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Non-traumatic intraparenchymal brain hemorrhage is referred to as intracerebral

hemorrhage (ICH). Although ICH is associated with a high rate of disability and

case fatality, active intervention can significantly lower the rate of severe disability.

Studies have shown that the speed of hematoma clearance after ICH determines

the patient’s prognosis. Following ICH, depending on the hematoma volume and

mass e�ect, either surgical- or medication-only conservative treatment is chosen.

The goal of promoting endogenous hematoma absorption is more relevant

because surgery is only appropriate for a small percentage of patients, and open

surgery can cause additional trauma to patients. The primary method of removing

hematoma after ICH in the future will involve understanding how to produce and

manage macrophage/microglial endogenous phagocytic hematomas. Therefore,

it is necessary to elucidate the regulatory mechanisms and key targets for

clinical purposes.

KEYWORDS

phagocytosis, microglia, scavenger receptor, intracerebral hemorrhage, haematoma
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1. Introduction

Intracerebral hemorrhage (ICH) refers to non-traumatic intraparenchymal brain

hemorrhage, which is generally caused by long-term hypertension and arteriosclerosis. A

sudden rise in blood pressure can result in vascular rupture and bleeding, and the blood can

enter the brain parenchyma, where it solidifies and causes a mass effect. Subsequently, cells

with phagocytic function engulf these blood clots. Blood clots are chemical accumulations

of red blood cells (RBCs) and their lysis products such as hemoglobin (Hb), heme, iron,

and globin. The pathological mechanisms of brain injury caused by these clots in the

brain parenchyma include the inhibition of cell metabolism, inflammatory response, iron

overload, oxidative stress, and tissue edema. Currently, hematoma-scavenging craniectomy

or minimally invasive hematoma removal is the primary treatment approach for rapid

hematoma clearance. However, the surgical approach has not yet been able to dramatically

improve the long-term neurological prognoses in such cases. There are strict surgical

guidelines, for example, hematoma-scavenging craniectomy requires craniotomy and can

result in additional secondary injury. It is frequently used for patients with significant

cerebral bleeding. Althoughminimally invasive hematoma removal can prevent craniotomy,

it may result in incomplete removal of the hematoma, particularly when there is active

bleeding. Accelerating the absorption of endogenous hematomas is another crucial strategy

to inhibit nerve damage secondary to hematomas and for their complete removal.
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It has been discovered that peroxisome proliferator-activated

receptor (PPAR) and nuclear factor erythroid 2-related factor

2 (Nrf2) signaling pathways can control the expression of

scavenger receptor genes and activate microglia to promote

endogenous hematoma absorption (1, 2). Promoting the expression

of CD36 and CD163 on microglia/macrophages can enhance the

phagocytosis of Hb, whereas blocking CD47 on red blood cells

can promote the phagocytosis of RBCs. In addition, endogenous

hematoma absorption can be facilitated by several mechanisms that

increase the phagocytic capability of macrophages and microglia.

Based on the current status of ICH research and treatment, this

review intends to identify specific targets, explain the relevant

mechanisms of endogenous hematoma absorption, and propose

novel ideas for the treatment of endogenous hematoma resorption.

2. Cells involved in phagocytosis after
ICH

In a mouse model of ICH with autologous blood injection,

macrophages and dendritic cells were found to be congregated

within hours of ICH (3). There is a slight increase in the

percentage of dendritic cells in the hematoma compared to

that in the peripheral blood of patients with ICH (4). Among

the various types of phagocytic cells, macrophages/microglia

remain primarily researched for phagocytosis of hematoma

components following ICH (5, 6). Essentially, there are two

types of macrophages. Tissue-resident macrophages are highly

specialized cells that perform specific functions in the tissues

where they settle, such as microglia in the central nervous

system, perivascular macrophages, osteoclasts in bones, and

intestinal macrophages in the gastrointestinal tract. The other

type, the monocyte-derived macrophages (MDMs), can infiltrate

tissues because of inflammation and chemokines. However, tissue-

settled macrophages and MDMs have also been studied as a

class. In 2018, Chang proposed that MDMs are essential for

hematoma clearance and functional recovery after ICH (7).

Subsequently, in 2021, marked differences were observed in the

transcriptional states of MDMs and tissue-resident macrophages

(microglia) in ICH, suggesting that the two have different functions.

MDMs have a better phagocytic ability, as evidenced by the

fact that they phagocytize RBCs around the hematoma in the

majority of cases (8). The discovery of unique markers of tissue-

resident macrophages and MDMs will aid in future research to

determine their roles separately. To clarify whether endogenous

hematoma absorption after ICH is required to target tissue-

resident macrophages and MDMs, additional experimental data

are necessary.

Abbreviations: ICH, intracerebral hemorrhage; Hb, hemoglobin; PPAR-γ,

peroxisome proliferator-activated receptor-γ; Nrf2, nuclear factor erythroid

2-related factor 2; MDMs, monocyte-derivedmacrophages; RBCs, red blood

cells; SRs, scavenger receptors; Hb–Hp, hemoglobin–haptoglobin; SIRPα,

signal-regulating protein α; HO-1, heme oxygenase 1; H2S, hydrogen sulfide;

UCP2, uncoupling protein 2; RIC, remote ischemic conditioning; STAT6,

signal transducer and activator of transcription 6; IL-4, interleukin 4; DUSP8,

dual-specificity phosphatase 8; DFX, deferoxamine.

3. Scavenger receptors associated with
endogenous hematoma phagocytosis

Scavenger receptors (SRs) are a class of architecturally varied

proteins capable of recognizing a multitude of ligands on the

cell surface, including pathogens and endogenous and modified

host-derived molecules. In addition to serving as phagocytes and

innate immune recognition receptors, SRs play a significant role in

several physiological and pathological processes as inflammatory

signal regulators. At least six distinct molecular types have been

reported in the literature, among which CD36, CD163, CD91, SR-

A (also known as CD204), and Lox-1 are connected to hematoma

absorption after ICH.

3.1. CD36

CD36 belongs to the class B scavenger receptor family and

is widely expressed in a variety of cells, such as microvascular

endothelium cells, adipocytes, skeletal muscle cells, dendritic cells,

smooth muscle cells, and hematopoietic cells. CD36 features

as an SR involved in cell adhesion, antigen presentation, and

identification and internalization of apoptotic cells (9). The

majority of CD36 is expressed on microglia and mostly on Iba1+

cells with microglial morphology around the core area of the

hematoma, as observed in a rat collagenase-induced ICH model

(6). However, the expression of CD36 does not have an impact

on hemoglobin levels within 24 h of ICH (6), and the volume

of hematoma that is absorbed in the middle and late stages is

much lower in CD36 gene-deficient rats than in normal rats,

indicating that CD36 expression can influence the absorption rate

of hematoma in these stages (6, 10). Mouse RBCs purified by

density gradient centrifugation were diluted to 108 cells/ml and

added to cultured microglia at a ratio of 10:1 to establish an in

vitro ICH model. Deletion of the CD36 gene led to a reduction

in microglial phagocytosis of RBC (10), indicating that CD36 on

microglia plays a role in promoting phagocytosis of RBC and

hematoma absorption. However, it is still uncertain how CD36

expression in macrophages/microglia can influence erythrocyte

phagocytosis. Notably, studies have shown that increasing CD36

expression can influence microglia to induce the M2 phenotype

surrounding hematoma, which enhances their phagocytosis and

anti-inflammatory effects (11). In addition, microglia are the only

cells specifically identified in ICH for the CD36-mediated clearance

of hematoma components. Therefore, we believe that upregulating

CD36 after ICH can increase endogenous hematoma absorption;

however, the precise mechanism and cell types involved remain to

be investigated.

3.2. CD163

The hemoglobin SR CD163 is expressed on cells of the

monocyte–macrophage lineage and participates in the uptake of

hemoglobin–haptoglobin (Hb–Hp) complexes and promotes free

Hb uptake (12, 13). Hb produced by erythrolysis in hematomas

attaches to Hp once it is free, and the Hp–Hb complex can then
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be endocytosed by CD163-mediated phagocytes (14). In addition,

increased Hb levels have been found to upregulate neuronal

CD163 expression (15), although a significant association between

neuronal CD163 and endogenous hematoma absorption was not

confirmed in the current investigation. Leclerc et al. discovered

that although there is a significant correlation between phagocyte

CD163 and Hb clearance, hematoma volume in mice with CD163

gene deletion 3 days after ICH was 43.4±5.0% less than that in the

wild-type mice. However, the mortality of ICH mice with CD163
−/− in 4–10 days was 66.7%, which was significantly higher than

that of WT mice (33.3%), and the residual hematoma after 10 days

was also higher than that of WT mice. Subsequent research has

shown that CD163 is a scavenger receptor for Hp-Hb complexes

and clears uncomplexed Hb under severe hemolytic conditions

associated with Hp depletion. The authors believe that it plays

a more important role in secondary brain injury after ICH (16).

In previous studies, the time windows for CD163 to function

were disregarded after ICH. Future studies can evaluate these time

windows to efficiently connect the various hematoma absorption

mechanisms. Future studies should focus on CD163, which has

clinically meaningful therapeutic potential in post-ICH phagocytes.

3.3. Other related SRs

To absorb heme after erythrocytolysis, cells that express low-

density lipoprotein receptor-related protein-1 (LRP1, also known

as CD91) engulf the heme–hemopexin (heme–Hx) complex (17,

18). In addition, Bruton’s tyrosine kinase–calreticulin–LRP1–Hx

(BTK–CRT–LRP1–Hx) pathway regulated by the Toll-like receptor

7 (TLR7) agonist imiquimod simultaneously increases heme-Hx

clearance (19). Toll-like receptor 9 (TLR9) promotes the clearance

of hematoma and iron by activating macrophages/microglia after

ICH, and the Nrf2/CD204/HO-1 pathway is involved in TLR9-

induced macrophage/microglial phagocytosis (20). However, more

studies are required to demonstrate that the CD91–heme–Hx

pathway facilitates the absorption of endogenous hematomas

because investigations on the aforementioned pathways have

not been conducted at sufficient depth. The role of CD 204

and other SR after ICH must also be explored, as well as

their potential involvement in the phagocytosis of hematoma

components by macrophages/microglia.

4. Substances and methods for
regulating phagocyte function

4.1. CD47

CD47 is a transmembrane protein that is a ligand for signal-

regulating protein α (SIRPα) expressed in phagocytes, including

macrophages and dendritic cells. When SIRP is activated, a signal

transduction cascade that inhibits phagocytosis is activated (21).

RBCs express the “don’t eat me” signal through CD47, and

this signal can interact with the macrophage inhibitory receptor

SIRP to prevent phagocytosis (22). CD47 inhibiting antibodies

can facilitate hematoma removal and alleviate brain damage in

mice (23). Another study on ICH elderly rat model showed

similar results. CD47 blocking antibody can promote hematoma

clearance, reduce secondary injuries, and increase the number of

macrophages/microglia in a hematoma (5). Furthermore, it has

been proposed that the depletion of M2 microglia with clodronate

liposomes can aggravate brain damage caused by ICH; thus, it

was discovered that RBC CD47 expression inhibits microglial

polarization to the M2 phenotype and phagocytic RBC, thereby

inhibiting hematoma clearance, as these changes enhance brain

damage after ICH (24). The inhibition of CD47 expression on RBC

can improve hematoma absorption by phagocytes. Targeting the

inhibition of CD47 expression on RBC is necessary because it can

stop phagocytes from devouring other intraparenchymal cells that

are not part of a hematoma.

4.2. Phosphatidylserine

Phosphatidylserine is a ubiquitous phospholipid located

at the entrance of the plasma membrane. During apoptosis,

phosphatidylserine is exposed to the outer surface of the plasma

membrane, which is called phosphatidylserine eversion. It serves as

a signal for the phagocyte to “eat me” and promotes phagocytosis

(25). Macrophages phagocytose RBC, which are largely dependent

on phosphatidylserine, and this has been observed in both patients

with ICH and mouse ICH models. In addition, engulfing RBCs

with phosphatidylserine eversion regulates the MDMs phenotype

in humans and mice, as well as hematoma absorption and patient

rehabilitation (7). In fact, many phosphatidylserine receptors are

also categorized as SR, such as CD91, T-cell immunoglobulin

and mucin receptor 4 (TIM 4), stabilin-1, and others (26).

Furthermore, phosphatidylserine has been proposed to identify

and attach to the extracellular domain of CD36, recognizing and

phagocytizing senescent cells through phosphatidylserine-CD36

interaction (27). As a result, we believe that it will be particularly

interesting to investigate the relationship between erythrocyte

phosphatidylserine eversion and SR in ICH.

4.3. Heme oxygenase 1

Heme oxygenase 1 (HO-1) can catalyze heme to produce

carbon monoxide, iron, and biliverdin. Zhang et al. investigated

the function of HO-1 in 12-month-old mice (28) and found

that intraperitoneal injection of the HO-1 inducer cobalt

protoporphyrin IX in a collagenase-induced mouse ICH model

can promote hematoma clearance, while the HO-1 inhibitor

zinc protoporphyrin IX inhibits hematoma clearance in the later

stages of ICH (7–28 days). In contrast, cobalt protoporphyrin IX-

induced HO-1 expression can exacerbate secondary brain injury

and neurological defects in the early stages of ICH (1–3 days).

Consistent with the results of our research group, we believe that

the neuroprotective effect of HO-1 begins early (12 h to 7 days), as

observed in a rat autologous blood ICH model. In addition, HO-1

controls the Nrf2-ARE pathway in the ICH model by preventing

Nrf2 from accessing the nucleus and stimulating the production

of NF-κB and TNF-α, and the early neuroprotection of HO-1 is

related to the nuclear translocation of Nrf2 and NF-κB (29). The
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ICHmodeling techniques and the selection of HO-1 inducers could

be responsible for the variations in HO-1 expression levels and

physiological consequences in different phases in the ICH model.

Notably, Nrf2-ARE transcription can enhance CD36 expression

to encourage macrophage/microglial hematoma phagocytosis (2).

Although there is no logical connection between this and the

findings of our research team, the significance between them

necessitates further consideration. Similarly, the PPAR-γ pathway

can enhance the expression of microglia CD163 and HO-1 as well

as promote hematoma absorption (30); therefore, targeting HO-1

to promote hematoma absorption after ICH requires a combination

of other molecules and multiple signaling pathways. In addition,

further investigation is required into the therapeutic window of

targeted HO-1, ideally in conjunction with its clinical application.

4.4. Complement component C1q

Complement mediates the phagocytosis of apoptotic cells and

cell debris (31). C1q is the serum complement component, which

initiates the conventional complement activation pathway and is

mainly involved in immunological and inflammatory responses.

Some researchers have examined plasma C1q levels in patients

with ICH and discovered that these levels were significantly

higher than those in healthy individuals. Moreover, poor prognosis

at 3 months can be independently predicted by plasma C1q,

indicating that C1q may be a potential prognostic biomarker for

ICH (32). Further research is needed to determine whether slow

hematoma absorption or associated inflammatory responses are

responsible for poor prognosis. Interestingly, there may be an

interaction between C1q and CD91 (33) because CD91 functions

as a heme receptor in the phagocytosis of heme, a component of

hematoma after ICH (17). It cannot be denied that complement

receptors play a role in the phagocytosis of RBCs by macrophages,

which simultaneously release proinflammatory factors (34). In

addition, these receptors are easily associated with secondary

brain injuries. Further research is required to determine specific

steps required to balance the complement-mediating phagocytosis

and inflammation.

4.5. Hydrogen sulfide

Hydrogen sulfide (H2S) is a novel gas-signaling molecule. The

primary enzyme in the brain that produces H2S is cystathionine

β-synthase (CBS), and a decrease in CBS during ICH causes

the downregulation of endogenous H2S synthesis (35). H2S has

been studied for its ability to reduce inflammation after ICH

(36) and provide neuroprotective benefits (35). In a recent study,

H2S was found to be an endogenous regulator that mediates the

sustained phagocytosis of microglia after ICH. Sulfide-quinone

oxidoreductase (SQR) can oxidize CBS-derived endogenous H2S,

which results in the reverse electron transport of mitochondrial

complex I, leading to the production of superoxide, which

conversely activates uncoupling protein 2 (UCP2) to promote

microglial phagocytosis of RBC. In summary, the microglial

CBS–H2S–complex I axis is essential for sustained phagocytosis

following ICH (37). This study implies that starting from a redox

approach, we can conduct research by concentrating on H2S to

encourage hematoma absorption, offering a novel approach for

future studies.

4.6. Remote ischemic conditioning

Remote ischemic conditioning (RIC) is a physical therapy

method in which the limb is pressurized using a compression

cuff. Usually, RIC is performed at 200 mmHg for four cycles of

5min each, with a reperfusion break of 5min (38–40). Research

has shown that AMPK, which acts as a switch to control cellular

metabolism, is essential for RIC to promote hematoma absorption

(40). In an isolated perfused rat heart model, the number of

delayed remote ischemic preconditioning stimuli was positively

correlated with HO-1, and HO-1 was involved in cardioprotection

(41). As mentioned earlier, HO-1 levels are closely associated

with hematoma clearance (28–30). Although the pathological

mechanisms of ICH and cardiovascular disease are different,

the relationship between RIC and HO-1 indicates interesting

possibilities for future research. In the latest clinical trial study,

the safety of RIC in clinical patients with ICH was shown by

comparing drug therapy alone and drug plus RIC for 7 consecutive

days in patients with ICH. The hematoma-scavenging rate of the

drug plus RIC was significantly higher than that of drug treatment

alone. While this cannot directly explain the effect of RIC on

absolute hematoma scavenging in patients with ICH, the higher

scavenging rate of combination therapy is sufficient to show that

RIC can promote hematoma clearance (42). Although it has been

demonstrated that four cycles of RIC at 200 mmHg are clinically

safe and successful in eliminating hematoma, it is still important to

determine whether this is the optimal pressure.

4.7. Cerebral white matter fiber

Other studies have identified strategies to influence endogenous

hematoma absorption after ICH. White matter fibers, for instance,

are present in the core of the hematoma after ICH, and those

that survive enhance the quantity of microglia/macrophages that

remain there, which facilitates RBC phagocytosis and increases

hematoma absorption (43). White matter fibers in the hematoma

area either aid microglia/macrophages in entering the hematoma

area by reducing phagocyte death or by acting as scaffolding

to allow phagocytes to penetrate the hematoma area. Currently,

studies on the white matter after ICH have mainly focused on white

matter injury (44–47). However, the connection between white

matter and endogenous hematoma absorption after ICH has not

been well researched. Notably, the white matter of rodents accounts

for 10–20% of brain volume, while in humans it accounts for 50%

of brain volume (48), indicating that white matter plays a major

role in our brain and has great research prospects in endogenous

hematoma absorption after ICH. These contents are shown in

Figure 1.
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FIGURE 1

The blood chemical components of coagulation following intracerebral hemorrhage mainly include red blood cells, hemoglobin, and heme, which

are mediated by CD36, CD163, and CD91 expressed on phagocytes, respectively.

5. Signal regulation of endogenous
hematoma absorption

5.1. PPAR-γ signaling pathway

Peroxisome proliferator-activated receptors (PPARs) are

ligand-activated receptors of the nuclear hormone receptor family.

There are three subtypes of ligand-induced nuclear receptors

that control intracellular metabolism: PPAR-α, PPAR-β/δ, and

PPAR-γ. PPAR-γ has received considerable attention in ICH

research. In in vivo and in vitro ICH models, fractalkine located

in neuronal cells can interact with the unique fractalkine receptor

CX3CR1 and promote hematoma absorption through the

PPAR-γ/CD163/HO-1 signaling pathway. Meanwhile, a study

on 30 patients with ICH reported that patients with reduced

hematoma had higher serum fractalkine and modified Rankin

scores (mRS scores) than patients with enlarged hematoma

(30). In the autologous blood injection ICH model, the PPAR-

γ agonist ISO-alpha-acids (IAAs) can activate PPAR-γ and

increase the expression of CD36 around the hematoma, causing

microglia to polarize to the M2 phenotype, increasing endogenous

hematoma absorption and decreasing inflammation around the

hematoma (49). The expression of CD36 and CD163 scavenger

receptors on microglia/macrophages can be simultaneously

increased through the PPAR-γ signaling pathway, effectively

promoting endogenous hematoma absorption. Consequently,

PPAR agonists are a highly promising class of medications that

merit in-depth examination.
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5.2. Nrf2 signaling pathway

The Nrf2 signaling pathway effectively reduces leukocyte

infiltration and ROS production and is essential for preventing

secondary brain damage in animal models of ICH (50). In

addition, Nrf2 regulates cellular phagocytosis and promotes

hematoma clearance by upregulating the expression of CD36 on

the surface of microglia/macrophages through ARE transcription

(2). Recombinant C-C chemokine ligand17 (CCL17) promotes

hematoma clearance and improves nerve injury by activating the

C-C chemokine receptor 4 (CCR4)/extracellular regulated protein

kinase (ERK)/Nrf2 signaling pathway to increase CD163 expression

(51). Numerous mechanisms may be involved in the mutual

regulation of Nrf2 and PPAR-γ gene transcription (52). In addition,

research has demonstrated that the synergistic effect of PPAR-

γ and the Nrf2 pathway prevents ferroptosis-induced neuronal

damage in a rat ICH model (53). The effects of the interaction

between PPAR-γ and Nrf2 on endogenous hematoma absorption

after ICH cannot be clearly explained by the available experimental

data. However, this still provides a new direction for future studies

that aim to establish a perfect system for endogenous hematoma

absorption after ICH by determining the relationship between

various signaling pathways and their interactions.

5.3. Signal transducer and activator of
transcription 6 signaling pathway

The signal transducer and activator of transcription 6 (STAT6)

is an important signaling pathway in macrophage function and is

necessary for macrophages to evolve intoM2macrophages through

an alternative pathway. Important cytokines for the polarization

of macrophages to M2 include interleukin 4 (IL-4) and interleukin

13 (IL-13), which function by causing STAT6 phosphorylation and

stimulating the transcription of STAT6 response genes (54). A small

number of studies have demonstrated that IL-4 treatment after ICH

promotes hematoma absorption, relieves neuroinflammation, and

enhances neural functional recovery through the STAT6 signaling

pathway (55, 56). According to one study, IL-4 can induce the

polarization of M2 macrophage and microglia via the Janus kinase

1 (JAK1)/STAT6 pathway (55). Another study revealed that the

STAT6 downstream signaling molecule STAT2 mediates the IL-4-

provided function of hematoma absorption after ICH, and since

STAT6 and ST2 are both necessary, the IL-4/STAT6/ST2 signaling

pathway plays a crucial role in hematoma absorption after ICH

(56). Nonetheless, the question remains as to whether the two

signaling pathways mentioned above, IL-4/JAK1/STAT6 and IL-

4/STAT6/ST2, are identical or whether they interact. However, we

do not believe these two pathways are independent. In terms of

effects, they both support that IL-4 promotes hematoma resolution

by targeting microglia. Of course, this is only a hypothesis and

needs to be verified by further experiments. The limited available

data indicates that IL-4, as an anti-inflammatory factor, may

induce the differentiation of anti-inflammatory microglia (also

known as M2 microglia) through the STAT6 signaling pathway

and mediate the phagocytosis of hematoma components. There

is another signaling pathway that targets microglia-mediated

hematoma phagocytosis after PPAR-γ and Nrf2, which will provide

a novel idea for evaluating endogenous hematoma absorption

after ICH. These contents are shown in Figure 2.

5.4. Regulation of microRNAs

MicroRNAs (miRNAs) are a class of small non-coding RNAs

that usually target the inhibition of mRNAs to regulate the

transcription and protein expression of associated genes. Through

the collection of clinical data, some researchers discovered that

miR-21-5p was downregulated in peripheral blood and hematoma

samples of patients with ICH, with miRNA-21-5p in hematoma

samples being more obviously downregulated (57), although the

cause remained unknown. Using bioinformatics techniques, we

found that dual-specificity phosphatase 8 (DUSP8) is a direct

target of miR-21-5p. A study on the collagenase-induced rat

ICH model showed inhibition of DUSP8-induced miR-21-5p

activation, and involvement of the phospho-extracellular regulated

protein kinase (p-ERK)/HO-1 pathway secondary brain injury.

In addition, injection of a miR-21-5p antagonist can significantly

inhibit ferrugination in tissues and promote hematoma absorption

(58). Although some researchers have investigated how miRNAs

regulate the polarization of M1 and M2 microglia after ICH (59,

60), there are no studies linking this to endogenous hematoma

absorption. With the gradual development of miRNA research and

the maturity of related technologies in recent years, the regulation

of miRNAs to promote endogenous hematoma absorption requires

more attention. Related research has accelerated new miRNA-

based therapeutic strategies to promote endogenous hematoma

absorption following ICH.

6. Drugs for promoting hematoma
absorption after intracerebral
hemorrhage

6.1. Simvastatin

Statins are a class of lipid-lowering medications. Based on

recent research involving both in vivo and in vitro phagocytic

models, simvastatin can upregulate CD36 and increase the

polarization of M2microglia through the PPAR-γ pathway, thereby

promoting hematoma absorption after ICH (11). Simvastatin

shows neuroprotective effects in ICH, and simvastatin–ezetimibe

combination therapy after ICH can repair impaired nerve

function and reduce inflammation (61). Simvastatin reduces the

infiltration of post-ICH neutrophils into the brain parenchyma

by regulating peripheral blood neutrophil apoptosis to relieve

neuroinflammation (62). These may be potentially linked to

endogenous hematoma absorption after ICH. The impact of

simvastatin on endogenous hematoma absorption has not been

studied in any relevant clinical trial, and some pertinent animal

studies are required to confirm that simvastatin has the potential

to be used clinically to increase endogenous hematoma absorption.
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FIGURE 2

Microglia surrounding hematomas after intracerebral hemorrhage are polarized to an M1 or M2 phenotype. M1 phenotype promotes inflammation.

M2 inhibits inflammation and promotes phagocytosis. The hematoma component is engulfed by M2 microglia, which mainly increases the

expression of proteins related to phagocytosis under the action of PPAR-γ and Nrf2 signaling pathways and relieves the cytotoxicity of metabolites

after phagocytosis of hematoma components. Simultaneously, M1 is inhibited by some other drugs to promote the polarization of M2 microglia.

6.2. Deferoxamine (DFX)

Following ICH, RBCs are lysed to release Hb, which

decomposes into heme under a series of pathological actions,

and heme is further decomposed into iron. Deferoxamine

(DFX), an iron chelator, can effectively bind iron and reduce

neuroinflammation caused by iron overload (63). According to

Hu et al., DFX treatment after ICH enhances heme clearance

and reduces heme levels in and around hematomas through the

heme–Hx–CD91 pathway (18), which is likely to be a critical

step in endogenous hematoma absorption after ICH. However,

studies have also demonstrated that DFX reduces erythrolysis

and iron overload by inhibiting membrane–attack complexes.

In addition, DFX reduces the loss of CD47 in RBC and the

invasion of microglia/macrophages after ICH, which weakens RBC

phagocytosis (64). Furthermore, Liu et al. revealed that DFX exerts

neuroprotective effects by reducing erythrolysis and chelating

iron, and inhibits Hb-induced neuronal CD163 upregulation,
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which may be related to the inhibition of neuronal death (15).

Early clinical trials have shown that DFX mesylate therapy

after ICH can inhibit encephaloedema but delay hematoma

absorption (65); therefore, we are more inclined to believe that

DFX has neuroprotective effects while the promoting effect on

hematoma component absorption remains debatable. With the

clarification of the ferroptosis mechanism and in-depth study of

DFX in neuroprotection, we believe that the link between the

neuroprotective effect of DFX after brain injury and the inhibition

of endogenous hematoma absorption is worth exploring and has

important clinical value. Nonetheless, further animal experiments

are needed to provide a basis for clinical trials to verify whether

DFX can be used as a drug for clinical endogenous hematoma

absorption regulation.

6.3. Monascin

Monascin is a yellow natural pigment formed by the cultivation

and fermentation of Monascus ruber in cereals under certain

conditions, which can reduce blood lipid and blood pressure and

has anti-inflammatory and antioxidant effects (66). Monascin has

been shown to play a role in endogenous hematoma absorption

as a natural dual agonist of Nrf2 and PPAR-γ. A high dose

of monascin can promote the reduction of hematoma volume

1–7 days after ICH (67). Long-term investigations showed that

Nrf2 and PPAR-γ are crucial for increasing hematoma absorption,

which significantly reduces iron overload and brain atrophy

after ICH (68). It has also been pointed out that the PPAR-

γ agonist monascin increases the levels of haptoglobin (Hp)

and CD163 on the surface of phagocytes in plasma, accelerating

hematoma absorption through the Hp–Hb–CD163 pathway (1).

These animal experiments have found that monascin can promote

endogenous hematoma absorption to improve ICH prognosis.

However, corresponding clinical data have not been collected to

demonstrate the safety of monascin in the treatment of ICH. Phase

I clinical studies should be conducted as the next step to verify the

security and effectiveness of monascin treatment.

6.4. Other potential drugs

Other potential drugs that promote endogenous hematoma

absorption after ICH have also been extensively studied, including

wogonin (69), vitamin D (70), and ISO-α-acids (IAAs) (49),

which can upregulate surface CD36 of phagocytes via the PPAR-γ

pathway, promote the polarization of M2 type microglia, and

enhance the phagocytosis of M/MΦ to promote endogenous

hematoma absorption after ICH. Bexarotene has the ability to

pharmacologically activate retinoid X receptor-α (RXRα) and

induce nuclear translocation of RXRα and PPAR-γ, which controls

the M2 phenotype of microglia, reduces neuroinflammation,

and increases hematoma absorption (71). According to a recent

study by Chen et al., the mitochondrial reactive oxygen species

(ROS)/NLRP-3 pathway, which is also strongly linked to hematoma

absorption, may promote the transition of microglia from the M1

to the M2 phenotype under the influence of MitoQ treatment (72).

However, the clinical applications of these potential drugs require

further research.

7. Prospect

Over the past years, there have been several novel research

directions on endogenous hematoma absorption after ICH, such

as H2S-mediated sustained microglial phagocytosis of hematoma,

regulation of downstream signaling bymiRNAs, the role of cerebral

white matter fibers, and even physical therapeutic treatment

methods such as remote ischemic conditioning. In conclusion,

the core of hematoma absorption after ICH is the ability of

phagocytes to engulf RBC. Most existing research is aimed at

promoting hematoma absorption by enhancing the M2 shift of

microglia and increasing the expression of their surface SRs.

However, compared with other factors, PPAR-γ and Nrf2 signaling

pathways that regulate leukocyte differentiation antigens on the

surface of microglia to promote hematoma absorption have

attracted more attention and in-depth research. Some agonists

of the PPAR-γ and Nrf2 pathways can be used as clinical

drugs for patients with ICH. Therefore, we believe that the

regulation of microglia/macrophages will be the “final answer”

to endogenous hematoma absorption after ICH. Identifying

regulatory mechanisms and significant targets will be a direction

for future research.
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