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Objective: Microelectrode recording (MER) guided subthalamic nucleus deep

brain stimulation (STN-DBS) under local anesthesia (LA) is widely applied in the

management of advanced Parkinson’s disease (PD). Whereas, awake DBS under LA

is painful and burdensome for PD patients. We analyzed the influence of general

anesthesia (GA) on intraoperative MER, to assess the feasibility and e�ectiveness

of GA in MER guided STN-DBS.

Methods: Retrospective analysis was performed on the PD patients, who

underwent bilateral MER guided STN-DBS inWuhanUnionHospital fromJuly 2019

to December 2021. The patients were assigned to LA or GA group according to the

anesthetic methods implemented. Multidimensional parameters, including MER

signals, electrode implantation accuracy, clinical outcome and adverse events,

were analyzed.

Results: A total of 40 PD patients were enrolled in this study, including 18 in LA

group and 22 in GA group. There were no statistically significant di�erences in

patient demographics and baseline characteristics between two groups. Although,

the parameters of MER signal, including frequency, inter-spike interval (ISI) and

amplitude, were obviously interfered under GA, the waveforms of MER signals

were recognizable and shared similar characteristics with LA group. Both LA and

GA could achieve e�ective electrode implantation accuracy and clinical outcome.

They also shared similar adverse events postoperatively.

Conclusion: GA is viable and comparable to LA in MER guided STN-DBS for PD,

regarding electrode implantation accuracy, clinical outcome and adverse events.

Notably, GA is more friendly and acceptable to the patients who are incapable of

enduring intraoperative MER under LA.

KEYWORDS

general anesthesia, local anesthesia,microelectrode recording, subthalamic nucleus deep

brain stimulation, Parkinson’s disease
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Introduction

Parkinson’s disease (PD) is one of the most common

neurodegenerative diseases, characterized by resting tremor,

rigidity, bradykinesia, postural instability and gait disturbance (1).

Bilateral subthalamic nucleus deep brain stimulation (STN-DBS)

that relieves motor complications as well as non-motor symptoms,

has become a cornerstone in the management of advanced PD

during the past decades (2, 3).

Generally, the procedure of electrode implantation is

implemented under local anesthesia (LA), allowing for

intraoperative microelectrode recording (MER) and test

stimulation during DBS surgery (1, 3). Indeed, there are several

advantages, when STN-DBS is performed under LA. Since STN

could not be visualized directly in the past, intraoperative MER

and test stimulation were employed to identify the effective

therapeutic target, to compensate for the brain shift and to reduce

the stimulation-related side effects (1, 4). Up to now, LA is still the

preferred anesthetic method to perform STN-DBS in most centers.

Intraoperative MER and test stimulation have become the standard

procedures in DBS surgery (4). However, awake DBS under LA is

painful and burdensome for PD patients. They have to withstand

the clinical testing and surgical procedures with a prolonged

period of off-medication, suffering from anxiety and exhaustion.

Moreover, the patients are required to wear a stereotactic frame on

their head and endure the entire surgical procedures with the frame

fixed to the operation table, which may result in intolerable pain

and psychological sequelae (5, 6). There are also increased risks

of hemorrhage and infection, if unintended large motions occur

during the surgery (1, 7). Notably, patients with extreme anxiety,

reduced cooperation, severe convulsions and difficult breathing are

incapable of enduring awake DBS under LA (1, 8).

Owning to these concerns of awake DBS under LA, it has been

a growing trend to perform STN-DBS under general anesthesia

(GA) (7, 9, 10). Advances in magnetic resonance imaging (MRI)

techniques have made it possible to visualize STN directly and

enable MRI-guided STN-DBS to emerge as an alternative to

conventional surgery (11). Likewise, intraoperative MER can also

be performed to verify the neurophysiological target under GA

(12). Implementation of MER guided STN-DBS surgery under

GA can shorten operative time and improve patient comfort (4).

However, it remains controversial whether GA interferes with

MER signals, electrode implantation accuracy, clinical outcome

and adverse events. To shed further light on these key issues, we

performed a retrospective cohort study to assess the influence of

anesthetic methods on MER guided STN-DBS.

Abbreviations: GA, general anesthesia; LA, local anesthesia; MER,

microelectrode recording; STN-DBS, subthalamic nucleus deep brain

stimulation; PD, Parkinson’s disease; MRI, magnetic resonance imaging;

UPDRS, unified Parkinson’s disease rating scale; H&Y stage, Hoehn and Yahr

stage; MMSE,mini mental state examination; LEDD, levodopa equivalent daily

dose; TCI, target-controlled infusion system; CT, computed tomography;

BIS, bispectral index; AC-PC line, anterior commissure-posterior commissure

line; IPG, implantable pulse generator; ISI, inter-spike interval; PIGD, postural

instability and gait disturbance.

FIGURE 1

Consort flow diagram.

Methods

Patients and clinical assessment

PD patients who were referred to our center for bilateral MER

guided STN-DBS from July 2019 to December 2021, were included

in this study. Exclusion criteria were: (a) previous PD related

surgery; (b) medication history, which might have influences on

MER signals; (c) MER data lost, incomplete, or with quality

problems; (d) lost to follow-up within 6 months. The consort

flow diagram was presented as Figure 1. All patients included in

this study were preoperatively assessed with the application of

Unified Parkinson Disease Rating Scale III (UPDRS-III), Hoehn

and Yahr (H&Y) Staging, and Mini Mental State Examination

(MMSE) under the condition of off-medication, which was defined

as medication discontinued over 12 h. Preoperative levodopa

equivalent daily dose (LEDD) was also recorded as the baseline.

Anesthetic management

The anesthetic method was determined mainly according to

the patients’ preferences. Whereas, patients who were incapable

of enduring awake DBS, including those with extreme anxiety,

reduced cooperation, severe convulsions and difficult breathing,

were operated under GA. We also showed reasons for the patients

who were operated under GA in Supplementary Table 1. According

to the anesthetic method applied, patients were assigned to LA

group and GA group. In LA group, patients received local scalp

anesthesia with 0.5% ropivacaine and kept conscious without

sedation during MER and electrode implantation. In GA group,
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patients were administered a bolus of 2 mg/kg BW propofol and

1 mg/kg BW remifentanil for induction. Then, anesthesia was

maintained at 2 mg/kg BW propofol and 1 mg/kg BW remifentanil

by a target-controlled infusion (TCI) system. Bispectral index (BIS)

was applied to monitor the depth of anesthesia. The infusion of

anesthetics was adjusted before MER and BIS was maintained at

40–60 to ensure the recognition of STN signals.

Surgical procedures

All patients are required to take a preoperative 3-T MRI scan

and a stereotactic frame-based computed tomography (CT) scan.

Then, the CT image was co-registered withMRI image to determine

the target site, the trajectory angles (arc angle, ring angle) and the

target coordinates (X1, Y1, and Z1). The X1, Y1 and Z1 coordinates

were defined as the distance from the target site to the midpoint

of anterior commissure-posterior commissure (AC-PC) line in

medial-lateral (X-), anterior-posterior (Y-) and superior-inferior

(Z-) axes respectively. The planned trajectories were kept away

from intracranial vessels according to MRI images.

When the surgical preparation was finished, bilateral burr holes

were made. MERs were performed in 1 to 3 trajectories per side

and started at 6mm above the planned target depth. The trajectory

with the maximum length of STN was selected as the optimal

trajectory and the site with the strongest STN signal was selected

as the implantation site. Only in LA group, intraoperative test

stimulations were implemented to reduce the stimulation-related

symptoms and side effects. Subsequently, the quadripolar DBS

electrode was implanted into the confirmed target and connected

with the implantable pulse generator (IPG). Postoperative CT

scan was applied to verify the electrode placement and exclude

hemorrhage in 24 h.

MER analysis

MER signals in the target where DBS electrode was implanted

in were selected for analysis. MER signals were band-pass filtered

(Butterworth filter) at 300–6000Hz and sampled at a rate of

24 kHz. Only MER signals that had stable activities significantly

over the baseline amplitude of background noise were selected and

a threshold was applied to detect the spikes. The spike sorting for a

single unit was performed by NeuroExplorer (version 5.311). The

MER parameters, including spike frequency, inter-spike interval

(ISI), minimum and maximum value of waveform, were recorded

for further analysis. The borders of STN were identified according

to the changes in firing patterns and the length of STNwas recorded

for further analysis.

Outcome analysis

The outcome analysis included electrode implantation accuracy

evaluation and postoperative clinical assessment. Postoperative

CT image was co-registered with preoperative MRI image to

evaluate the electrode implantation accuracy. The coordinates of

electrode implantation site (X2, Y2, and Z2) were defined as the

distance from the center of implanted electrode to the midpoint

of AC-PC line in X-, Y-, and Z-axes. Vector errors (1X=|X1-X2|,

1Y=|Y1-Y2|, 1Z=|Z1-Z2|, mm) and Euclidean distance ([1X2

+ 1Y2 + 1Z2]1/2, mm) were employed to assess the distance

between the electrode implantation site to the intended target site,

yielding the electrode implantation accuracy. The length of STN

was also applied to verify the suitable target. Postoperative clinical

assessment was performed in 6 months. UPDRS (-I, -II, -III, -IV)

was applied to assess the motor and non-motor symptoms

under on-DBS/off-medication condition. Postoperative LEDD was

recorded and compared with the baseline. Reduction in LEDD was

regarded as a parameter demonstrating the efficacy of STN-DBS.

Within 24 h postoperatively, the patients’ experiences were assessed

using Visual Analog Scale (VAS) and Kolcaba General Comfort

Questionnaire (GCQ). The adverse events were also recorded for

further analysis.

Statistical analysis

Statistical analysis was conducted with the use of SPSS software,

version 26.0 (IBM Corp). Continuous variables with normal

distribution were evaluated by Student’s t-test and described as

mean value with standard deviation (SD). Categorical variables

were evaluated by chi-square test and presented as frequency with

percentage (%). P-value < 0.05 was considered as statistically

significant difference.

Results

Demographics and baseline characteristics

A total of 40 PD patients who experienced bilateral MER

guided STN-DBS in our center, were enrolled in this study. Among

these cases, 18 patients who experienced STN-DBS under LA,

were assigned to LA group and 22 patients who experienced

STN-DBS under GA, were assigned to GA group. The LA and GA

groups have similar demographics and baseline characteristics of

patients, including sex, age at onset of PD, age at surgery, duration

of PD, UPDRS-III (off-medication), H&Y stage (off-medication),

MMSE (off-medication) and LEDD (P > 0.05). These results were

presented in Table 1.

MER analysis

Altogether, there were 80 quadripolar DBS electrodes

implanted in the STN of PD patients. The typical STN MER

signals under LA and GA were analyzed and presented in Figure 2.

In comparison with LA group, STN MER signals in GA group

exhibited a decreased frequency (LA 45.4 ± 17.8Hz vs. GA 34.4 ±

19.3Hz, P < 0.05) and an increased ISI (LA 25.4 ± 11.1ms vs. GA

39.8± 26.3ms, P < 0.05). Meanwhile, the amplitudes of STNMER

signals in GA group were reduced, with the minimum of waveform

increased (LA −21.1 ± 9.5mv vs. GA −14.3 ± 9.0mv, P < 0.05)

and the maximum of waveform decreased (LA 27.8 ± 11.5mv vs.
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TABLE 1 Demographics and baseline characteristics of PD patients.

LA (n = 18) GA (n = 22) P-value

Male, No. (%) 8 (44.4) 6 (27.3) 0.26

Female, No. (%) 10 (55.6) 16 (72.7) 0.26

Age at onset of PD

(year), mean±SD

55.8± 4.0 52.8± 7.5 0.14

Age at surgery (year),

mean±SD

63.2± 6.0 60.8± 7.4 0.27

Duration of PD (year),

mean±SD

8.0± 2.4 8.0± 2.8 0.96

UPDRS-III (med off),

mean±SD

50.2± 12.4 51.5± 11.3 0.74

H&Y stage (med o�), No. (%)

1 0 (0) 0 (0) -

2 6 (33.3) 11 (50.0) 0.29

3 10 (55.6) 9 (40.9) 0.36

4 2 (11.1) 2 (9.1) 0.83

5 0 (0) 0 (0) -

MMSE (med off),

mean±SD

28.6± 0.9 28.05± 1.5 0.21

LEDD (mg/day),

mean±SD

1491.7± 393.4 1527.3± 413.1 0.78

UPDRS-III, unified Parkinson’s disease rating scale III; H&Y stage, Hoehn and Yahr stage;

MMSE, mini mental state examination; LEDD, levodopa equivalent daily dose.

GA 11.6 ± 7.0mv, P < 0.05). Whereas, the length of STN showed

no statistically significant difference between LA and GA groups

(LA 5.3± 0.7mm vs. GA 5.2± 0.7mm, P > 0.05) (Table 2).

Electrode implantation accuracy

Vector errors (1X=|X1-X2|, 1Y=|Y1-Y2|, 1Z=|Z1-Z2|, mm)

and Euclidean distance ([1X2 + 1Y2 + 1Z2]1/2, mm) were

employed to assess the distance between the electrode implantation

site to the intended target site. As shown in Table 3, vector errors

were (0.53 ± 0.30mm, 0.52 ± 0.39mm, 0.40 ± 0.33mm) and

(0.54 ± 0.39mm, 0.47 ± 0.36mm, 0.54 ± 0.41mm) in LA group

and GA group respectively. The Euclidean distances were 0.95 ±

0.38mm in LA group and 1.03± 0.43mm in GA group. There was

no statistically significant difference between LA and GA groups

in Vector errors and Euclidean distance (P > 0.05). Therefore,

similar electrode implantation accuracy was achieved in LA and

GA groups.

Clinical outcome

Postoperative clinical assessment was performed in 6 months.

UPDRS (-I, -II, -III, -IV) was applied to assess the motor and

non-motor symptoms under on-DBS/off-medication condition.

Actually, significant improvement of motor and non-motor

symptoms with UPDRS (-I, -II, -III, -IV) scores declined were

observed in both LA and GA groups. However, changes in UPDRS

(-I, -II, -III, -IV) scores at 6 months from baseline were similar

between LA and GA groups. Likewise, there were no statistically

significant differences in the separate subscores of tremor, rigidity,

bradykinesia, postural instability and gait disturbance (PIGD)

between LA and GA groups. Postoperative LEDD was also

significantly reduced at 6 months and the reduction of LEDD were

similar between LA and GA groups (LA −805.6 ± 453.4 mg/day

vs. GA −988.6 ± 507.1 mg/day, P > 0.05). Furthermore, patients

in GA group achieved lower VAS scores (LA 5.6 ± 1.7 vs. GA

3.3 ± 1.1, P < 0.05) and higher GCQ scores (LA 54.7 ± 9.5 vs.

GA 63.3 ± 8.9, P < 0.05) than those in LA group, indicating that

patients experienced less pain and more comfort in GA group.

Unexpectedly, the duration of surgery was similar between LA

and GA groups (LA 222.6 ± 44.4min vs. GA 211.0 ± 30.9min,

P > 0.05) (Table 4).

Adverse events

There were no hardware-related postoperative adverse events

occurred in this study. However, both LA and GA groups had one

patient experienced non-symptomatic intracerebral hemorrhage.

Two patients in GA group were diagnosed as postoperative

pulmonary infection. No surgical site infection happened in both

groups. In addition, several stimulation-related complications

occurred in this study. For example, each group had one patient

suffering from mild depression, one patient in LA group and two

patients in GA group endured insomnia, and one patient in GA

group complained of knee pain postoperatively.

Discussion

Since DBS surgery was introduced by Benabid and his

colleagues in 1987, this technique had experienced continuous

improvement (13). Currently, MER guided STN-DBS under LA

has become the preferred therapeutic method for advanced PD

patients with motor fluctuation and dyskinesia after long-term

medication (3, 13). Since awake DBS under LA is painful and

burdensome for PD patients, more and more neurosurgeons have

tried to perform MER guided STN-DBS under GA (1). GA helps

to alleviate anxiety, ease pain and improve cooperation during the

entire surgical procedures (14, 15). However, the debate is still

ongoing concerning the influence of GA on MER signals, electrode

implantation accuracy, clinical outcome and adverse events inMER

guided STN-DBS.

MER signals

The effect of general anesthesia on MER is controversial but

likely depends on the type and dose of a particular anesthetic agent,

underlying disease, and surgical target (14, 16–18). The commonly

used anesthetic agents in DBS are propofol, remifentanil, fentanyl,

desflurane, sevoflurane, isoflurane and dexmedetomidine (17).

Among them, propofol is a short-acting, easily titratable and very

predictable drug that has been reported in many centers for general
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FIGURE 2

Analysis of MER signals. (A, B) Typical STN MER signals under LA and GA. The signal activities that were significantly over the baseline amplitude of

background noise were selected and presented as spikes. Timestamps marked the specific time of detected spikes. (C, D) The spike sorting for a

single unit in LA and GA groups, performed by NeuroExplorer (version 5.311). (E, F) The waveforms of spike under LA and GA. The voltage was

displayed as mean value and deviation.
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anesthesia or sedation during DBS surgery (18). Propofol functions

by activating gamma-aminobutyric acid (GABA) receptors, thus

its influence on MER may depend on the number of GABAergic

neurons in the selected target. The lateral and medial globus

pallidus and substantia nigra are mainly constituted by GABAergic

neurons, while STN is mainly constituted by glutamatergic neurons

TABLE 2 MER signal analysis of STN.

LA (n = 36) GA (n = 44) P-value

Frequency (Hz),

mean±SD

45.4± 17.8 34.4± 19.3 0.01∗

ISI (ms), mean±SD 25.4± 11.1 39.8± 26.3 0.00∗

Min of Waveform (mv),

mean±SD

−21.1± 9.5 −14.3± 9.0 0.00∗

Max of Waveform (mv),

mean±SD

27.8± 11.5 11.6± 7.0 0.00∗

Length of STN (mm),

mean±SD

5.3± 0.7 5.2± 0.7 0.88

MER, microelectrode recording; STN, subthalamic nucleus; ISI, inter-spike interval. The

symbol ∗p < 0.05 and there are statistically significant differences.

TABLE 3 Electrode implantation accuracy.

LA (n = 36) GA (n = 44) P-value

Vector errors (mm), mean±SD

1X 0.53± 0.30 0.54± 0.39 0.84

1Y 0.52± 0.39 0.47± 0.36 0.60

1Z 0.40± 0.33 0.54± 0.41 0.10

Euclidean distance

(mm), mean±SD

0.95± 0.38 1.03± 0.43 0.37

Vector error: 1X=| X1-X2 |, 1Y=| Y1-Y2 |, 1Z=| Z1-Z2 |; Euclidean distance = (1X2 +

1Y2 +1Z2)1/2 .

(19–21). Therefore, propofol may have little effect on MER in

STN-DBS. However, whether intraoperative MER guided STNDBS

under general anesthesia with propofol is feasible and effective? It

remains controversial. Hertel et al. showed that propofol changed

the typical background activity of the STN (16). Maltete et al. found

that the electrode implantation accuracy and clinical outcomes

of DBS under general anesthesia with propofol were inferior to

those achieved without anesthesia (22). Whereas, Maciver et al.

(23) demonstrated that both propofol and remifentanil produced

only minor alterations of subthalamic neuron discharge activity

that should not interfere with DBS surgery (23).

In this study, propofol and remifentanil were applied to

implement GA and BIS value was maintained at 40–60 during

MER. Under the well-defined circumstance, the bursting firing

pattern of STN was typical (14, 16). Although, the parameters of

STN MER signal, including frequency, ISI and amplitude, were

obviously interfered under GA, the waveforms of STN MER signal

were recognizable and shared similar characteristics in LA and

GA groups. Therefore, intraoperative MER was a viable method to

localize STN under GA.

Electrode implantation accuracy

In addition to the properly selected candidates, precise

implantation of the electrodes in STN is the most important

factor in achieving expected clinical outcomes (14). However,

multiple factors might have influences on electrode implantation

accuracy, including errors in image fusion, manipulation errors

from instrument, brain shift due to CSF leakage and electrode

displacement during MRI scanning (24–26). In this study, we

employed Vector errors and Euclidean distance to evaluate

the electrode implantation accuracy. Intriguingly, the results

showed no statistically significant differences in Vector errors and

Euclidean distance between LA and GA groups. Furthermore, the

TABLE 4 Clinical outcome of MER guided STN-DBS surgery.

Baseline Postoperative 6 months Change at 6 months from baseline

Outcome LA GA LA GA LA GA P-value

UPDRS-I, mean±SD 12.2± 3.0 10.9± 3.7 9.8± 3.8 8.7± 3.3 −2.4± 2.0 −2.2± 1.8 0.73

UPDRS-II, mean±SD 18.1± 5.1 15.7± 5.5 11.7± 4.3 11.2± 4.8 −6.4± 3.7 −4.6± 2.5 0.07

UPDRS-III, mean±SD 50.2± 12.4 51.5± 11.3 33.2± 8.9 31.7± 8.6 −17.1± 7.0 −19.8± 10.2 0.34

Tremor, mean±SD 12.0± 2.7 12.6± 3.7 1.1± 0.9 1.6± 1.4 −10.9± 2.7 −10.9± 3.0 0.97

Rigidity, mean±SD 7.6± 2.5 7.3± 2.7 1.2± 0.7 0.9± 0.8 −6.4± 2.6 −6.5± 2.5 0.99

Bradykinesia, mean±SD 22.8± 5.1 21.7± 5.5 11.4± 3.2 10.4± 2.6 −11.4± 3.3 −11.3± 5.0 0.93

PIGD, mean±SD 2.9± 1.3 2.8± 1.2 1.2± 0.8 1.1± 0.9 −1.7± 1.0 −1.6± 1.0 0.79

UPDRS-IV, mean± SD 10.1± 4.0 8.3± 3.6 3.9± 2.1 3.0± 2.0 −6.2± 3.0 −5.4± 2.7 0.38

LEDD (mg/day), mean±SD 1491.7± 393.4 1527.3± 413.1 686.1± 335.1 538.6± 264.5 −805.6± 453.4 −988.6± 507.1 0.24

VAS, mean±SD 5.6± 1.7 3.3± 1.1 NA NA NA NA 0.00∗

GCQ, mean±SD 54.7± 9.5 63.3± 8.9 NA NA NA NA 0.01∗

Duration of surgery, mean±SD 222.6± 44.4 211.0± 30.9 NA NA NA NA 0.34

UPDRS, unified Parkinson’s disease rating scale; PIGD, postural instability and gait disturbance; LEDD, levodopa equivalent daily dose; VAS, visual analog scale; GCQ, general

comfort questionnaire. The symbol ∗p < 0.05 and there are statistically significant differences.
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electrode implantation accuracy in this study was comparable to

the results of other studies, even to the results of MRI-guided STN-

DBS studies (27, 28). The length of STN is another important

parameter indicating the suitable target. Generally, the trajectory

that intersects with STN over 4mm, is recommended as the ideal

microelectrode trajectory (29). We also got similar length of STN

in LA and GA groups. Moreover, the length of STN in both

groups exceeded 4mm. These results indicated that electrodes were

implanted into suitable target sites in both groups. Consequently,

LA and GA can achieve similarly effective electrode implantation

accuracy in MER guided STN-DBS surgery.

Clinical outcome

In both LA andGA groups, PD patients were benefit from STN-

DBS. According to the assessment of UPDRS (-I, -II, -III, -IV), the

improvement of motor and non-motor symptoms after bilateral

STN-DBS under GA was comparable with the improvement

achieved under LA. Likewise, the separate subscores of tremor,

rigidity, bradykinesia and PIGD achieved similar reduction in LA

and GA groups. These findings matched the results of previous

studies, which compared the clinical outcome of STN-DBS under

different anesthetic methods (30–32). The reduction of LEDD

at 6 months postoperatively showed no statistically significant

differences between LA and GA groups. Rozemarije A. Holewijn

also drew a similar conclusion in a randomized clinical trial (3). In

addition, GA enabled patients to have a better surgical experience

with less pain and more comfort. In comparison with LA, several

procedures ofMER guided STN-DBS surgery were simplified under

GA, including test stimulation (3, 16). However, in this study, there

was no statistically significant difference in the duration of surgery

between LA and GA groups. Owning to the individual difference

in anesthetic metabolism, it usually took extra time to maintain

BIS value at 40–60 during MER in GA group. With the experience

accumulating, the duration of surgery in GA group is expected to

be shorten. Thus, both LA and GA can achieve expected clinical

outcome in MER guided STN-DBS surgery.

Adverse events

The postoperative adverse events were categorized as hardware-

related, surgery-related, and stimulation-related complications. No

hardware-related postoperative adverse events occurred in this

study. However, the incidence of intracerebral hemorrhage was

5%, which was consistent with the overall risk of intracerebral

hemorrhage reported before (33, 34). It seemed that more

patients in GA group experienced postoperative pulmonary

infections, which might be owing to GA and intubation

during the surgical procedures. Actually, most postoperative

adverse events were stimulation-related complications in this

study. STN is usually partitioned into sensorimotor, limbic and

associative subregions (Figure 3). The stimulation-related adverse

events can be reduced by targeting sensorimotor STN (35–40).

Thus, the electrode implantation accuracy directly influences

the surgical outcomes. Advances in radiological and neural

FIGURE 3

Representative case with electrodes implanted into sensorimotor

STN. (A) 3-D image reconstructed by preoperative MRI image and

postoperative CT image. (B) Anterior view of STN. (C) Posterior view

of STN. STN is partitioned into sensorimotor (orange), limbic

(yellow) and associative (blue) subregions. The image reconstruction

was performed by Lead-DBS.

electrophysiological techniques, which contribute to improving

electrode implantation accuracy, are expected to propel the

development of this discipline.

Limitations

There are several limitations in this present study. Firstly,

the surgery was performed under the guideline of frame-based

MER. The applications of these results are limited in MRI guided

STN-DBS or frameless STN-DBS surgery. Secondly, the BIS value

recommended for GA remains controversial. To determine the

optimal BIS value for GA in MER guided STN-DBS, more studies

are necessary. Finally, the patients enrolled in this study was limited

and the analysis was performed retrospectively.

Conclusion

GA is viable and effective in MER guided STN-DBS. Although,

the parameters of STN MER signals, including frequency, ISI and

amplitude, were obviously interfered under GA, the waveforms of

MER signals were recognizable and shared similar characteristics

with LA group. GA was also comparable with LA in MER

guided STN-DBS, regarding electrode implantation accuracy,

clinical outcome and adverse events. Notably, GA is more friendly

and acceptable to the patients who are incapable of enduring

intraoperative MER under LA.
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