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Transcranial ultrasound stimulation is a neurostimulation technique that has

gradually attracted the attention of researchers, especially as a potential therapy

for neurological disorders, because of its high spatial resolution, its good

penetration depth, and its non-invasiveness. Ultrasound can be categorized as

high-intensity and low-intensity based on the intensity of its acoustic wave. High-

intensity ultrasound can be used for thermal ablation by taking advantage of

its high-energy characteristics. Low-intensity ultrasound, which produces low

energy, can be used as a means to regulate the nervous system. The present

review describes the current status of research on low-intensity transcranial

ultrasound stimulation (LITUS) in the treatment of neurological disorders, such as

epilepsy, essential tremor, depression, Parkinson’s disease (PD), and Alzheimer’s

disease (AD). This review summarizes preclinical and clinical studies using

LITUS to treat the aforementioned neurological disorders and discusses their

underlying mechanisms.
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system diseases, Alzheimer’s disease, Parkinson’s disease, depression, epilepsy

1. Introduction

Treatment modalities for central nervous system (CNS) diseases include drug therapy,

surgical therapy, and physical therapy. It is amajor challenge to deliver drugs to a brain lesion

via the bloodstream due to the particular anatomical structure of the blood–brain barrier

(BBB). Physical treatment modalities offer a novel therapeutic opportunity for neurological

disorders, especially for those for which effective drugs are not available. Physical treatment

modalities currently available for neurological disorders include transcranial direct current

stimulation (tDCS), transcranial magnetic stimulation (TMS), photobiomodulation (PBM),

deep brain stimulation (DBS), and low-intensity transcranial ultrasound stimulation

(LITUS), among others. Although these treatments show great promise for treating

neurological disorders, their use is limited in practical clinical applications due to their

invasiveness, their low spatial resolution, and the lack of clear mechanisms. TUS, on the

other hand, is non-invasive, boasts high spatial resolution, and has high permeability. This
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review mainly summarizes the potential application of LITUS

in neurological disorders, its underlying mechanisms, and the

potential development and challenges in its therapeutic application

in the future.

2. Current neuromodulation
technologies

Before discussing the application of LITUS in the treatment

of neurological disorders, we will provide a brief introduction

to the other neuromodulation technologies, which are listed

in introduction section. tDCS applies low-amplitude direct

current through electrodes placed on the scalp, altering cortical

excitability and spontaneous neural activity (1–5). tDCS has

several advantages, such as cost-effectiveness, convenience, high

tolerability, minimal side effects, and easy operability (6). However,

the effect of tDCS is not robust enough for some clinical

applications due to the characteristics of the electric field and the

magnitude of the current produced by electrodes. Its penetration

depth also need to be improved. Large individual differences have

been observed in the effects of tDCS treatment, even when patients

are subjected to the same parameters (7). TMS uses circular or

figure-eight coils to produce a rapidly changing magnetic field.

Through electromagnetic induction, its magnetic field generates

eddy currents that can cause synchronous neuronal activity in

targeted cortical areas at a resolution of several centimeters

(8–12). On the basis of frequency, TMS can be divided into

two categories: low-frequency repetitive TMS (≤1Hz) and high-

frequency repetitive TMS (≥5Hz) (13, 14). Low-frequency TMS

leads to a transient decrease in local cortical activity, while high-

frequency TMS increases the excitability of local cortical neurons

(13, 14). Additionally, TMS can be sorted into two stimulation

modes: intermittent theta burst (iTBS) and continuous theta

burst (cTBS). iTBS can cause local cortical excitation, while cTBS

temporarily inhibits brain signals (15–17). Although the depth

of the target region can be adjusted through coils, the spatial

resolution and penetration depth of TMS are limited by the

magnetic field conductivity and permeability (18). Researchers

have attempted to develop TMS hardware that can specifically

affect the human brain, such as the triple halo coil, which

modulates excitability in the subcortical brain regions (as deep

as 10 cm), and the quadruple butterfly coil, which reduces the

volume of stimulation by approximately 70% (19). DBS delivers

a continuous flow of current to specific neuroanatomical targets

through electrodes that are surgically inserted into the brain

(20). The invasiveness of DBS limits its therapeutic application.

PBM, on the other hand, is considered a non-thermal technique

because it uses non-ionizing radiation in the visible (400–700 nm)

and near-infrared (700–1,100 nm) ranges of the electromagnetic

spectrum, such as lasers, light-emitting diodes, and/or broadband

light, to cause photophysical and photochemical events (21, 22).

However, the length and strength of light delivery to the brain

always pose challenges (23). Therefore, novel neuromodulation

technology that is non-invasive and has a high spatial resolution

is required to treat neurological disorders. In this context, LITUS,

due to its non-invasive nature and high spatial resolution with

millimeter-grade accuracy, has attracted researchers’ attention (24–

26). A pioneering study by Fry and colleagues in 1958 discovered

the neuromodulatory potential of ultrasound stimulation. They

discovered that stimulating the lateral geniculate nucleus of the

thalamus with ultrasound reversibly inhibited the visual pathway in

cats (27). In 2002, after neuroimaging experiments in patients with

psychiatric disorders, Bystritsky proposed that ultrasound could be

used for neuromodulation with therapeutic benefits for psychiatric

and neurological disorders (28, 29). Since then, an increasing

number of studies have demonstrated the neuromodulatory effect

of ultrasound.

3. The characteristics of transcranial
focused ultrasound stimulation

Ultrasound is a mechanical pressure wave with a frequency

>20 kHz that can penetrate soft tissue at a specific wavelength

(30). It has strong penetration, good directionality, and high spatial

resolution and is non-invasive (18, 31). With these characteristics,

ultrasound is used medically as a diagnostic technique (32). As

understanding has deepened, it reveals great potential in the

treatment of neurological disorders. Unlike diagnostic ultrasound,

which requires a frequency range of 1–15 MHz, therapeutic

ultrasound generally uses a specific frequency of approximately

1 MHz (33). Ultrasound is applied clinically using high-intensity

or low-intensity acoustic waves (34–36). The peak power levels

of high-intensity ultrasound can be >1,000 W/cm2, while low-

intensity ultrasound is usually 30–500 mW/cm2 (37). High-

intensity ultrasound has therapeutic effects, which can be achieved

by focusing ultrasound on a specific area or point, causing a

rapid temperature increase that destroys the tissue. In contrast,

low-intensity ultrasound, which produces less energy, inflicts less

damage to the tissue. LITUS mostly uses medium-frequency

(650 kHz) or low-frequency (220 kHz) ultrasound (38).

With these characteristics, ultrasound is used medically as

a diagnostic technique (32). As understanding has deepened, it

reveals great potential in the treatment of neurological disorders

The main components of ultrasonic stimulation systems

include a signal generator, a radio-frequency (RF) power amplifier,

an ultrasonic transducer, a hydrophone, a transducer fixing

device, and an ultrasonic coupling agent (Figure 1). Among these

components, the ultrasonic transducer is the core of the whole

system, taking advantage of the inverse piezoelectric effect to

transform the applied electrical input into mechanical vibration

and focus the ultrasound on a target region (18). Curved units that

focus the stimulation on oval regions are the most commonly used

type of ultrasound transducer (39–46). With this type of ultrasound

transducer, the focal volume spans multiple brain subregions in the

axial direction of the beam, covering a large area (47) and providing

limited target specificity. To overcome this limitation, some

researchers use a crossed-beam dual-transducer system (48) to

improve the high axial resolution of ultrasound neuromodulation,

while others select much higher frequencies, such as 5 MHz, to

improve the anatomical specificity (47). The stimulation system

enables the adjustment of several key parameters of the ultrasound,

including fundamental frequency (FF), pulsed repletion frequency

(PRF), stimulation duration (SD), tone-burst duration (TBD), duty
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FIGURE 1

The system of transcranial ultrasound stimulation. The system of transcranial ultrasound stimulation mainly includes a signal generator, a

radio-frequency power amplifier, an ultrasonic transducer, a hydrophone, a transducer fixing device, and an ultrasonic coupling agent.

cycle (DC), number of tone bursts (NTB), interstimulus interval

(ISI), spatial-peak pulse-average intensity (Isppa), and spatial-

peak time-average intensity (Ispta) (49, 50). By adjusting these

parameters, ultrasound with different frequencies, wavelengths,

and acoustic intensities can be generated. Considering its use in

the therapy of neurological disorders, it is worth noting that the

presence of the skull weakens and distorts the ultrasound signal,

affecting the brain tissue (51, 52) and thereby increasing the

difficulty of precisely stimulating the brain. Thus, researchers need

to set the parameters of ultrasonic stimulation systems with the

help of hydrophones to minimize the effects of the skull. Various

techniques are available to confirm the neuromodulatory effects

of ultrasound stimulation, such as electroencephalography (EEG)

(40, 41, 53), electromyography (EMG) (49, 54), functional magnetic

resonance imaging (fMRI) (44, 50), and positron emission

tomography-computed tomography (PET-CT) (55). In addition,

the measurement of extracellular levels of neurotransmitters and

metabolic changes can also reflect the effects of ultrasound

stimulation (56).

4. Ultrasonic stimulation in central
nervous system disease

4.1. Epilepsy

Epilepsy is a highly prevalent neurological disorder

characterized by recurrent episodes of neuronal hyperexcitability

or inadequate inhibition (57, 58). It can be caused by brain injury

or genetic factors involved in neuronal activity. During seizures,

the abnormally synchronous activity in the epileptic foci may

spread to other brain regions, eventually causing behavioral

abnormalities (59–61). Existing treatments for epilepsy include

medical therapy, surgical treatment, and neuromodulation.

Medically intractable epilepsy can be treated by removing the

epileptogenic focus. However, for some epileptogenic foci that are

located in eloquent brain areas or are too numerous, diffuse, or

bihemispheric, surgery is not suitable. In such cases, non-invasive

neuromodulation offers a viable option for seizure control (62).

Laser interstitial thermal therapy (LITT) is a new, minimally

invasive technology that has been shown to be effective in treating

temporal lobe epilepsy (TLE). It uses a laser through an inserted

optical fiber to ablate the epileptogenic focus (63). However, this

type of treatment also damages the targeted tissue, causing a

decline in brain function and memory, although it is less invasive

than surgery (64). Therefore, new technology is indeed needed

to reduce the damage and decrease the frequency of seizures.

LITUS, a non-invasive physical therapy, has been investigated in

preclinical and clinical experiments.

As early as 2011, LITUS was applied to the thalamus of a

pentetrazol (PTZ)-induced epilepsy model in rats. After inducing

acute seizures in model rats, a series of 0.5-ms-long pulses of

sonication were delivered to the thalamic region two times for

3min, each with a repetition rate of 100Hz and FF = 690 kHz.

EEG recordings revealed that the occurrence of epileptic EEG

bursts in rat models was significantly reduced after ultrasound

treatment (53). This evidence suggests that LITUS holds promise

as a therapeutic tool for the non-invasive suppression of epileptic

activity. Some researchers injected kainite (KA) into the CA3

region of the hippocampus of mice to induce mesial temporal lobe

epilepsy. In these model mice, ultrasound delayed the onset of

status epilepticus (SE) and inhibited acute seizure activity (65). Chu

PC and colleagues found that, in the KA-induced epilepsy mouse

model, LITUS could reduce the occurrence of seizures, and the

effects lasted as long as 7 weeks (66).

Additionally, other research indicates that ultrasound

stimulation can decrease the power spectrum intensity of low-

frequency (<10Hz) local field potentials (LFPs), weaken the

phase-amplitude coupling intensity between slow and fast nerve

oscillations, and increase the time interval of seizures. These

results indicate the capability of ultrasound to decrease the

power spectrum of LFPs, thereby reducing the onset of epilepsy
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(67, 68). In addition to exploring the effects of LITUS in rodents,

other researchers have attempted to investigate the influence of

LITUS in non-human primates. Lin Z and colleagues found that

ultrasound stimulation lowered the frequency, duration, and

interval of seizures in a penicillin-induced non-human primate

model of epilepsy (57). Additionally, Zou’s study showed that

LITUS decreased the number and duration of seizures in a monkey

model of acute epilepsy (69). These lines of evidence strengthen the

therapeutic potential of ultrasound stimulation in epilepsy. With

the development of this technology, some researchers have begun

to apply LITUS to patients with epilepsy.

In a recent study, Lee et al. used LITUS in patients with drug-

resistant epilepsy. Two of the patients experienced a decrease in

seizure frequency, while one patient showed an increase. The results

of LIFUS were only observed in the electrode contacts located at

the targeted site, as observed in the SEEG recordings taken before,

during, and after treatment. In both patients, LIFUS resulted in a

significant reduction in spectral power across all frequency bands.

Unfortunately, no correlation was established between these short-

term effects and changes in seizure frequency (70). Low-frequency

stimulation with magnetic resonance-guided focused ultrasound

(MRgFUS) was recently reported to be effective in a patient with

medically intractable epilepsy. The patient remained seizure-free

for up to 12 months (71). In another study, they developed a device

platform to deliver pulsed low-intensity focused ultrasound to the

brain region under the hippocampus in humans. After multiple

sessions, no adverse events occurred (72). The safety and feasibility

of ultrasound stimulation need to be evaluated in future studies

with a larger number of participants and a longer duration of

follow-up. Thus, to date, the therapeutic evidence of LITUS in

epilepsy has mainly been limited to preclinical studies (Table 1),

where ultrasound stimulation exhibits great potential in epilepsy

therapy. Therefore, more preclinical and clinical studies are still

needed to determine how to apply LITUS to the clinical treatment

of epilepsy.

Several researchers have discovered some potential

mechanisms of the therapeutic effect of LITUS on epilepsy.

Chen SG et al. showed that LITUS could change the activity of

excitatory neurons, activate GABAergic terminals, downregulate S6

phosphorylation, and decrease pAKT expression (73). Lin Z and his

colleagues conducted in-depth studies of the potential mechanisms.

They found that LITUS can readjust the imbalance of synaptic

inputs to inhibit epileptiform discharges and activate interneurons

to increase inhibitory synaptic inputs (57). In conclusion, the

aforementioned findings suggest that the therapeutic effects of

LITUS are associated with the modulation of neuronal activity

and the distribution of inhibitory neuronal axons. The effects and

potential mechanisms of LITUS in the therapy of epilepsy need

more research in preclinical and clinical experiments.

4.2. Essential tremor

Essential tremor (ET) is one of the most common movement

disorders among adults and is characterized by postural and kinetic

tremors (74, 75). The most recognized feature of ET is a kinetic

tremor of the arms, the hands, or the fingers occurring during

voluntary movements (76, 77). During voluntary movements, it

occasionally occurs in the head, the vocal cords, or other body parts

(78). The clinical therapy of ET mainly relies on drug therapy. The

first-line oral agents include propranolol and primidone. However,

nearly half of patients fail to respond to these oral drugs (79, 80).

Before the 1990s, surgical intervention was the only option for

patients with severe ET who were unresponsive to oral medicines.

The main surgical intervention then was thalamic lesioning. With

the advent of DBS, this treatment modality was gradually replaced

by DBS. The implantation sites of DBS electrodes are usually

the ventral intermediate nucleus (ViM) (81–83) and the caudal

zona incerta (cZI) (84, 85). DBS at these two sites alleviates the

symptoms of patients with ET with long-term effects. However,

the implantation of electrodes can result in side effects for some

patients, such as limb paresthesia (which usually improves with

programming adjustments), dysarthria, disequilibrium, and skin

infections/breakdown (79). As a less invasive approach, MRgFUS

is gradually applied in patients with ET, where the thalamic ViM

nucleus remains the main action target. MRgFUS thalamotomy

exhibits therapeutic effects in patients with ET (86–90) and has

been approved by the Food and Drug Administration (FDA)

for unilateral treatment of ET (62, 89). Thermal ablation of the

thalamotomy still causes side effects similar to those of MRgFUS,

including dizziness (early), nausea/vomiting (early), headache

(early), flushing (early), ataxia (late), and paresthesias (late) (79).

Thus, researchers have explored the potential of neuromodulatory

non-thermal LITUS for tremor suppression. When applied to the

inferior olivary (IO) system of the harmaline-inducedmousemodel

of ET with an intensity of 27.2 W/cm2 (Isppa), LITUS significantly

reduced the tremor frequency of model mice (91). This study

demonstrates the feasibility of the non-thermal effects of LITUS for

tremor treatment. However, more studies are required to establish

the technical parameters and mechanism of using low-intensity

ultrasound for ET therapy.

4.3. Depression

Depression is one of the most common psychiatric disorders.

While antidepressant drugs combined with psychotherapy have

shown noticeable therapeutic effects, some patients fail to respond

to such therapeutic treatments and may experience serious adverse

reactions. In preclinical studies, ultrasound stimulation exhibits

excellent therapeutic effects on depression. Stimulation with LIFUS

on either the prefrontal cortex or the ventromedial prefrontal

cortex (vmPFC) attenuated the depressive behaviors of depressed

model rats, accompanied by enhanced brain-derived neurotrophic

factor (BDNF) levels, whose downregulation is closely linked

with depression. Notably, LIFUS improved BDNF levels in the

hippocampus of normal mice, suggesting a common mechanism

of BDNF signaling induced by ultrasound stimulation.

Moreover, LIFUS enhanced the proliferation and neurogenesis

of adult hippocampal neural stem cells (92). The latter is also an

essential mechanism underlying depression and is the effect of

antidepressant drugs (93, 94). Sha-Sha Yi et al. recently found that

LIFUS can alleviate the behaviors of lipopolysaccharide-induced

depressed mice. Moreover, the lipopolysaccharide-mediated
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TABLE 1 Ultrasound stimulation in epilepsy.

Refs. Experimental animals Brain targets Protocol of ultrasound
stimulation

E�cacy

Animal Research

Min et al. (53) Male SD rat PTZ-induced

acute epilepsy

Group 1: PTZ with

FUS sonication

Group 2: PTZ without

FUS sonication

Group3: giving FUS sonication

without PTZ

The thalamus FF: 690 kHz

TBD: 0.5 ms

PRF: 100 Hz

Ispta: 100 mW/cm2

acoustic focus:3.5mm in diameter and

6.2mm in length

Deliver twice for 3 min each

(1) The occurrence of epileptic EEG bursts

significantly decreased.

(2) After FUS, there is less severe epileptic

behavior.

(3) FUS did not cause any damage to the

brain tissue.

Hakimova et al.

(65)

Male C57BL/6 mice (5–6

weeks old) KA-induced

mesial TLE

Hippocampus FF: 0.2 MHz

PRF: 0.5 kHz

TBD:1ms

SD: 30 s 200 acoustic cycles

(1) Ultrasound stimulation reduced the

number of seizures in the chronic period of

epilepsy.

(2) It improved sociability and depressive

behaviors in KA model mice.

Li et al. (67) Male C57BL/6 mice

Group 1: KA group

Group 2: KA+ low-intensity

pulsed ultrasound stimulation

Group 3: KA+ low-intensity

continuous

ultrasound stimulation

Hippocampus FF: 500 kHz

PRF: 500 Hz

DC: 50 %

SD: 30 s

The acoustic pressure: 0.26 MP

The diameter of the hole at the bottom

of the conical collimator was 2 mm.

(1) The intensity of the power spectrum in

the low frequency (< 10Hz) was significantly

decreased.

(2) The phase-amplitude coupling strengths

between slow and fast neural oscillations

were weakened.

(3) The interval between seizures was

significantly increased.

Lin et al. (57) Monkeys Penicillin-induced

epilepsy model

Group 1: penicillin+ sham

Group 2: penicillin+

ultrasound stimulation

The right frontal

lobe

FF: 750 kHz

PRF: 1 kHz

TBD: 300 us

SD: 200 ms

ISI: 5 s

Isppa:2.02 W/cm2

The acoustic pressure: 0.35 MPa

(1) Ultrasound stimulation reduces

epileptiform activities and behavioral

seizures.

(2) Ultrasound stimulation activates the

interneurons to increase the inhibitory

synaptic inputs.

Refs. Patient characteristic Brain targets Protocol of ultrasound
stimulation

E�cacy

Clinical research

Abe et al. (71) A 36-year-old woman with

complex partial seizures without

automatism

Hippocampus 650 kHz phased array transducer 10–20s

long sonication sessions The final

temperature of the target reached 48 ◦C,

and the actual delivered energy was

20757 J.

(1)The patient remained almost seizure-free

for up to 12 months.

(2) Ultrasound stimulation did not cause any

damage to the brain tissue.

Brinker et al. (72) A 26-year-old female with

temporal lobe epilepsy

Hippocampus FF: 548 kHz

PRF: 500 Hz

SD: 0.5 s

ISI: 7 s

DC: 36–50%

Ispta: 2.25 W/cm2

The acoustic pressure: 0.32 MPa

There were no adverse events.

FF, Fundamental frequency; PRF, the pulse repetition frequency; SD, sonication duration; ISI, inter-stimulus interval; TBD, tone-burst duration; DC, duty cycle; Isppa, the spatial peak pulse

mean intensity; Ispta: the spatial peak temporal mean intensity.

upregulation of inflammatory cytokines was significantly

reduced by LIFUS (95). As in other neurological disorders,

the therapeutic effects of some drugs and other factors on

depression are limited by the intrinsic properties of the BBB.

Relying on its capability of temporarily opening the BBB,

MRgFUS together with microbubbles (MBs) successfully and

accurately delivered glial cell line-derived neurotrophic factor

(GDNF) to the brain, alleviating the symptoms of chronically

stressed mice (96). However, the therapeutic potential of non-

thermal ultrasound stimulation has not yet been expanded in

clinical research. In clinical research, few studies have tested

the potential therapeutic effects of tFUS in depression via

thermal ablation of targeted brain areas. Some researchers

have recently investigated whether ultrasound may modulate

mood. For example, Joseph L. Sanguinetti et al. found that

targeting the right ventrolateral prefrontal cortex via tFUS

elevated the mood of healthy people after approximately 30

min (97).

Similarly, experiments have shown that LIFUS has the potential

to improve mood in healthy subjects (29). Reznik SJ and others

performed ultrasound processing on the right frontotemporal

cortex of patients with depression and found that it could improve

their moods (A double-blind pilot study of transcranial ultrasound

(TUS) as a five-day intervention: TUS mitigates worry among

depressed patients). These studies provide evidence for the use

of LIFUS in the treatment of depression, but more experiments

are still needed to verify the improvement effect of LIFUS on

depression symptoms.
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4.4. Parkinson’s disease

Parkinson’s disease (PD) is the second most common

neurodegenerative disease, with clinical symptoms mainly

characterized by increased muscle tension, resting tremors,

postural instability, and reduced action potentials, accompanied

by manifestations of non-motor systems such as autonomic

dysfunction and olfactory dysfunction (98). The pathological

changes in PD are the gradual loss of nigrostriatal dopaminergic

neurons (99, 100). At present, PD therapy mainly relies on

levodopa and other drugs to supplement dopamine. Deep brain

stimulation (DBS) has exhibited therapeutic effects in reducing

the motor symptoms of PD and the side effects associated with

long-term dopamine replacement drugs. To date, the stimulation

areas have mainly focused on the Vim (101) of the thalamus,

the subthalamic nucleus (STN) (102), the globus pallidus interna

(GPi) (103), and the cuneiform nucleus (104). However, DBS

requires the implantation of electrodes in the corresponding brain

regions of patients. It is invasive and poses a risk of infection and

cerebral hemorrhage. Jeanmonod et al. reported the feasibility of

ultrasound in patients with PD for the first time in 2012. They

ablated the fibers that join the thalamus with the globus pallidus

by ultrasound delivery. Repeated ultrasound stimulation improved

the Unified Parkinson’s Disease Rating Scale (UPDRS) score by

57.1% (105). The therapeutic effects of ultrasound stimulation were

confirmed by Magara et al. in 2014, who damaged the unilateral

pallidothalamic tract in patients with PD using MRgFUS. In

this study, 3 months after the surgery, the UPDRS score was

significantly improved (106). Afterward, an increasing number of

research teams applied ultrasonic ablation in patients with PD,

especially with tremor-predominant PD (107–111). However, the

treatment modality of high-energy ultrasound ablation also carries

the risk of causing serious side effects, such as speech disorders

and ataxia (112, 113). As a noninvasive stimulation method, the

feasibility of LITUS in PD animal models has been confirmed

(Table 2). Hui Zhou et al. first confirmed that the use of ultrasound

to stimulate the STN and GP improves locomotor behavior in a

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced

PD mouse model (114). Subsequently, other researchers also

observed the beneficial effect of LITUS in PD animal models (114–

119). With the advent of ultrasound combined with microbubble

technology, an increasing number of researchers have used this

technology to enhance blood-brain-barrier permeability to achieve

local drug release in the treatment of PD (120–122).

With regard to the underlying mechanisms for LITUS

in the treatment of PD, LITUS was observed to alter the

extracellular concentration levels of dopamine and serotonin (5-

hydroxytryptamine, or 5-HT), suggesting a capability of ultrasound

stimulation in the regulation of the local release and uptake, or

degradation, of these neurotransmitters (53). The drug treatment

for PD in clinical practice relies mainly on the use of levodopa to

increase the level of dopamine. This study provides ideas for ways

in which LITUS could improve the symptoms of PD. Exposure to

MPTP causes a syndrome that mimics core neurological symptoms

and the relatively selective dopaminergic neurodegeneration of

PD (123, 124). Pretreatment with LITUS inhibited MPP+-induced

neurotoxicity and mitochondrial dysfunction in PC12 cells and

N2a cells (124). Consistently stimulating the motor cortex with

LITUS enhanced the levels of T-SOD and GSH-PX in the

striatum in MPTP-treated mice (114). These results indicate

the role of LITUS in attenuating MPTP-induced mitochondrial

dysfunction. Recently, Wen-Shin Song and his team discovered

that LIFUS could effectively inhibit glial activation and reduce the

phosphorylation of nuclear factor-κB p65 in the substantia nigra

pars compacta.

Additionally, it helps to maintain normal levels of

neurotrophic factors, dopamine transporters, and tight

junction proteins in the blood-brain barrier in PD induced

by 6-OHDA (125). Moreover, ultrasound stimulation also

exhibits the potential to alter cortical excitability. LIFUS

reduced parkinsonian-related brain electrical activity in an

MPTP-induced mouse model of PD, as shown by the mean

power intensity in the beta band in LFPs, as well as the

phase-amplitude coupling intensity between the beta and

high gamma bands and between the beta and ripple bands

(118). Through these multiple mechanisms, LITUS attenuated

dopaminergic neurodegeneration and locomotor deficits in

various PD animal models. Notably, improving the sensitivity of

ultrasound stimulation with the help of mPrestin (N7T, N308S),

an engineered auditory-sensing protein, further ameliorated

dopaminergic neurodegeneration and the symptoms of PD in

MitoPark mice (mice that exhibit several cardinal features of

human PD) (126–128). Thus, preclinical studies strengthen

the therapeutic effects of LITUS in PD models. However, the

longer-term effects of ultrasound stimulation on PD remain to be

further investigated.

4.5. Alzheimer’s disease

Alzheimer’s disease (AD) is a common neurodegenerative

disease clinically manifested through the progressive loss

of cognitive and memory function, which is pathologically

characterized by the accumulation of β-amyloid plaques (Aβ)

and hyperphosphorylated tau. The main therapy for AD is drug

therapy. One of the challenges of drug therapy for AD is the

low efficacy of drugs entering the brain due to the hindrance

of the BBB. For example, the anti-Aβ antibody, which helps

to clear Aβ load in the brain, has limited capability to enter

the brain. LITUS exhibits the capability to temporally open the

BBB to allow such drugs to enter the brain. The BBB can be

temporarily opened, and then integrity is restored after 4–6 h by

LITUS in combination with microbubbles (129, 130). With such

a capability, LITUS enhances the delivery of anti-Aβ antibodies

or other drugs to the targeted brain regions, thus reducing plaque

load, alleviating the cleavage of Tau protein, and rescuing the

function of neurons (131). In addition to helping to deliver

drugs, the transient opening of the BBB by FUS has beneficial

effects on AD model mice. With the use of microbubbles, focused

ultrasound stimulation of the hippocampus, the cortex, or even

the whole brain in different transgenic AD mouse models, such

as TgCRND8, 3xTg, and 5xFAD, without the need for additional

therapeutic agents, was efficient for Aβ clearance (132–140)
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TABLE 2 Ultrasound stimulation in Parkinson’s disease.

Refs. Experimental
animals

Brain targets Protocol of ultrasound
stimulation

E�cacy

Animal Research

Zhou et al. (114) Male C57BL/6J mice

MPTP induced

PD model

Subthalamic nucleus (STN)

The globus pallidus (GP)

FF: 3.8 MHz

PRF: 1 kHz

SD: 1 s

ISI: 4 s

DC: 50 %

Ispta: 180 mW/cm2

The acoustic pressure: 0.1 MPa The full

width at half-maximum was 0.8 mm 30

min daily.

(1) Motor behavior was improved.

(2) Ultrasound stimulation can protect TH

positive neurons in the SNpc against

MPTP-induced cell death.

(3) Ultrasound stimulation suppresses cell

apoptosis by promoting the ratio of

Bcl-2/Bax and inhibiting Cyt C release

from mitochondria.

Chen et al. (115) Male C57BL/6

mice (8-week-old)

MPTP induced

PD model

The substantia nigra (SN) FF: 1 MHz

PRF: 1 kHz

DC: 20% 10min,

5 times every 24 h

(1) LIPUS treatment can attenuate the central

neurotoxicity of MPTP in mice, reduce the

loss of tyrosine hydroxylase positive neurons

in the substantia nigra pars compacta, and

decrease the apoptosis in the section of

substantia nigra.

(2) The movement and balance dysfunctions

were improved

(3) There was no tissue damage.

Dong et al. (116) Male, SD rats

6-OHDA induced

PD model

The substantia nigra FF: 500 kHz

PRF: 1 kHz

SD: 300 ms

TBD: 0.5 ms

Isppa: 2.6 W/cm2

The total stimulation duration was

10min, with a total of 200 trials

(1) Ultrasound stimulation reduces the

damage of 6-OHDA-induced neurotoxicity

in hemi-PD rats.

Sung et al. (117) Female SD rats

6-OHDA induced

PD model

The right striatum FF:1 MHz

PRF: 1 Hz

SD: 5 min

TBD: 50 ms

DC: 5 %

Ispta: 528 mW/cm2

The half-maximum of the pressure

amplitude of the focal zone had a

diameter and length of 3 and 26 mm. 5

days per week for a period of 6 weeks

(1) The locomotor function was significantly

improved.

(2) LIPUS has restorative effects against

6-OHDA neurotoxin by promoting GDNF

protein levels and attenuating the LCN2

release in the SNpc of the brain, thereby

suppressing neurotoxic cytokines such

as IL-1β .

Wang et al. (5) C57BL/6 mice MPTP

induced PD model

Subthalamic nucleus FF: 500 kHz

PRF: 1 kHz

DC: 5%

SD: 50 ms

Isppa: 5.1 W/cm2

The maximum ultrasound pressure was

0.39 MPa. The interstimulus interval

was 1 s, and the total stimulation time

was 5 min

TUS can significantly decrease

parkinsonian-related activity in the motor

cortex of mice administered MPTP.

Yuan et al. (43) C57BL/6 mice MPTP

induced PD mode

Subthalamic nucleus FF: 500 kHz

PRF: 1 kHz

SD: 50 ms

DC: 5 %

Isppa: 5.1 W/cm2

Ispta: 0.255 W/cm2

The maximum ultrasound pressure was

0.39 MPa.

The diameter of the hole at the bottom

of the conical collimator is 4 mm.

The interstimulus interval was 1 s, and

the total stimulation time was 5min for

each stimulus.

(1) Ultrasound stimulation improves

behaviors in mice with MPTP-induced PD?

(2) The treatment effect gradually improved

as the TUS duration increased.

Zhou et al. (114) Male C57BL/6J mice

MPTP induced

PD mode

The motor cortex FF: 800 kHz

PRF: 100 Hz

SD: 6 s

ISI: 10 s

DC: 10%

Isppa: 760 mW/cm2 40min per day

The full-width-at-half-maximum was

2.2 mm.

(1) Seven consecutive days of LIPUS

stimulation of the motor cortex ameliorated

parkinsonian motor deficits.

(2) There was no brain tissue injury.
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TABLE 3 Ultrasound stimulation in Alzheimer’s disease.

Refs. Experimental
animals

Brain targets Protocol of ultrasound
stimulation

E�cacy

Animal Research

Jordão et al. (131) Male and female

TgCRND8 mice

(132–137 days)

The right

hemisphere

FF: 0.558 MHz

PRF: 1 Hz

TBD:10ms

SD:120 s

With the help of microbubbles, ultrasound

stimulation locally increases the permeability of the

blood brain barrier (BBB).

Jordão et al. (132) Male and female

TgCRND8 mice

(4 months)

The right cortex FF: 0.558 MHz

PRF: 1 Hz

TBD:10ms

SD:120 s

(1) With the help of microbubbles, ultrasound

stimulation locally increases the permeability of the

blood brain barrier (BBB).

(2) Plaque burden is reduced in cortical brain regions

targeted with focused ultrasound stimulation.

(3) MRIgFUS-dependent BBB opening allows

endogenous immunoglobulin to enter the brain.

Burgess et al.

(133)

TgCRND8 mice

(7 months)

Hippocampus FF: 1.68

MHz PRF: 1 Hz

TBD: 10 ms

SD: 120 s

(1) BBB blood-brain barrier was opened.

(2) Ultrasound stimulation improved cognition.

(3) Ultrasound stimulation reduced plaque load and

increased neuronal plasticity.

Shen et al. (134) Female 3×Tg-AD

mice (8 months)

Hippocampus FF: 0.996 MHz

PRF: 1 Hz

TBD: 10 ms

SD: 60 s

A peak-rarefactional pressure amplitude

of 0.64 MPa

(1) Ultrasound stimulation improved cognition.

(2) Ultrasound stimulation ameliorated Aβ deposits

and mitigated tau pathology in the hippocampus.

Eguchi et al. (135) Male 5XFAD mice

(14–16 weeks)

Whole brain FF: 1.875 MH

PRF: 6.0 kHz

TBD: 17 us

SD: 20 min

Ispta: 90 mW/cm2

Isppa: 99 mW/cm2 the number of

cycles: 32

The width of the ultrasound beam at

each depth of brain tissue ranged from

3.6 to 4.0 mm

Ultrasound stimulation ameliorated cognitive

impairments associated with improved cerebral blood

flow (CBF).

Bobola et al. (136) Male 5XFAD mice

(6 months)

Hippocampus FF: 2.0 MHz

PRF: 40 Hz

TBD: 400 ms

Isppa: 190 W/cm2

SD: 1 h

Chronic: 1 h per day for 5days

(1) Acute ultrasound stimulation can increase the

number of microglia around Aβ plaque.

(2) Acute ultrasound stimulation reduced Aβ

plaque burden.

Lee et al. (137) 5XFAD mice Hemisphere FF: 715 kHz

PRF: 1 Hz

DC: 2 %

TBD: 20 ms

SD: 60 s

(1) Ultrasound stimulation improved cognition.

(2) Ultrasound stimulation enhanced solute Aβ

clearance from the brain, but not plaques, to

cerebrospinal fluid (CSF) space.

Poon et al. (138) male and female

TgCRND8 mice

(7 months)

Hippocampus FF: 1.1 MH

PRF: 1 Hz

TBD: 10 ms

SD: 120 s

The situ pressures of 0.4–0.8 MPa

once every other week, for a total of

10 weeks

Ultrasound stimulation reduces the size of existing

β-amyloid plaques.

Leinenga et al.

(139)

Male APP23 mice

(median age, 12.8

months)

Whole brain FF: 1 MHz

PRF: 10 Hz

DC: 10 %

TBD: 6 s Peak rarefactional pressure

is 0.7MPa.

The focal zone of the array was an ellipse

of about 1.5mm× 1.5mm× 12 mm

(1) Ultrasound stimulation engages microglia and

promotes the internalization of Ab into microglial

lysosomes.

(2) Ultrasound stimulation reduces Ab and

plaque load.

Leinenga et al.

(140)

APP23 mice (21–22

months)

Whole brain FF: 1 MHz

PRF: 10 Hz

DC: 10 %

TBD: 6 s Peak rarefactional pressure is

0.7 MPa.

The focal zone of the array was an

ellipse of about 1.5mm× 1.5mm×

12 mm 4 times for 8 weeks

(1) SUS treatment increases the number of

plaque-associated microglia.

(2) SUS Treatment does not reduce the total plaque

area but reduces the fraction of larger plaques.

(3) SUS treatment reduces fibrillar amyloid.

(4) There was no tissue damage.

(Continued)
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TABLE 3 (Continued)

Refs. Patient
characteristic

Brain targets Protocol of ultrasound
stimulation

E�cacy

Clinical research

Lipsman et al.

(144)

Patients with early to

moderate Alzheimer’s

disease

Presumed

non-eloquent

cortex in the right

frontal lobe, namely

the superior frontal

gyrus white matter

of the dorsolateral

prefrontal cortex

(DLPFC)

FF: 220 kHz

TBD: 2 ms

SD: 300 ms

DC: 0.74 %

ISI: 2.7 s

Open the BBB in human patients

D’Haese et al.

(148)

Patients aged between

50 and 85 years with

early AD

Hippocampus and

EC

FF: 220 kHz SD: 90 s DC: 50–60%

sonication using a range of power of

4–11.5 W

(1) FUS BBB opening is feasible and safe

(2) induce a reduction in β-amyloid plaque burden

Nicodemus et al.

(149)

Alzheimer’s disease

patients with age

from 40 to 95

The mesial

temporal lobe

FF: 2 MHz 520 mW/cm2 Eight

consecutive, weekly, 1-h

62.5% of patients demonstrated clinically significant

improvement on at least one cognitive measure

Beisteiner R Alzheimer’s disease

patients

Dorsolateral

prefrontal cortex

PRF: 1–5 Hz TBD: 3 us Ispta: 0.1 W/cm2

Maximum number of pulses per

treatment: 6,000 Maximum peak

pressure 25 MPa Every ROI was

stimulated twice per session and most

patients were stimulated for 4 weeks

(1) No major side effects

(2) Neuropsychological scores improve significantly

after TPS treatment and improvement lasts up to 3

months and correlates with an upregulation of the

memory network (fMRI data)

(Table 3). In the context of the transient opening of the BBB, it

is worth noting that the BBB in the brains of AD model mice

was compromised.

One explanation for the reduction in Aβ load by LITUS is

that it may increase the production of endogenous Aβ antibodies,

as Jessica F Jordão et al. found endogenous antibodies bound

to Aβ plaques in the cortex of an ultrasound-treated TgCRND8

mouse model of AD (132). Another possibility is that LITUS

enhanced the capability of phagocytosis of Aβ by microglia (132,

135, 136, 139). However, in terms of microglial activation, the

effects of LITUS seem to be controversial. Eguchiet et al. found

that ultrasound stimulation reduced microglial activation in the

5 × FAD transgenic mouse model (135). Leinenga and Gotz

et al. observed no change in inflammatory markers in the brains

of aged APP23 mice after ultrasound stimulation (139). Thus,

the questions of how and whether LITUS-affected glial function

contributes to AD pathogenesis remain to be further investigated.

In addition, LITUS may enhance neuronal function in AD brains

as well. LITUS enhanced axonal neurofilaments in 3 × Tg-AD

mice (134) and attenuated the loss of neurons in a 5 × FAD-

AD mouse model (137). Burgess et al. observed that ultrasound

stimulation increased the number of immature neurons, total

dendrite length, and dendrite branching in preexisting or mature

neurons in TgCRND8 mice (133). In terms of the molecular

mechanisms underlying the beneficial roles of LITUS in AD, some

studies have found that this treatment can enhance autophagy,

which is compromised in the brains of AD and aging (141,

142).

Through these multiple mechanisms, ultrasound stimulation

eventually ameliorates cognitive decline in AD in model animals

(133, 135, 137, 139). However, although ultrasound effectively

reduces Aβ plaque formation in AD animals, this effect may be

attenuated with time after stimulation (132, 143). Therefore, the

question of how to prolong the long-term effect of ultrasound

on AD therapy remains to be further investigated. The potential

of LITUS in AD therapy has also been examined in clinical

studies. Ultrasound stimulation combined with microbubbles in

the right frontal lobe in patients with AD two times with a 1-

month interval successfully opened the BBB but failed to alter

the Aβ load (144). The ability of ultrasound stimulation to open

the BBB in patients with AD needs further confirmation from

other researchers (145–147). Consistent with the observation in

preclinical studies that ultrasound stimulation successfully reduces

Aβ load, a recent clinical trial showed that Aβ plaques in the

hippocampus and entorhinal cortex were reduced 1 week after

ultrasound stimulation (interval weeks) in patients with early

AD (148). Nicodemus et al. and Beisteiner et al. confirmed

that ultrasound stimulation in the cortex of patients with AD

for 3 months improved cognitive function (149, 150). Stéphane

Epelbaum et al. reported that repeated BBB disruption by

ultrasound with microbubbles had a non-significant decline in

amyloid accumulation after 4 months (151). The ameliorative

effect of LIFUS on pathological parameters in patients with AD

in these experiments was based on inducing the opening of

BBB. However, Hyeonseok Jeong and colleagues evaluated the

safety and efficacy of low-intensity tFUS under the threshold

for BBB disruption in patients with AD. They found that,

in the absence of an open BBB, the measures of memory,

executive function, and global cognitive function were mildly

improved (152).

To conclude, LITUS can reduce seizures in models of

epileptic disease, improve motor deficits, stimulate dopamine

release, reduce EEG activity in PD models, improve depressive

phenotypes, and rescue cognitive impairment and neuronal
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TABLE 4 Mechanistic study of transcranial ultrasound stimulation in the

treatment of central nervous system diseases.

Mechanisms of low-intensity transcranial

ultrasound stimulation

Thermal e�ect

The temperature changes Darrow et al. (153)

Mechanical e�ect

Change of the opening of ion channels

Voltage-gated sodium channels Tyler et al. (37)

Voltage-gated calcium channels Tyler et al. (37)

TRP4, a stretch-sensitive cationic

mechanotransduction channel

Ibsen et al. (154)

Mechanosensitive channel (MscL) Ye et al. (156),

Qiu et al. (157)

Cavitation e�ect

Opening the blood–brain barrier Xhima et al. (158)

Microtubule resonance

resonating with microtubules Hameroff et al. (29)

Other factors

Involvement of auditory signaling pathways Guo et al. (160),

Wang et al. (96)

damage in AD models, providing a potential future treatment

modality for patients with clear foci who do not wish to undergo

invasive treatment.

5. Mechanisms underlying ultrasound
stimulation-induced neuromodulation

As a mechanical wave, ultrasound can propagate in solids and

liquids and exert biological effects on cells and tissues, mainly

including thermal effects, mechanical effects, cavitation effects, and

so on Table 4. Focusing ultrasound on the ventrolateral nucleus

of the thalamus in rats reversibly inhibits somatosensory evoked

potentials (SSEPs) spatially in an intensity-dependent manner.

The inhibitory effect is consistent in time with the temperature

change in vivo without producing pathological changes at the

tissue level. Stereotactic delivery of thermal energy through optical

fibers at the same site also produces similar thermal effects

and inhibitory effects (153), suggesting that focused ultrasound

may cause neuroinhibitory effects through the thermal effect of

ultrasound. Although low-intensity ultrasound does not produce

thermal ablation of tissue, the accumulation of ultrasonic energy

still increases the local temperature without causing damage.

However, the existing evidence is still insufficient to determine

whether the increased local temperature caused by ultrasonic

focusing is involved in its regulatory mechanism. Tyler et al.

(37) applied low-intensity and low-frequency ultrasound to

hippocampal slices and mouse brains, and they found that low-

intensity ultrasound enhances the electrical activity of neurons by

activating voltage-gated sodium channels and calcium channels,

as well as improving synaptic transmission in the CNS. The

neurons of C. elegans expressing TRP4, a stretch-sensitive cationic

mechanotransduction channel, are more sensitive to ultrasound

stimulation (154). Oh et al. observed that astrocytes are also

cellular targets for low-intensity ultrasound stimulation (155).

Low-intensity ultrasound-induced neuromodulation is initiated

by the opening of TRPA1 channels, a member of the transient

receptor potential (TRP) family, in astrocytes. Ca2+ entry via

TRPA1 causes the release of gliotransmitters, including glutamate,

in astrocytes, which activates NMDA receptors in neighboring

neurons to cause action potential firing. In addition, the expression

of a mechanosensitive channel (MscL) also makes neurons or

cells more susceptible to activation by low-intensity ultrasound

(156, 157), suggesting that ultrasound may also modulate the

nervous system by activating mechanosensitive ion channels on the

cell surface through its mechanical effects. As a unique physical

phenomenon of ultrasound, the cavitation effect has been largely

studied and utilized in the treatment of diseases. When ultrasound

propagates in fluid or soft tissue containing microbubbles, it

can control the contraction and expansion of bubbles. Based on

this cavitation effect of ultrasound, combined with intravenous

injection of microbubbles, the blood–brain barrier in the brain

can be temporarily opened to achieve drug delivery in specific

brain regions to achieve precise treatment of the lesion site.

For example, focused ultrasound can rescue choline function by

delivering selective TrkA agonists into the brains of AD mouse

models (158). Hameroff and colleagues propose that ultrasound

stimulation at specific megahertz frequency bands can resonate

with microtubules, causing them to vibrate when the ultrasound

beam angle aligns with their long axis (29). This vibration

could then modulate electrical signals in the brain by affecting

synaptic plasticity through the connection between microtubules

and actin filaments in dendritic spines (159). An increasing

number of researchers have recently noticed the presence of

auditory confounds during ultrasonic stimulation in humans and

animals, considering that the auditory signaling pathways may

confound the direct regulatory effects of ultrasound. To investigate

whether hearing has an effect during ultrasound stimulation,

Guo et al. showed that transection of the auditory nerves or

removal of cochlear fluid eliminates US-induced cortical and

subcortical activity (160). They indicate that ultrasound activates

the ascending auditory system through a cochlear pathway,

which activates other non-auditory regions through cross-model

projections. In contrast to this observation, Wang et al. found

that ultrasound was still capable of inducing neural activity

and motor responses, even in chemically deafened PD model

mice, suggesting that ultrasound induces neuromodulation via

multiple action modes that include both direct and indirect

effects (118). According to some research, ramping the stimulation

onset and offset over several milliseconds can eliminate auditory

activation in mice (161). In a clinical experiment, investigators

found that a concurrent audio mask applied at the PRF can

also reduce auditory perception (162). Other research has shown

that ramping and masking TUS stimulation prevent some

participants’ perception, while the effect of these two methods

is not additive (4). Our understanding of the mechanisms
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underlying ultrasound-induced neuromodulation is currently

limited, and more research is needed to advance our knowledge in

this area.

6. Application and development
prospects of ultrasonic stimulation

Due to its high spatial resolution and high penetration rate,

transcranial ultrasound stimulation is of great significance for

the treatment of CNS disorders. It can induce neuromodulation

in deep brain regions non-invasively, making it a valuable tool

for therapeutic applications. However, this technique is still new,

especially for clinical applications. A number of technical problems

and challenges urgently need to be addressed by future research (12,

163, 164). First, although preclinical studies show that ultrasound

can act on the deep tissue of the brain in the stereotaxic mode,

the ultrasonic devices in the existing studies are assembled by

individual research teams, which results in a lack of uniform

standards for ultrasonic action parameters. From the selection of

the devices and the ultrasonic parameters used by each research

team, it can be seen that the FF of the focused ultrasound transducer

plays a key role in the focal length and focal size of ultrasound

(165–167). Second, the voltage wave of ultrasound is converted

by the focused ultrasound transducer in a region called the focal

spot. The length and width of the focal spot change with the

central frequency of the transducer. The larger the frequency, the

smaller the focal spot range and the more accurate the active

range. However, due to the thermal effect of ultrasound—, the

temperature of the action site increases with increasing central

frequency, which—may cause thermal damage to the tissue (168,

169). This poses a challenge when selecting different ultrasonic

transducers to achieve accurate positioning of the target region.

Finally, LITUS requires an ultrasound to act on brain tissue

through the skull. Since the acoustic impedance of the skull is

greater than that of air, ultrasound will produce different degrees

of attenuation when passing through the skull. Therefore, the

ultrasonic intensity and energy reaching the target area will be

reduced to different levels. Differences in skull thickness among

different animals cause varying degrees of ultrasound attenuation

upon passing through the skull, which poses challenges for the

clinical application of transcranial ultrasound stimulation (170,

171).

In 2003, Norton proposed a new potential technique to

stimulate the brain non-invasively; this technique, known as

transcranial magnetoacoustic stimulation (TMAS), makes it

possible to use LITUS within a static magnetic field (172, 173).

TMAS treatment is based on the application of focused ultrasound

to a target area within a static magnetic field. In the ultrasonically

excited conductive brain, ionic particles induce transient currents

generated by Lorentzian forces in a magnetic field. According to

Faraday’s law, the proportional relationship between the generated

electric field and the velocity of ionic particles makes it possible

to manipulate the stimulation effect (172, 174). This gives the

TMAS an advantage in stimulating specific deep brain regions of

small size. Wang H and colleagues first quantified the amplitude

and response latency of cortical motor electromyography (EMG)

in mice by TMAS compared to LITUS. They found that TMAS

could shorten the response time of nerve activity and increase

the neuromodulation effect of LITUS on the motor cortex (175).

In recent years, more refined and accurate stimulation needs

have been proposed with the development of closed-loop brain

stimulation techniques, such as DBS, optogenetics, and TMS

(176–178). Compared with open-loop brain stimulation, closed-

loop brain stimulation can be stimulated as needed according to

the received state signal of the brain (179–181), thereby producing

the most effective stimulation effect on the brain while reducing the

amount of stimulation (182–184). Yang et al. developed a closed-

loop transcranial ultrasound stimulation system (CLTUS) for real-

time, non-invasive neuromodulation in vivo. The application of

CLTUS in a mouse model of temporal lobe epilepsy (TLE) inhibits

seizures in real time by detecting epileptic echoes online (185).

The ultimate purpose of combining ultrasound with different

techniques is to enhance its effectiveness in treating diseases.

Further studies are needed in the future to prove the feasibility and

effectiveness of these different techniques and finally apply them in

clinical practice.

Although transcranial ultrasound stimulation is still a

new technique, it has already shown great potential in the

treatment of CNS disorders in preclinical studies. Therefore,

as an emerging treatment modality, it is believed that the

aforementioned problems and challenges will be answered

and solved in future studies. In addition, TMAS provides

low millimeter-scale spatial resolution even in deep brain

regions, with a 10-fold higher focus than TMS due to the use of

focused ultrasound.

7. Conclusion

This article reviews the preclinical and clinical studies

of LITUS in the treatment of neurological disorders and

summarizes the possible underlying mechanisms. As a non-

invasive neuromodulation approach, LITUS exhibits great

potential for the therapy of neurological disorders such as

epilepsy, ET, PD, and AD, despite their distinct pathological

mechanisms. However, the therapeutic application of LITUS

for various neurological disorders is far from well-established.

Therefore, further exploration is required to enhance the precision

and specificity of stimulation by defining the target region and

the stimulation parameters in distinct neurological disorders.

Moreover, a better understanding of the mechanism underlying

the therapeutic effects of LITUS will help accelerate the clinical

application of this technology.
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