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Circadian rhythm in restless legs
syndrome

Mingyang Tang†, Qingqing Sun†, Yanan Zhang, Huimin Li,

Dong Wang, Ying Wang and Zan Wang*

Sleep Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China

Restless legs syndrome (RLS) is a sensorimotor disorder with a obvious circadian

rhythm, as its symptoms often occur or worsen only in the evening or at

night. The mechanisms behind the rhythms of RLS have not yet been fully

elucidated. This review explores possible causes for the circadian fluctuations

of the symptomatology, including the levels of iron, dopamine, melatonin,

melanocortin, and thyroid-stimulating hormone in the brain, as well as conditions

such as peripheral hypoxia and microvascular function disorders. The metabolic

disturbances of the substances above can create a pathological imbalance, which

is further aggravated by physiological fluctuations of circadian rhythms, and results

in the worsening of RLS symptoms at night. The review concludes with the

suggestions for RLS treatment and research directions in the future.
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1. Introduction

Restless legs syndrome (RLS) is a common sensorimotor disorder characterized by

strong and persistent urges to move. It is often accompanied by uncomfortable and varied

limb sensations that may be described as creeping, itching, or pulling; these occur or worsen

in the evening/night when at rest andmay resolve after movement. RLS is often accompanied

by periodic limb movements at night, which can result in disturbed sleep architecture and

frequent awakenings (1). RLS may cause severe difficulty in falling asleep, poor sleep quality,

impaired daytime function, increased incidence of cardiovascular or cerebrovascular disease

(2, 3), and diminished quality of life.

The mechanisms underlying RLS have not yet been fully elucidated. Possible

mechanisms include iron deficiency, altered dopaminergic function (4), and specifically

increased excitability of the glutamate system in the brain; which can cause central nervous

system sensitization and hyperarousal, resulting in sensory disturbances and frequent

awakenings (5–7). Adenosine has also been implicated: a severe iron deficiency may

downregulate the adenosine A1 receptor (A1R) and upregulate the adenosine A2A receptor

(A2AR), resulting in a hypoadenosinergic state and an increase of A2ARs that do not form

heterodimers with A1Rs, while a milder iron deficiency may only affect A1R. This increases

the sensitivity of cortico-striatal glutamatergic terminals and promotes a hyperglutaminergic

state (8, 9).

The opioid system is also involved in RLS pathogenesis. Walters et al. found statistically

significant reductions in β-endorphin and Met-enkephalin levels of patients with RLS

(10). The effectiveness of opioid receptor agonists demonstrate the therapeutic impact of

these receptors, and receptor knockdown can cause iron deficiency anemia, dopaminergic

disorders, and RLS-like symptoms (11, 12). However, the specific mechanisms must be

further investigated. Other studies have focused on hypocretin-1 in the cerebrospinal fluid

(CSF) because of its role in physiological rhythms. One study found that hypocretin-1
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levels significantly increased during the evening in patients with

early-onset RLS (13), while another one failed to find significant

differences between hypocretin-1 levels of patients with RLS and

control participants during the evening (14). Hypocretin-1 levels

show a clear sinusoidal diurnal variation in healthy subjects (15),

yet a study of patients with RLS failed to find evidence of a

24-h circadian rhythm in their hypocretin-1 levels (16). These

conflicting results show that further research is needed. Genetic

polymorphisms may also be a part of the pathogenic mechanism,

with the PTPRD, BTBD9, and MEIS1 genes as strong candidates

of genetic risk factors for RLS (17, 18). Current pharmacological

treatments for RLS include iron supplements, dopamine agonists,

α2δ ligands, and opioids; however, these may be ineffective, and the

dopamine agonists may even exacerbate the RLS symptoms in some

refractory cases (19).

The evening/night-time worsening of symptoms greatly

burdens patients with RLS by affecting their sleep quality,

emotional state, and daytime function. Exploring the factors

affecting RLS could help to clarify the pathophysiological

mechanisms of this disorder and identify new therapeutic targets.

Here, we illustrate some possible mechanisms that determine

the circadian rhythm of RLS symptomatology, including iron

deficiency, altered dopamine and hormone secretion, peripheral

hypoxia, and impaired microvascular circulation function in

the brain.

2. Circadian characteristics of restless
legs syndrome

The circadian rhythm of RLS symptoms is clearly observed,

since the unpleasant sensations and urge to move occur or become

more severe in the evening/night than in the daytime. This rhythm

always occurs in the early sleep stages, though if symptoms are

severe, the night-time worsening may not be evident (1). The

severity of sensory and motor RLS symptoms demonstrates a peak

in the early stages of sleep (11 p.m.−4 a.m.) and a nadir during

the initial waking period (9 a.m.−2 p.m.); additionally, though

symptoms worsen as a result of sleep deprivation, the circadian

rhythm appears to be independent of sleepiness, fatigue, or time

since the last sleeping period (20–22).

The circadian rhythm of RLS symptoms is closely associated

with the circadian clock mediated by the supraoptic nucleus

of the hypothalamus. In a case of severe delayed sleep–wake

phase disorder and simultaneous RLS in which sleep began at

8 a.m., symptoms of RLS still occurred according to the disrupted

circadian rhythm (23). Other studies have reported that RLS

symptoms still appeared at the usual time when shift workers first

started their night shifts; as the workers’ circadian rhythms adapted

to the shift work schedule, the onset of symptoms was gradually

delayed until it coincided with the time before sleep; moreover,

westward cross-temporal flight results in a phase delay of RLS

symptoms, whereas eastward cross-temporal flight instead causes

Abbreviations: A1R/A2AR, adenosine A1 and A2A receptors; CSF,

cerebrospinal fluid; D2R, dopamine receptor 2; HIF, hypoxia-inducible

factor; MSH, melanocyte-stimulating hormone; RLS, restless legs syndrome;

TSH, thyroid-stimulating hormone.

an earlier onset of symptoms (24). This may be related to the effect

of light on circadian rhythms, and it suggests that RLS symptom

onset is independent of the duration of wakefulness; otherwise,

cross-temporal flights would have the opposite effect. The circadian

rhythm of RLS symptoms has also been significantly correlated with

the core body temperature cycle; maximal symptoms occurred at

the nadir of the core body-temperature rhythm (20–22). However,

core body temperature rhythm does not appear to be altered in

patients with RLS, which suggests that the basic circadian rhythm

in patients of RLS is not disrupted or altered. Though it may be

closely linked to the normal circadian rhythm, the circadian rhythm

of RLS may not be directly controlled by the central circadian

pacemaker, but instead associated with the diurnal variability of

multiple biological factors, which are described in detail below.

3. The role of iron in RLS

3.1. Iron deficiency in the brain and
circadian rhythm of iron

Iron is an essential trace element that plays an important role

in energy metabolism, hormone synthesis, oxygen transfer, and

immunity. It is a crucial component of hemoglobin and enzymes

involved in electron transfer and neurotransmitter synthesis. Iron

deficiency, especially brain iron, is thought to be the main factor

in RLS pathophysiology. RLS prevalence is approximately nine

times higher in patients with iron deficiency anemia than that in

the general population (25), and intravenous iron supplementation

therapy can improve RLS symptoms in some patients (26),

which suggests a close association between iron deficiency and

RLS symptoms. Patients with RLS have also demonstrated iron

deficiencies in the brain; neuropathological autopsies (27) and

ultrasound examinations (28) have found reduced iron levels in

the substantia nigra of patients with RLS. Another study showed

that CSF ferritin levels were significantly lower in patients with

RLS than in controls (29). Additionally, MRI studies suggest

that reduced iron in the brain may be more prevalent in these

patients, particularly in the thalamus, substantia nigra, nucleus

accumbens, and pallidum (30, 31). This cerebral iron deficiency

may be due to altered expression of the iron regulator hepcidin

and an iron management protein profile (such as transferrin and

its receptor) in the epithelial cells of the choroid plexus and brain

microvasculature of patients with RLS. Subsequent dysfunctions

in iron transportation from the serum to the brain, cellular iron

uptake, and blood iron homeostasis (32–35) result in brain iron

deficiency. Due to complex regulatory mechanisms, measurements

of peripheral iron status show no directly association with brain

iron levels; systemic iron deficiency may lead to reduced brain

iron only in specific regions and in certain individuals, and brain

iron deficiency can also be present in individuals with normal

peripheral iron (36), which create difficulties for assessing the

degree of deficiency.

Circadian rhythm of iron is closely related to the circadian

rhythm of RLS. Unger et al. reported a notable circadian rhythm

of increasing iron levels in the ventral midbrain during sleep,

with maximum levels in mid-morning and minimum levels during

evening hours (37–39). Also, Earley et al. (29) found that CSF

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1105463
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Tang et al. 10.3389/fneur.2023.1105463

ferritin levels of patients with RLS at 10 a.m. (reflecting night-time

brain iron status) were lower than those at 10 p.m. (reflecting

afternoon brain iron status). Sleep deprivation may also decrease

the mean level of iron and reduce the absolute and relative

amplitudes of its circadian oscillations (40), supporting the link

between RLS symptoms and sleep deprivation (21). Therefore, the

nadir of iron levels due to circadian rhythms may be related to the

occurrence or aggravation of RLS symptoms during the evening or

at night.

3.2. Brain iron deficiency and dopaminergic
system disorder

Iron deficiency also causes dysfunction of the dopaminergic

system; dopaminergic disorders and the circadian rhythm of

dopamine can then combine to cause a worsening of RLS symptoms

at night. Patients with RLS demonstrate higher dopamine levels

in the synaptic gap and lower levels in the intracellular space

than those of controls; they also demonstrate reduced density of

dopamine D2 receptors (D2R) in the putamen and dopamine

reuptake receptors, according to previous studies using samples

from CSF (41), post-mortem tissue (42), and animals (43). These

dopaminergic changes result from iron deficiency in the brain,

which can lead to high levels of dopamine through the hypoxia-

inducible factor (HIF)-1 pathway (4) and downregulation of

A1Rs (44). Similar dopaminergic changes were observed in iron-

deficient mice and were reduced by administration of exogenous

iron to the striatum (43, 45, 46). As with ferritin, dopamine

expression also follows a circadian rhythm; levels in plasma

typically peak at 8 a.m. and gradually decrease to 60% of the

peak between 8 p.m. and 10 p.m., with the nadir occurring at

∼3 a.m. (47).

Taken together, a model by Earley et al. showed the

circadian rhythm of dopamine could cause the nocturnal symptom

fluctuations that match the cycle of RLS symptom presence. Iron

deficiency could contribute to a presynaptic hyperdopaminergic

state, leading to the downregulation of D2Rs as postsynaptic

feedback. Due to the diurnal variation of dopamine secretion, the

feedback effects also vary dynamically. While this postsynaptic

adaptation to increased dopamine stimulation is appropriate

during the day when dopamine levels are higher, it appears to

overcompensate in the evening when dopamine levels are lower.

Excessive downregulation of postsynaptic D2Rs results in weak

dopaminergic signaling when dopamine levels are low, creating a

relative dopamine deficit despite an overall increase in dopamine.

The intensity of the dopaminergic output signal thus varies with

the circadian rhythm of dopamine levels, reaching its nadir in the

late evening or after sleep onset. The weakening of dopaminergic

signaling, particularly D2Rs, can reduce inhibition of painful

stimuli and cause dysfunction in pain processing (48, 49) and

may lead to increased release of glutamic acid (50, 51). Through

these mechanisms, RLS symptoms may be triggered when the

dopaminergic output signal falls below a critical threshold. This

model could explain why patients experience the mildest RLS

symptoms at late night or early morning and the most severe RLS

symptoms at evening/night (4).

4. Peripheral hypoxia and impaired
microvascular circulation

Since iron is crucial for oxygen transportation, hypoxia and

impaired microcirculation are other potential mechanisms of RLS.

In patients with RLS, HIF 1-α was higher in the substantia nigra,

and HIF 2-α and vascular endothelial growth factor were increased

in themicrovessels, a possible sign of hypoxia due to iron deficiency

(52, 53). Salminen et al. demonstrated that peripheral hypoxia

was positively correlated with the presence and severity of RLS

(54). Furthermore, impairment of microvascular circulation in

patients with RLS has been demonstrated using bilateral great-

toe laser Doppler flowmetry, whole-body thermography (55), and

ultrasound imaging (56). Near-infrared light therapy is effective

in ameliorating nocturnal symptoms by promoting nitric oxide

release to improve vasodilation (57, 58), demonstrating the

relationship between impaired microvascular circulation and RLS.

A circadian rhythm of higher blood flow in the morning than in

the evening was observed in the microcirculatory pattern of the

tibialis anterior muscle in patients with primary RLS, but not in

the control group (59). Thus, altered microcirculation might be

another mechanism affecting the circadian rhythm in RLS.

5. Altered hormone secretion

5.1. Melatonin

Melatonin is an amine hormone produced by the pineal gland.

Its secretion is influenced by light and has a well-defined circadian

rhythm. Actively secreted in the darkness and suppressed during

the day, it peaks in the middle of the night (2–4 a.m.) then

gradually decreases. However, acute light exposure at night rapidly

stops melatonin production (60), whereas in continuous darkness,

the melatonin rhythm still remains. Michaud et al. demonstrated

that melatonin secretion onset coincided with nocturnal symptom

worsening in patients with RLS, and that salivary melatonin levels

peaked ∼2 h before the peak of sensory or motor symptom

severity; moreover, melatonin promotes peripheral vasodilation

in humans, leading to a decrease in core body temperature that

is associated with the onset of RLS symptoms (20). However,

Whittom et al. found that exogenous melatonin administration

significantly worsened motor symptoms in patients with RLS,

whereas inhibition of endogenous melatonin by strong light

exposure at night improved sensory symptoms (61), which

contrasted with melatonin’s reported role in reducing neuropathic

pain (62). Melatonin can inhibit the release of dopamine by

suppressing the influx of calcium into stimulated nerve endings,

while the suprachiasmatic nuclei modulates the sensitivity of

dopaminergic neurons tomelatonin (63); this may contribute to the

relative evening/night-time dopamine deficits in RLS, exacerbating

motor and sensory symptoms. Only a few studies have investigated

this aspect; current results show that melatonin secretion patterns

in patients with RLS are not significantly different than those

in controls (20). Therefore, melatonin may be involved only

as an upstream regulator of other pathways that influence the

RLS circadian rhythms, though the specific mechanism requires

further investigation.
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5.2. Melanocortin

The alpha-melanocyte-stimulating hormone (α-MSH) and

adrenocorticotropic hormone are centrally-acting melanocortins

produced by hypothalamic pro-opiomelanocortin neurons. Their

secretion also has a circadian rhythm, with a nocturnal peak

occurring overnight (64). In menopausal women and rat

models, exogenous melanocortin administration induced dose-

dependent RLS-like symptoms, such as increased motor impulses,

hyperactivity, sleep fragmentation, and periodic limb movements

(65, 66). Melanocortins act as endogenous anti-opioids, and

exogenous administration can lead to hyperalgesia in rats (67–

69). Melanocortin secretion can be inhibited by dopamine,

which blocks RNA synthesis of the melanocortin precursor pro-

opiomelanocortin in the hypothalamus via D2Rs (70). The D2R

downregulation seen in RLS may lead to hypersecretion of

MSH (especially at night), potentially aggravating RLS symptoms.

Therefore, disrupted MSH secretion is a likely mechanism

underlying the night-time worsening of RLS symptoms; however,

no study has directly examined the association between changes

in endogenous MSH levels and the circadian rhythm of RLS

symptoms. Further research is needed to determine the role ofMSH

in the pathophysiological mechanisms of RLS.

5.3. Thyroid-stimulating hormone

The thyroid-stimulating hormone (TSH) is a pituitary-derived

hormone composed of α and β subunit genes. Regulated by

the suprachiasmatic nuclei, TSH also follows a defined circadian

rhythm of rising in the evening before sleep onset and peaking at

night between 10 p.m. and 5 a.m., followed by a gradual decrease to

a day-time minimum between 3 and 7 p.m. (71–73). This pattern is

consistent with the circadian symptomatology in patients with RLS.

Patients with hypothyroidism have poor sleep quality, as measured

by prolonged sleep latency, long N1 and N2 phases, and short N3

and REM phases (74, 75).

TSH alterations may represent a pathophysiological

mechanism of RLS. Geng et al. demonstrated that TSH levels are

elevated in patients with RLS when compared to healthy controls

and found TSH to be positively correlated with International

Restless Legs Scale scores and negatively correlated with sleep

quality (76). Ahmed et al. reported a correlation between RLS and

hypothyroidism, with a significantly high prevalence of RLS in

patients with hypothyroidism and a significantly high prevalence

of hypothyroidism in patients with RLS (77).

The elevated TSH levels in patients with RLS may be related

to the following mechanisms: first, dopamine can reduce TSH

formation by inhibiting transcription and translation of the TSH

β-subunit, mediated by the thyrotropin-releasing hormone (78);

thus, the hypodopaminergic state in patients with RLS may lead

to excessive TSH release. Second, iron deficiency can impair the

heme-dependent thyroid peroxidase, reducing the synthesis of

thyroid hormones and increasing TSH via feedback dysregulation

(79, 80). The strong correlation between elevated TSH levels and

RLS suggests that a TSH secretion imbalance may contribute to the

circadian rhythmicity of RLS symptoms. However, further research

is needed, as there are no studies specifically on the synchronization

of RLS symptoms and the circadian rhythm of TSH secretion.

6. Treatment

Iron-replacement therapy is considered for all patients with

RLS upon initial treatment and is administered if transferrin

saturation levels are ≤45%. Oral iron treatment is generally

safe and well-tolerated, and should be considered for serum

ferritin levels of ≤75 µg/L in an adult or <50 µg/L in

a child; intravenous treatment is considered for adults with

serum ferritin levels of 75–100 µg/L (36). Dopamine agonists

and α2δ ligands are prescribed for use one to 2 h before the

regular onset of RLS symptoms. Dopamine agonists bind to

dopamine receptors and mimics the actions of dopamine to

counteract the downregulation of dopaminergic output signal

from the relative dopamine deficit during the evening, while

α2δ ligands bind with high affinity to the α2δ-1 subunit of

voltage-gated calcium channels, resulting in the reduced release of

glutamic acid (81, 82). Meanwhile, dipyridamole is a novel and

non-selective equilibrative nucleoside transporter 1/equilibrative

nucleoside transporter 2 adenosine transporter antagonist that may

counteract the hypoadenosinergic state in patients with RLS to

reduce symptoms (83).

Non-pharmacologic treatment by pneumatic-compression

devices or near-infrared light therapy can improve microvascular

circulation during the night to relieve RLS symptoms (58,

84, 85). Standard acupuncture may be another safe alternative

treatment (86). However, large-scale and adequately powered

randomized controlled trials are required to estimate the

efficacy of these approaches. Repetitive transcranial magnetic

stimulation applied in the evening may provide relief for

RLS symptoms by promoting dopamine release (87), while

continuous transcutaneous direct current stimulation to the

spinal cord may provide lasting symptom improvement (88).

Yoga and night-time cold-water immersion of the legs can also

reduce symptoms and severity, although the exact mechanism

is unclear (89–91). Subclinical hypothyroidism may also require

assessment before developing a treatment plan. Moreover,

patients with RLS may have individualized circadian rhythms

in which the exacerbation of symptoms occurs at fixed times

or seasons; further study of these factors could guide clinical

treatment (92).

7. Conclusion and prospect

The circadian rhythm of RLS is related to several complex

mechanisms (Figure 1). Initially, iron deficiency in the brain

causes dopaminergic system dysfunction and hyperglutaminergic,

hypoadenosinergic, and peripheral hypoxic states. These alterations

result in downstream decreases of. dopamine-mediated inhibition,

central nervous system sensitization, hyperarousal, and imbalance

in the secretion of hormones with circadian rhythms, such as

melatonin, melanocortin, and TSH. The pre-existing pathological

imbalance is further aggravated by physiological oscillations from

circadian rhythms, resulting in symptoms that worsen at night.
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FIGURE 1

Diagram of circadian rhythm mechanism in restless legs syndrome. The red arrows represent pathological changes and the green arrows represent

physiological changes in the night due to circadian rhythms. Dotted lines represent unknown mechanisms.

Standard treatments include iron supplements, dopamine agonists,

α2δ ligands and opioids; while some emerging therapies have

demonstrated efficacy, further evidence of their mechanism of

action is still needed.

In addition, other factors may affect the circadian rhythm

in RLS. Recent research has also found evidence of a circadian

rhythm in spinal cord excitability with RLS (93, 94), which may

be related to the decrease in supraspinal inhibition mediated

by the dopaminergic nucleus A11 of the hypothalamus (95).

Meanwhile, the diurnal disturbances of the default mode network

may also be related to the circadian rhythm of RLS, especially

circadian connectivity changes to the thalamus (96). Although

a hyperglutamatergic state is well-established in RLS patients,

available studies were conducted in the morning (7) and no

studies have attempted to clarify whether glutamate levels are

further elevated at night owing to circadian oscillations of iron or

dopamine. These factors may represent targets for further research

to clarify the mechanisms of circadian rhythm in RLS. Accurate

assessment of the circadian rhythm characteristics for each patient

with RLS also requires further research.
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