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Background: Lacunes represent key imaging markers of cerebral small vessel

diseases (cSVDs). During their progression, incident lacunes are related to stroke

manifestations and contribute to progressive cognitive and/or motor decline.

Assessing new lesions has become crucial but remains time-consuming and

error-prone, even for an expert. We, thus, sought to develop and validate an

automatic segmentation method of incident lacunes in CADASIL caused by

cysteine mutation in the EGFr domains of the NOTCH3 gene, a severe and

progressive monogenic form of cSVD.

Methods: Incident lacunes were identified based on di�erence maps of 3D

T1-weighted MRIs obtained at the baseline and 2 years later. These maps were

thresholded using clustering analysis and compared with results obtained by

expert visual analysis, which is considered the gold standard approach.

Results: The median number of lacunes at the baseline in 30 randomly selected

patients was 7 (IQR = [2, 11]). The median number of incident lacunes was 2 (IQR

= [0, 3]) using the automatic method (mean time-processing: 25 s/patient) and

0.5 (IQR = [0, 2]) using the standard visual approach (mean time-processing: 8

min/patient). The complementary analysis of segmentation results is enabled to

quickly remove false positives detected in specific locations and to identify true

incident lesions not previously detected by the standard analysis (2 min/case).

A combined approach based on automatic segmentation of incident lacunes

followed by quick corrections of false positives allowed to reach high individual

sensitivity (median at 0.66, IQR = [0.21, 1.00]) and global specificity scores (0.80).

Conclusion: The automatic segmentation of incident lacunes followed by

quick corrections of false positives appears promising for properly and rapidly

quantifying incident lacunes in large cohorts of cSVDs.
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1. Introduction

Cerebral small vessel diseases (cSVDs) represent a major cause of stroke (1). They are

also the main source of vascular cognitive impairment and the second most common cause

of dementia (2, 3). Moreover, cSVDs are responsible for covert brain lesions frequently

detected on magnetic resonance imaging (MRI) in the general population, the prevalence
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of which increases considerably with aging (4). Their severity

appears strongly related to aging, genetic variants, and exposure

to vascular risk factors, particularly hypertension (5, 6). During

the last decades, monogenic forms of cSVDs have been identified

among the most progressive and severe types of such conditions.

Although rare, these disorders are considered today as unique

models to better understand the mechanisms underlying the

progression of hereditary and sporadic cSVDs (7, 8).

Among the hallmarks of cSVDs are lacunes, detected using

MRI, as small cavities of cerebrospinal fluid (CSF) appearing in

the brain during their progression. Lacunes develop in the cerebral

tissue after previous focal ischemic lesions, and more rarely after

small hemorrhages. During the course of cSVDs, accumulating

evidence shows that incident lacunes can also occur in the total

absence of stroke manifestations while contributing to cognitive

and/or motor decline (9). Incident lacunes also promote the

development of cerebral atrophy and cortical thinning (10). Thus,

assessing the number and the location of incident lacunes has

become crucial for longitudinal studies on cSVD and a key outcome

for clinical trials.

Quantitative studies of incident lacunes, even those derived

from segmentation techniques, remain however largely based on

the visual assessment of imaging data (11, 12). The related tasks,

which are operator-dependent and time-consuming, might be

difficult to apply to a large bundle of MRI exams. Moreover,

these tasks appear particularly difficult in the presence of severely

damaged brain tissue or the presence of multiple lesions mimicking

lacunes, such as perivascular spaces (13). To overcome these

difficulties as well as potential random operator errors, we aimed to

improve the automation of the segmentation method to facilitate

both the detection (number and location) and delineation of

incident lacunes in cSVDs based on clinical MRIs. Herein, we

present the results obtained with such an approach for measuring

incident lacunes in CADASIL, a severe and progressive cSVD of

hereditary origin.

2. Materials and methods

2.1. Patients

All patients included in this study had a genetically confirmed

diagnosis of CADASIL caused by cysteine mutation in the EGFr

domains of the NOTCH3 gene. They were followed by the National

French Referral Center for Rare Vascular Diseases of the Eyes and

Brain (CERVCO, https://www.cervco.fr). Every 18–24months, they

were systematically evaluated with standardized MRI including

millimetric resolution 3D-T1 images. The study was approved by

an independent ethics committee (updated agreement CEEI-IRB-

17/388) and was conducted in accordance with the Declaration

of Helsinki and guidelines for Good Clinical Practice and General

Data Protection Regulation (GDPR) in Europe.

2.2. Dataset

Thirty patients were randomly selected for the present study.

They were on average 53.7 years old [range: (32.3, 74.6)], and

57% were women. The baseline and the first follow-up 3D T1-

weighted MRI (MPRAGE, GRAPPA acceleration factor 3, and

sagittal acquisition) were acquired at 3T on a SIEMENS Skyra

system, without denoising, with a ratio of the field of view

dimension in the phase direction to the field of view dimension

in the frequency direction at 100% and an interpolated resolution.

A total of 10 out of 30 baseline scans were acquired with the

following parameters for MRI: TR/TE/TI 1800/2.4/907ms, voxel

size of 0.4mm× 0.4mm× 0.9mm, acquisition matrix of 320x320,

field of view of 269mm×26mm, and acquisition time of 3:59min.

The remaining baseline and all follow-up data were acquired with

the following parameters: TR/TE/TI 2000/3.2/900ms, voxel size

of 0.4mm × 0.4mm × 0.4mm, acquisition matrix of 288 ×

288, field of view of 242mm × 242mm, and acquisition time of

4:01 min.

2.3. Segmentation of lacunes

The lacunes at the baseline were first segmented semi-

automatically as previously reported (14). The underlying pre-

processing methods of MRI data are described in Figure 1. For

each patient, the brain was extracted and non-linearly registered in

the Montreal Neurological Institute (MNI) space (1mm isotropic)

with ANTs image processing tools (http://stnava.github.io/ANTs/)

(18, 20), and then normalized in intensity with FSL tools (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The detection of incident lacunes

(as defined according to the STRIVE criteria) was based on

the MRI signal changes observed with the development of

incident small cavity lesions containing CSF in the brain tissue

(11, 12). Thus, the first follow-up data were subtracted from

the baseline data for each patient. Since new lacunes should

have lower T1 values than the corresponding area on baseline

MRI, only voxels with positive values in the difference maps

(baseline minus follow-up) were initially selected. Thereafter, only

those located both in the MNI white matter (WM, including

basal ganglia) and follow-up CSF masks were considered (17).

Finally, a K-means clustering with two classes was performed to

threshold the difference map obtained (21). The final threshold

corresponded to the minimal value of the class with the highest

intensities and allowed to select areas with the highest local

MRI signal changes. Diameters of clusters were subsequently

measured, and only those between 3 and 15mm were selected

to fulfill the STRIVE diagnostic criteria of lacunes (22). Finally,

clusters superimposed to follow-up the external CSF (included

in the subarachnoid space) and skeletonized sulci (15) or at

the subcortical edges of the WM mask were automatically

removed. It is noteworthy that clusters in the neighborhood of

baseline lacunes were differentially labeled as “extension of former

lacunes.” These different processing steps are summarized in

Figure 2.

2.4. Data analysis

To evaluate the automatic segmentation, incident lesions were

identified visually and rated independently by two experts in cSVD
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FIGURE 1

Pre-processing. (A) Pre-processing of MRIs under study. The cortical sulci were skeletonized using topological and regularization constraints applied

to the excrescence of the union of the cerebrospinal fluid (CSF) and the gray matter in the brain (15). The bias of MRI was corrected using the N4

correction procedure (16) and both the brain and CSF masks were extracted using an iterative process based on Bayesian segmentation techniques

(17). The connected components of the CSF mask were identified using the ANTs image processing tools (http://stnava.github.io/ANTs/): the largest

represented the external CSF (included in the subarachnoid space) connected to ventricles. (B) Pre-processing of the MNI template (18). The bias of

the template was first corrected using the N4 correction procedure (16). The brain, the cerebrospinal fluid (CSF), and the white matter (WM, including

the major part of basal ganglia) masks were extracted using an iterative process based on Bayesian segmentation techniques (16, 17). Connected

components of the CSF mask were then identified using ANTs image processing tools (http://stnava.github.io/ANTs/) to easily isolate the ventricles

mask visually (not connected to the external CSF in this template). This mask was, then, dilated to keep potential incident lacunes connected to the

ventricles of the follow-up (FU) MRI of the subject (kernel of 3 × 3 ×3 voxels). A distance map based on the Maurer distance (19) was also computed

from the WM mask to keep only potential incident lacunes within this mask and exclude the most peripheral lesions (exclusion if d ≥ 0mm). A basal

ganglia mask was manually delineated by a neuroradiologist (RZ) and dilated to keep potential incident lacunes close to the inner edge of the WM

mask (kernel of 3 × 3 ×3 voxels).
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FIGURE 2

Flowchart of incident lacunes segmentation. From left to right: Both baseline and follow-up (FU) MRI were non-linearly registered in the MNI space

(18, 20), normalized in intensity with FSL tools (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), and then subtracted from each other to provide a di�erence map.

As incident lacunes should appear with an MRI signal lower than non-lesioned cerebral matter, with an intensity close to the CSF signal of the FU MRI,

only voxels of the di�erence map with a positive value and superimposed to the registered CSF mask of FU MRI were considered (refer to Figure 1A).

Only clusters included in the cerebral white matter (WM) were kept, and their mask was defined on the MNI template (refer to Figure 1B). A K-means

clustering with two classes was then performed on voxels considered likely lacunes and distinct from noise. The di�erence map was thresholded

using the minimal value of the clustered class with the highest values. Only groups of voxels of diameter between 3 and 15mm, not superimposed to

the border of the WM MNI mask (refer to Figure 1B), to the external CSF mask (included in the subarachnoid space), or to the skeletonized sulci of FU

MRI (refer to Figure 1A) were considered. Finally, clusters in the neighborhood of baseline lacunes were labeled separately from “incident” lacunes.

imaging research (HC, neurologist and RZ, neuroradiologist). The

evaluation was performed with simultaneous visualization of the

baseline and follow-up images already registered in the MNI

space. After an inspection of all 3D-T1 MRI slices, each incident

lacune was then marked, on a single MRI slice, on the screen

by each rater using the Anatomist software (23) and blinded

to the patient’s status. Experts did not use any specific tool to

measure the exact size of the lacune. They visually estimated their

matching with the STRIVE criteria. A gold standard was thereafter

obtained by consensus after a third reading in the presence of

the two experts. For each incident lacune of the gold standard,

the analysis of the performance of the algorithm to identify the

same lesion was performed: If an incident lacune was automatically

segmented in the neighborhood of the gold standard (gold standard

dilated by a kernel of 3 × 3 × 3 voxels), it will be considered

as “true positive”; if the algorithm missed this lacune, it will be

considered as “false negative”; and if the algorithm segmented

a lacune but not the gold standard, it will be considered as

“false positive”. Then, the sensitivity and the F1-score between

the proposed method and the gold standard were estimated for

each patient with at least one incident lacune detected by the

gold standard (lesion-level analysis). With all patients together,

the number of incident lacunes provided by the automated and

visual approaches was compared by the Wilcoxon signed-rank test

(significance at 0.05). The presence of incident lacunes detected

automatically and by the gold standard was finally binarized [yes

(1) or no (0)] for each patient, for estimating the patient-level

sensitivity, specificity, and F1-score of the detection obtained

using the segmentation algorithm. All statistical comparisons and

measures were calculated in Python3 (numpy version 1.21.5, scipy

version 1.7.3).

3. Results

The median number of lacunes at the baseline was 7 (inter-

quartile range IQR = [2; 11]). The average time required by each

expert to visually detect the incident lacunes was approximately

8min per MRI exam. Approximately 5min per subject were

required after this first step to define the gold standard by

consensus. The algorithm took an average of 25 s per subject

to fully segment incident lacunes and extended lacunes (on

a Mac OS System, Big Sur; 3.8GHz Intel Core i7 8 cores;

Memory: 16Go 2667 MHz DDR4; AMD Radeon Pro 5500

XT 8Go).

Among the 30 patients, the gold standard collected 45 incident

lacunes with a median number per patient at 0.5 (IQR = [0;

2]), and the algorithm segmented 59 incident lacunes with a

median number per patient at 2 (IQR = [0; 3]). With 20 lesions

identified as “true positives,” 39 as “false positives”, and 25 as

“false negatives,” the median sensitivity was 0.40 (IQR = [0; 0.67]),

and the median F1-score was 0.50 (IQR = [0; 0.67]) (lesion-level

analysis). With all patients together, both approaches provided

a similar number of incident lesions (Wilcoxon test: p = 0.3).

Based on the binarized presence of incident lacunes, the patient-

level sensitivity, specificity, and F1-scores were equal to 0.80, 0.46,

and 0.69, respectively. Figures 3A, B display incident lacunes, both

detected by the experts and the algorithm and an “extended” part

of a former lacune.

A deep visual inspection of the results obtained using the

algorithm showed that (1) most of the false positive lacunes

were detected within the cortical sulci (18% of false positives)

and/or in perivascular spaces, where some signal variations were

detected during follow-up (36% of false positives); (2) some lacunes
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FIGURE 3

Automated incident lacunes segmentation and limitations. From left to right: magnification of MR images in di�erent patients after the registration of

the baseline and follow-up (FU) data in the MNI space. In the right column, the automated segmentation of lesions was superimposed on the FU MRI.

In (A, B) incident lacunes were both identified by the experts and the algorithm. The automated method enabled to di�erentiate the incident lacune

from the extension of a previous lacune (B). In (C) these incident lacunes were only identified by the algorithm. The automated method enabled to

di�erentiate the incident lacune from the extended part of a baseline lacune.

identified by the experts were missed by the algorithm because their

diameter was <3mm (32% of false negatives) or because they were

not included in the CSF mask obtained on follow-up MRI (24%

of false negatives); and 3) there were also “true” lacunes detected

by the algorithm but not by the experts, consequently unfairly

identified as “false positive” (31% of the clusters so-called “false

positives”) (refer to Figures 3, 4).

The manual removal by an expert of the most obvious false

positives, mainly within the cortical sulci or perivascular spaces,

was easy and fast (estimated time: 2min per subject). The “true”

lacunes detected by the algorithm but not by the experts were kept;

the lacunes missed by the algorithm were not added. With these

corrections, the number of “false positives” dropped to zero. For

patients with at least one incident lacune truly detected (by the
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FIGURE 4

Limitations of the automated segmentation. From left to right: magnification of MR images in di�erent patients after the registration of the baseline

and follow-up (FU) data in the MNI space. In the right column, the automated segmentation of lesions was superimposed on the FU MRI. Because of

brain atrophy in patients with CADASIL, false positive lacunes were identified by the algorithm after the enlargement of some cortical sulci (A).

Because the CSF signal has changed across acquisitions within perivascular spaces, false positive incident lacunes were also detected at such

locations (B). The algorithm failed because of the size of the cluster of interest (diameter < 3mm) (C). The algorithm failed because the region of

interest did not belong to the CSF mask of follow-up data (D).
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gold standard and/or the algorithm), the median sensitivity and the

median F1-score to detect lacunes at lesion level reached 0.66 (IQR

= [0.21; 1.00]) and 0.79 (IQR = [0.35; 1.0]), and the patient-level

specificity and F1-score were 0.80 and 0.76, respectively.

4. Discussion

The results of this study showed first that it is possible

to use conventional segmentation methods to automatically

assess incident lacunes during the progression of cSVD, with a

conventional computer system and with a fast processing time.

This task is particularly challenging for different reasons: lacunes

are small lesions and their diameter can be limited to 3mm (13),

and they can be confused with other small cavities of the brain

containing CSF such as perivascular spaces (24) or with small

signal changes related to brain movements or cerebral atrophy,

particularly at the contours of the brain parenchyma (25, 26).

Finally, the CSF signal itself may also vary with repeated MRI

acquisitions and is not always consistent (27). Our approach allows,

however, not only to measure the number of incident lacunes

but also to estimate their location in the brain in further studies.

These parameters might be of high interest to understanding the

dynamics of structural tissue loss during the progression of cSVD.

The method proposed in this study appears highly sensitive

at the group level. The main limitation of using only such

an automated segmentation method is, however, the limited

specificity and a significant risk of false positives of incident

lesions at the individual level. Interestingly, the detailed analysis of

errors observed using the algorithm showed that most difficulties

encountered were not actually related to the segmentation method

itself but rather to the very limits of defining an incident lacune

operationally. Results showed that with the development of cerebral

atrophy in cSVD, some voxels in the depth of the cortical sulci

became apparent on follow-up MRI. Except for their location, their

morphological features corresponded to the imaging definition

of an incident lacune. In other cases, despite the use of refined

methods to segment the brain and delineate its contours, the CSF

signal was found to vary between two exams at the surface of the

brain. Here, the corresponding voxels were also mistaken, as a

clustermimicking a small cavity developing in the brain. Additional

studies are needed to improve brain contour delineation. On the

contrary, we also found that some cavities, missed by the two

experts, were appropriately recognized as lacunes by the algorithm.

This illustrates some limits of the visual detection of incident

lacunes in cSVD and the potential of such an automated approach.

In line, very small incident lacunes were sometimes identified

visually by the experts but not by the algorithm. Here again,

the error was not related to the automated method but to the

definition of the lacune itself, imposing a diameter of at least 3mm,

which no examiner could achieve from only visual examination.

Preliminary tests (not shown) based on a shape constraint to only

keep round lesions for lacunes showed an obvious underestimation

of lesions because some of them were ovoid or different in shape.

Further investigations led to include a shape constraint, mainly for

removing elongated lesions that did not correspond to lacunes.

No obvious effect related to the different MR protocols in

use was detected. Additional studies are, however, needed to

determine whether our algorithm is actually insensitive to various

MR acquisitions.

Most of the errors observed using the automated method

were detected at the cortical surface or in perivascular spaces.

They are easy to recognize visually because of their topographic

distribution. Thus, we tested whether a combined approach using

an automatic segmentation followed by a manual correction

of these predictable errors was feasible and could be obtained

easily. The results showed that such false positive lesions could

be identified and removed quickly through manual correction

of voxels identified by the algorithm. Moreover, the combined

task (automated algorithm + manual correction) was found to

last on average 2.25min per case while 8min were needed to

detect and identify incident lacunes by the experts. Finally, using

this combined approach, the median sensitivity for detecting

individual lesions on MRI increased up to 0.66, a value that

can be considered satisfactory at the case level. A sensitivity and

specificity of 0.80 were even obtained at the group level. Therefore,

we believe that such a combined approach can already be used

to separate patients very quickly from those without incident

lacunes in large MRI datasets and to quantify the number of

incident lacunes at the individual level, even in the presence of a

severe cSVD.

The strengths of this study are multiple. The search for

incidental lacunes was carried out in a group of patients

with particularly severe small vessel disease and who presented

multiple lesions at the baseline, thus under particularly demanding

conditions. The lesion segmentation was based on readily available

tools, and the treatment pipeline can be easily replicated.

The results are immediately applicable and were obtained

from clinical MRI data. Some limitations are also evident.

External validation in a very large cohort of patients with

mild to severe forms of cSVD would be useful to consolidate

these findings. Some technical developments for removing

the voxels identified at the surface of the cerebral cortex

have to be investigated and should further improve this

automated segmentation method. Finally, this approach does not

exclude others such as the development of the identification

of lacunes by supervised learning methods [for example, based

on the convolutional neural network (28, 29)], which seem

to offer other advantages such as better accuracy of the

detected lesions but also disadvantages such as more important

computing resources (days to constitute the training set and

dozens of hours to perform the segmentation with an adapted

computing system including large memory capacity). Different

approaches have to be compared in terms of accuracy and also

computation facility.

In conclusion, we have developed an automatic segmentation

approach to assess incident lacunes in cSVD and showed that

by combining some quick manual correction of systematic

errors, such an approach can be already proposed to segment

incident lacunes in large databases of cSVD. In the future,

additional technical developments are warranted to further

improve this promising approach, which is already capable of

overcoming some unexpected limitations of visual assessment.

These efforts will also be needed to further increase the

sensitivity and specificity of an automated method without any

human intervention.
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