Lung

cancer is associated with genetic mutations in CDKN2A, such

as genomic deletions (59). The high expression of CDKN2A

in LUAD is correlated with a bad prognosis. High CDKN2A

expression may be associated with increased immune cell numbers,

immune checkpoint enhancement, and elevated chemokine levels

(60). CDKN2A is often regarded as a tumor suppressor gene;

however, hypermethylated CDKN2A may be responsible for poor

cancer prognosis (61). These four hub genes were verified in the

HPA database and discovered to be related to LUAD prognosis,

indicating they are crucial to the onset and development of

LUAD. Curcumin has been shown to have neuroprotective and

neuroregenerative properties. It can also be utilized as a drug for

the treatment of ischemic stroke (62). This is in line with our

findings, which shows that curcumin has a strong affinity to four

hub genes. Curcumin might be a potential therapeutic target for

the therapy of AIS, according to our drug prediction and molecular

docking results.

This research has several restrictions. First, this study only

employed a few samples. Second, we did not confirm the hub genes

discovered in this study based on data from earlier experiments.

However, their expression levels were validated.

According to our research, CCNA2, CCNB1, CDKN2A, and

CDK1 are significant components in AIS and LUAD.With multiple

analyses, we explored AIS and LUAD pathogenesis as well as their

common molecular mechanisms and observed high expression

of these four hub genes, high diagnostic power in patients, and

poor prognosis. Our results shed new light on improving AIS

and LUAD prognosis. Further research into early intervention

and treatment using our identified hub genes is warranted.

Overall, this study identified CCNA2, CCNB1, CDKN2A, and

CDK1 as hub genes involved in the cellular senescence pathway

and may serve as diagnostic and prognostic indicators for AIS

and LUAD.
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