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Background: Di�use gliomas possess a kind of malignant brain tumor with high

mortality. Glutamine represents the most abundant and versatile amino acid in

the body. Glutamine not only plays an important role in cell metabolism but also

involves in cell survival and malignancies progression. Recent studies indicate

that glutamine could also a�ect the metabolism of immune cells in the tumor

microenvironment (TME).

Materials and methods: The transcriptome data and clinicopathological

information of patients with glioma were acquired from TCGA, CGGA, and West

China Hospital (WCH). The glutamine metabolism-related genes (GMRGs) were

retrieved from the Molecular Signature Database. Consensus clustering analysis

was used to discover expression patterns of GMRGs, and glutamine metabolism

risk scores (GMRSs) were established to model tumor aggressiveness-related

GMRG expression signature. ESTIMATE and CIBERSORTx were applied to depict

the TME immune landscape. The tumor immunological phenotype analysis and

TIDE were utilized for predicting the therapeutic response of immunotherapy.

Results: A total of 106 GMRGs were retrieved. Two distinct clusters were

established by consensus clustering analysis, which showed a close association

with the IDH mutational status of gliomas. In both IDH-mutant and IDH-wildtype

gliomas, cluster 2 had significantly shorter overall survival compared with cluster

1, and the di�erentially expressed genes between the two clusters enriched

in pathways related to malignant transformation as well as immunity. In silico

TME analysis of the two IDH subtypes revealed not only significantly di�erent

immune cell infiltrations and immune phenotypes between the GMRG expression

clusters but also di�erent predicted responses to immunotherapy. After the

screening, a total of 10 GMRGs were selected to build the GMRS. Survival analysis

demonstrated the independent prognostic role of GMRS. Prognostic nomograms

were established to predict 1-, 2-, and 3-year survival rates in the four cohorts.

Conclusion: Di�erent subtypes of glutamine metabolism could a�ect the

aggressiveness and TME immune features of di�use glioma, despite their IDH

mutational status. The expression signature of GMRGs could not only predict
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the outcome of patients with glioma but also be combined into an accurate

prognostic nomogram.
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glutamine metabolism, di�use glioma, tumor microenvironment, immune, prognosis

Introduction

Diffuse gliomas are thought to arise from glial or glial

precursor cells, possess remarkable heterogeneous characteristics,

and represent a kind of malignant brain tumor with high mortality

(1, 2). Diffuse gliomas are categorized with a range ofWorld Health

Organization (WHO) grades 2, 3, and 4, and their histological

types include astrocytoma, oligodendroglioma, and mixed glioma.

Unlike WHO grade 1 circumscribed gliomas, which are potentially

curable by complete surgical resection, diffuse gliomas are almost

incurable due to their infiltrative features (3). Although surgical

techniques and anti-cancer drugs have progressed, there exist little

and even no changes in the dismal prognosis and treatment options

for diffuse gliomas (4). Since the fourth edition of the WHO’s

classification of tumors was updated in 2016, molecular biomarkers

were first introduced in the diagnosis and classification of diffuse

glioma, which opened a new era for glioma research.

Glutamine is an L-α-amino acid and is nutritionally classified

as a non-essential amino acid, which represents the most abundant

and versatile amino acid in the body (5). Glutamine plays

an important role in cell metabolism, including participating

in the tricarboxylic acid (TCA) cycle and the biosynthesis of

nucleotides, redox balance, and other non-essential amino acids (6,

7). Glutamine is also a crucial nutrient required for the survival and

progression of various malignancies. Numerous types of cancers

are characterized by increased glutamine consumption mainly

by regulating the activity of glutamine-related enzymes such as

glutamine synthetase (GS) and glutaminase (GLS) (8). Therefore,

glutamine metabolism-related specific pathways have been ideal

targets for developing anti-cancer drugs, with glutamine uptake

inhibitors, glutamine antimetabolites, and glutaminase inhibitors

being potential approaches (9, 10). In Jin et al.’s (11) study, a

single glutaminase inhibitor had limited the anti-cancer effect,

and the dual inhibition of glutamine metabolism by targeting

both glutaminase and glutamine transporter showed a promising

therapeutic effect. Nowadays, patient stratification and drug

combination strategies have been applied to maximize the efficacy

of glutamine metabolism inhibitors as tumor therapeutics (9).

Glutamine could also affect the metabolism of immune cells

in the tumor microenvironment (TME), which indirectly leads

to the appearance of a distinct immune landscape. Glutamine

is utilized at a high rate by immune cells and is necessary

for supporting lymphocyte proliferation and the production of

cytokines by lymphocytes and macrophages (12). An inverse

relationship between glutamine metabolism and T cell cytotoxicity

and worse prognosis was observed in patients with breast cancer

whose tumors harbor both high glutamine metabolism and low

T cell cytotoxicity signatures (13). In addition, growing evidence

indicates that glutamine enhances the function of immune cells

including B lymphocyte differentiation, antigen presentation,

and macrophage phagocytosis (14). A previous study discovered

that targeting glutamine metabolism inhibited the generation

and recruitment of myeloid-derived suppressor cells (MDSCs)

and promotes the generation of antitumor inflammatory tumor-

associated macrophages (TAMs) (15), while a specific loss of GLS

could improve antitumor T cell activation (13).

Tumors that arise in different organs can have distinct

phenotypes for glutamine metabolism (7). In the current study,

we made an attempt to clarify the relationship between glutamine

metabolism and diffuse glioma and figure out whether glutamine

metabolism affected the progression of diffuse glioma and reshaped

the TME features based on the amount of transcriptome data.

Materials and methods

Data screening and retrieve

The transcriptome data and corresponding clinicopathological

information of patients with glioma were acquired from the

Cancer Genome Atlas (TCGA, https://www.cancer.gov/) (16) and

Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn/)

(17), respectively. In total, one cohort from TCGA and two cohorts

(CGGA325 and CGGA693) from CGGA were collected. A patient

cohort from West China Hospital (WCH) was also included in the

current research. After surgery, the patients were followed up every

3–6 months for assessing the prognosis. Overall survival (OS) was

defined as the duration from the date of operation to death or the

end of the observation period. Exclusion criteria include those as

follows: (1) younger than 18 years old, (2) dead or censored within

30 days after surgery, (3) incomplete clinicopathological data, and

(4) recurrent gliomas.

Clinicopathological characteristics of patients with diffuse

glioma from four cohorts are listed in Table 1.

RNA disposal and analysis

Frozen diffuse glioma and adjacent normal brain tissue

specimens from West China Hospital were homogenized, and

TRIzol reagent (Invitrogen, USA) was utilized to isolate the total

RNAs. After quality checking, 2 µg RNA per sample was used

as the input material for the RNA sample preparations. mRNA

was purified from the total RNAs by using poly-T oligo-attached

magnetic beads. Then PCR products were purified by the AMPure

XP system. mRNAwas reverse-transcribed into a cDNA library and

was sequenced on the IlluminaNovaSeq S6000 platform to generate

150 bp paired-end reads. Clean reads were mapped to the hg19

genome and counted using STAR (2.6.0c).
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TABLE 1 Clinicopathological characteristics of patients with di�use glioma in the TCGA, CCGA, and WCH cohort.

Clinicopathological variables TCGA CGGA325 CGGA693 WCH

Sample size 622 218 396 77

Normal brain 5 20 20 16

Age 46 (18–87) 43 (18–79) 43 (18–76) 46 (19–81)

Gender

Female 284 115 278 32

Male 369 189 368 51

Histology

Astrocytoma 335 108 272 24

Oligodendroglioma 158 60 141 21

Glioblastoma 160 132 233 38

NA 0 4 0 0

WHO grade

G2 206 97 168 31

G3 228 71 245 14

G4 160 132 233 38

NA 59 4 0 0

IDH status

WT 229 139 267 45

Mutant 412 164 331 38

NA 12 1 48 0

1p19q codeletion status

Non-codel 481 234 443 46

Codel 158 62 137 19

NA 14 8 66 18

TERT promoter status – –

WT 157 – – 32

Mutant 330 – – 27

NA 166 – – 24

MGMT promoter status

Unmethylated 149 138 210 16

Methylated 463 148 301 38

NA 41 18 135 29

ATRX status – –

WT 441 – – 25

Mutant 193 – – 55

NA 19 – – 3

TCGA, the cancer genome atlas; CGGA, Chinese glioma genome atlas; WCH, west China hospital; WHO, World Health Organization; IDH, isocitrate dehydrogenase; codel, codeletion;

TERT, telomerase reverse transcription; MGMT, O6-methylguanine-DNA methyltransferase; ATRX, alpha thalassemia/mental retardation syndrome X-linked protein/gene; WT, wild; NA,

not available.

Glutamine metabolism-related gene
(GMRG) screening

The GMRGs were retrieved from the Molecular Signature

Database (MSigDB, https://www.gsea-msigdb.org/) (18) using

the R package msigdbr, which included the following pathways:

glutamine family amino acid metabolic process, glutamine family

amino acid biosynthetic process, glutamine family amino acid

catabolic process, glutamine metabolic process, glutamate and

glutamine metabolism, carbon–nitrogen ligase activity with
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glutamine as amido N donor, glutamine transport, protein-

glutamine gamma-glutamyltransferase activity, L glutamine

transmembrane transporter activity, regulation of glutamine

family amino acid metabolic process, and peptidyl glutamine

methylation (Supplementary Table S1). Genes were excluded if

they were not present in the RNA expression data of all four

datasets or if their expressions were too low (maximum FPKM <

0.1) in the TCGA RNA-seq data.

Unsupervised consensus clustering

Consensus clustering analysis was used to explore expression

patterns of GMRGs. Briefly, for k numbers from 2 to 10, the

hierarchical clustering of k clusters based on Pearson correlation

was performed over 1,000 random subsets of samples, and the

frequency that two samples were clustered in the same group was

calculated as the consensus index. The optimal k was determined

if the cumulated distribution function (CDF) of the consensus

index approximated a zigzag shape, and the sample size of each

cluster was not too small to study its implications. After consensus

clustering analysis on the TCGA dataset, we trained a random

forest classifier using the TCGA dataset to classify samples in other

cohorts into the consensus clusters.

Mutation analysis

To understand the association between GMRG expression and

genetic alterations of gliomas, we downloaded somatic mutation

calls of patients in the TCGA cohort curated by the cBioPortal

database (https://www.cbioportal.org/). The “oncoplot” package

from R package “maftools” was utilized to visualize the gene

alterations and annotate GMRG clustering results as well as other

clinical information.

Glutamine metabolism-related risk score
construction and validation

Patients with diffuse glioma from TCGA were randomly

divided into a training group and a validation set with a ratio

of 6:4. In the training group, glutamine metabolism-related risk

score (GMRS) was performed to establish a prognostic predictive

method based on GMRGs and patients with diffuse glioma. Using

the “glmnet” R package, the univariate Cox regression and the least

absolute shrinkage and selection operator (LASSO) Cox regression

analysis were used to screen for the strongest prognostic signature

while minimizing the risk of over-fitting. One thousand LASSO

Cox regression models were generated using different random

number seeds. GMRGs with non-zero coefficients in over 700

models were selected, and the GMRS was calculated with the

following algorithm:

GMRS =
∑

i=1

β∗

i Expi.

In the formula, Exp represents the expression level and β represents

the coefficient of each prognostic GMRG in the final Cox regression

model. An optimal cutoff value for GMRS to divide the specific

cohort into two risk groups was determined using the “survminer”

R package. For the TCGA dataset, the cutoff was derived from

the training set and evaluated in the test set. The cutoffs for other

datasets were calculated based on their own GMRS distribution due

to differences in the generation process of the transcriptome data.

The group with GMRS value <optimal cutoff value was defined

as a low-risk group, while GMRS value ≥optimal cutoff value was

defined as a high-risk group.

At first, the optimal value of GMRS was calculated in the

training group. Then, the calculated optimal cutoff value was

applied in the validation group, and the prognostic ability of

GMRS was verified. Patients from CGGA and WCH were used as

the external group for further validation. Each cohort possessed

a unique optimal cutoff value base on the algorithm. Kaplan–

Meier (K–M) curves and time-dependent receiver operating

characteristic (ROC) curves of the GMRS at 1, 2, and 3 years

were depicted.

Construction and validation of a
nomogram for predicting prognosis

To determine the independent prognostic role of GMRS,

we conducted univariate and multivariate Cox regression

analyses based on variables including the GMRS, age, sex,

WHO grade, Karnofsky Performance Scale (KPS), isocitrate

dehydrogenase (IDH) mutational status, 1p/19q codeletion status,

chemotherapy, and radiotherapy. Variables with a p-value of

<0.1 in univariate Cox analysis were included in multivariate

Cox regression for further analysis. Variables with a p-value of

<0.05 in multivariate Cox regression analysis were regarded

as independent risk factors. A prognostic nomogram was

conducted based on the independent risk factors using the “rms”

R package. The efficacy of the nomogram was assessed by the

calibration curve. Nomograms were formed and assessed in the

four cohorts.

Functional enrichment analysis of DEGs

Differentially expression genes between different groups

(cluster 1 vs. cluster 2) with an adjusted p-value below 0.05,

and log2 (fold change) >0.5 or below −0.5 were defined

as GMRS-associated DEGs. Gene-set enrichment analysis

(GSEA) of DEGs was performed and visualized by using the

“clusterProfiler” R package. Gene set variation analysis (GSVA)

was conducted using the “GSVA” R package. The differential

expression of gene sets was conducted using limma. The Kyoto

Encyclopedia of Genes and Genomes (KEGG), Reactome,

Hallmark, and Gene Ontology: Biological Process (GO: BP) gene

sets from MSigDB were used as the gene set database for the

functional analysis.

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2023.1104738
https://www.cbioportal.org/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Fan et al. 10.3389/fneur.2023.1104738

Immune landscape depiction

Estimation of stromal and immune cells in malignant tumor

tissues using expression data (ESTIMATE, https://bioinformatics.

mdanderson.org/) is a tool to predict tumor purity and the presence

of infiltrating stromal/immune cells based on gene expression data

(19). The stromal score (the presence of stroma in the tumor

tissue), immune score (the infiltration of immune cells in the

tumor tissue), and estimate score were calculated through the

ESTIMATE algorithm. Tumor purity was estimated as described by

K Yoshihara et al. based on the ESTIMATE results. CIBERSORTx

(https://cibersortx.stanford.edu/) provides an estimation of the

abundance of member cell types in a mixed cell population by

using gene expression data (20). Immune Cell Abundance Identifier

(ImmuCellAI) is also a useful tool to assess the abundance of

immune cells from the gene expression dataset including RNA-seq

and microarray data (21).

Correlations between glutamine metabolism clusters or

risk groups and expression of immune checkpoints (ICPs)

were analyzed.

Prediction of therapeutic response by
immunotherapy

On the basis of the extent of immune cell infiltration,

tumors are now divided into “cold” (non-inflammatory)

and “hot” (pro-inflammatory) types (22). “Hot” tumors

are characterized by significant T cell infiltration and

associated with better efficacy of immunotherapy (23). We

distinguished diffuse gliomas into “cold” and “hot” immune

phenotypes based on the methods described by Wang

et al. (22).

Tumor immune dysfunction and exclusion (TIDE, http://

tide.dfci.harvard.edu/) was utilized to predict the therapeutic

response of immune checkpoint blockades (ICBs) in patients

with diffuse glioma by evaluating the function of cytotoxic T

lymphocytes (24).

Statistical analysis

R software (version 3.6.1) and the above-mentioned package

were used to handle the transcriptome data. Differences between

glutamine metabolism subtypes and clinic variables were analyzed

using Student’s t-test or the chi-square test. K–M analysis was

conducted using the log-rank test. A two-sided p-value of <0.05

was regarded as statistically significant and ∗ indicated a p-

value of <0.05, whereas ∗∗ indicated a p-value of <0.01, ∗∗∗

a p-value of <0.001, and ∗∗∗∗ a p-value of <0.0001 in the

current study.

Ethics statement

The Ethical Committee of West China Hospital Sichuan

University approved this study (Ethic number: 2018.569),

and all behaviors were conducted according to the principles

expressed in the Declaration of Helsinki. Before surgery,

all patients and their authorized trustees were informed

and signed informed consent to use their clinical data for

research purposes.

Results

Identification of glutamine metabolism
subtypes in di�use gliomas

A total of 106 GMRGs were retrieved from the MSigDB

(Supplementary Table S1) and 87 GMRGs were expressed

in all four cohorts. To determine the relationship between

expression patterns of GMRGs and diffuse glioma, unsupervised

consensus clustering analysis was conducted to classify

patients with diffuse glioma from TCGA based on the

expression levels of the GMRGs. According to the principles

described in the section Methods, we found that all the CDF

approximated a Z shape, but the sample sizes of the clusters

were maximized when the number of clusters (k) equals 2.

Therefore, the optimal k was determined to be 2 (Figures 1A,

B), which means the entire TCGA cohort was divided into

two clusters, i.e., cluster 1 (n = 394) and cluster 2 (n = 228)

(Figure 1C).

The pattern of clustering in TCGA was also applied in

other cohorts. The K–M curves (Figures 1D–G) indicated that

cluster 1 had a significantly longer OS compared with cluster

2 in four cohorts. As shown in Figures 2A–I, there existed a

significant difference between clinicopathological features and

clusters. The waterfall plot (Figure 2J) displayed the top 20

mutation genes in the entire TCGA cohort. The common

mutation genes included IDH1, TP53, ATRX, CIC, TIN, EGFR,

and PTEN. Notably, the GMRG expression clustering of gliomas

was significantly associated with the mutational status of IDH

genes (Figures 2D, J), which has been a known determinant

for the survival outcome of patients with glioma. To further

elucidate the prognostic value of GMRG expression clusters

in this context, we split the TCGA cohort according to

the IDH mutational status and found that the cluster 1

gliomas had a significantly better outcome compared to cluster

2 gliomas in both IDH-mutant and IDH-wildtype gliomas

(Figures 2K, L).

Next, we conducted GSEA and GSVA to further reveal the

underlying differences between two GMRG expression patterns

with respect to the functional status of biological pathways.

The GSEA results showed that in both IDH-mutant and IDH-

wildtype gliomas, systemic lupus erythematosus, viral myocarditis,

cytokine signaling in the immune system, innate immune system,

and transmission across chemical synapses were among the top

five enriched KEGG and Reactome pathways associated with the

DEGs between clusters 1 and 2 (Figures 3A–D). In addition,

the GSVA revealed that epithelial-mesenchymal transition, IL6-

JAK-STAT3 signaling, IL2-STAT5 signaling, interferon-gamma

response, allograft rejection, and coagulation Hallmark gene sets

were expressed at a higher level in cluster 2 gliomas of both IDH

subtypes (Figures 3E, F).
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FIGURE 1

Unsupervised cluster analysis. (A, B) The clustering implying the optimal κ was 2; (C) two distinct clusters formation under the PCA algorithm; and

(D–G) K–M curves of clusters in four di�use glioma cohorts. PCA, principal component analysis; K–M, Kaplan–Meier.
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FIGURE 2

Di�erences in clinicopathological variables between clusters 1 and 2: age at diagnosis (A), gender (B), WHO grade (C), IDH mutation status (D), 1p19q

codeletion status (E), ATRX mutation status (F), MGMT promoter status (G), TERT promoter status (H), and histology (I), the waterfall plot depicting

the top 20 mutant genes in the entire TCGA cohort (J), di�erence between clusters 1 and 2 in overall survival for patients with IDH-mutant (K), or

IDH-wildtype gliomas (L). WHO, World Health Organization; IDH, isocitrate dehydrogenase; codel, codeletion; TERT, telomerase reverse

transcription; MGMT, O6-methylguanine-DNA methyltransferase; ATRX, alpha thalassemia/mental retardation syndrome X-linked protein/gene;

TCGA, The Cancer Genome Atlas.
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FIGURE 3

Functional enrichment analysis of DEGs between clusters 1 and 2 based on IDH mutation status. Top 5 KEGG pathways (A, B) and reactome

pathways (C, D) based on GSEA. The heatmap of GSVA based on Hallmark gene sets in IDH-mutant (E) and IDH-wildtype (F) gliomas. DEG,

di�erentially expression gene; IDH, isocitrate dehydrogenase; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, gene set variation analysis;

GSEA, gene set enrichment analysis.
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Immune profiles of glutamine metabolism
subtypes

CIBERSORT and ESTIMATE algorithms were employed for

exploring the TME immune characteristics in two clusters. Based

on the results of the CIBERSORT algorithm, a substantial

enrichment difference of the 22 immune cells between the two

clusters was displayed (Figure 4A). The proportion of B cells,

most T cells, natural killer (NK) cells, macrophages, eosinophils,

neutrophils, etc., evidently showed a significant difference in

enrichment levels. Of note, most types of T cells showed a

comparatively high extent of infiltration in cluster 2. This result

was partly consistent with the results of the other three cohorts

(Supplementary Figures S1A–C). However, when the gliomas were

split by IDH mutational status, the difference in T cells was not

significant in IDH-wildtype gliomas, while the infiltration of naïve

B cell and plasma cells was significantly lower in cluster 2 of

both IDH subtypes, and M2 macrophages were more abundant

in cluster 2 gliomas (Figures 4B, C). ESTIMATE analysis indicated

that cluster 2 had a higher stromal score, immune score, estimate

score, and lower tumor purity compared with cluster 1 in the

different glioma cohorts and both IDH subtypes (Figures 4D–F and

Supplementary Figures S1D–L).

The RNA expression of immune checkpoints was also

investigated for association with GMRG expression clustering. We

found that cluster 2 had a remarkably high expression level of

most of the immune checkpoints including PD-1 (PDCD1), PD-

L1 (CD274), and CTLA-4 (CD276), and most of these trends

were consistent between IDH-mutant and IDH-wildtype gliomas

(Figures 5A–C and Supplementary Figures S2A–C).

As for the tumor immunological phenotype,

the results indicated that cluster 2 possessed higher

proportions of “hot” tumor phenotypes (Figures 5D–F and

Supplementary Figures S2D–L). The therapeutic response

of immunotherapy by ICBs was predicted by TIDE. The results

indicated that cluster 2 had a larger population of patients who were

more sensitive to immunotherapy (Figure 5G). In IDH-mutant and

wildtype gliomas, although these differences were preserved in both

subtypes, their significance was diminished possibly due to lower

sample size (Figures 5H, I and Supplementary Figures S3A–I).

Prognostic glutamine metabolism risk
score development and validation

First, in the TCGA training cohort, we conducted a univariate

Cox regression analysis to screen the GMRGs. In the TCGA

training set, 57 candidate GMRGs were remarkably associated

with OS (Figure 6A). Then these candidate genes were filtered

using repeated LASSO regression (Figure 6B). A total of 10

GMRGs (Figure 6C) were finally selected to build the glutamine

metabolism risk score (GMRS). Among the 10 prognostic

LMRGs, six predicted a better prognosis, while four predicted a

worse prognosis.

The GMRS was calculated based on the algorithm as

follows: 0.065 ∗ ASL + 0.032 ∗ SLC7A7 + 0.006 ∗ F13A1 –

0.007 ∗ FAH – 0.008 ∗ GLUD1 – 0.012 ∗ OAT – 0.044 ∗

FBLL1 – 0.049 ∗ ALDH18A1 – 0.056 ∗ ADHFE1 – 0.972 ∗

FTCD. The relationship between GMRS and clinicopathological

characteristics of diffuse glioma was explored. The results showed

that GMRS was significantly related to WHO grade, IDH mutation

status, ATRX mutation status, MGMT promoter methylated

status, TERT promoter mutation status, 1p19q codeletion status,

and histology, but not sex (Supplementary Figures S4A–I). The

impact of a single GMRG on clinic variables is depicted in

Supplementary Figure S4J.

After calculating the optimal cutoff (optimal cutoff

−2.152, Figure 6D) of GMRS, the TCGA training group

was divided into a high-risk group and a low-risk group.

The optimal cutoff value was also applied to the validation

group. Based on the same algorithm, the prognostic capability

of GMRS was also evaluated in CGGA and WCH cohorts

(optimal cutoff −4.278 in CGGA325, −6.120 in CGGA693,

and −0.549 in WCH) (Supplementary Figures S5A–C).

The K–M analysis revealed that significant differences

in OS were presented in all cohorts (Figure 6E and

Supplementary Figures S5D–F), and the alluvial plot showed

a close connection between cluster 1 and low GMRS risk

gliomas, as well as between cluster 2 and high GMRS gliomas

(Figure 6F).

To understand if the GMRS was an independent

prognostic factor for gliomas, we conducted univariate

Cox regression analysis to first identify other potential

prognostic factors of gliomas in addition to GMRS

(Figure 6G). Then, we evaluated the independence of GMRS

using a multivariate analysis of GMRS and these factors

(Figure 6H). Together, the evidence of the above-indicated

GMRS was a robust prognostic predictor for patients with

diffuse glioma.

Nomogram construction based upon GMRS

To evaluate the performance of GMRS in estimating the

aggressiveness of gliomas, ROC curves were applied for evaluating

the predictive ability of GMRS in four cohorts. In the TCGA-

validation group (Figure 7A), the AUC values of 1-, 2-, and 3-

year survival were 0.852, 0.880, and 0.883, respectively. The AUC

values of 1-, 2-, and 3-year survival were 0.736, 0.833, and 0.826

in the CGGA325 cohort (Figure 7B); 0.718, 0.730, and 0.745 in the

CGGA693 cohort (Figure 7C); and 0.701, 0.667, and 0.697 in the

WCH cohort (Figure 7D).

Next, to determine if the combination of GMRS and other

independent prognostic variables could be more accurate in

predicting the survival risks for patients with diffuse glioma,

prognostic nomograms were established to predict 1-, 2-, and 3-

year survival rates in the four cohorts (Figures 7E–H). Compared

with using GMRS alone, the multivariate nomogram showed

superiority in predicting the prognosis (C-index 0.849 vs. 0.829 in

TCGA, 0.759 vs. 0.716 in CGGA325, 0.787 vs. 0.684 in CGGA693,

and 0.685 vs. 0.630 in WCH). The calibration curves for verifying

the efficacy of nomograms demonstrated the high accuracy of the

conducted nomograms in predicting the survival time of patients

in four cohorts (Figures 7I–L).
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FIGURE 4

Association between TME infiltration of di�use glioma and GMRG expression clusters. CIBERSORTx (A–C) and ESTIMATE (D–F) algorithm for

evaluating TME immune characteristics of di�use glioma in the entire TCGA cohort and subgroups based on IDH mutation status. TME, tumor

microenvironment; GMRG, glutamine metabolism-related genes; ESTIMATE, estimation of stromal and immune cells in malignant tumor tissues

using expression data; TCGA, The Cancer Genome Atlas; IDH, isocitrate dehydrogenase.
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FIGURE 5

The expression level of ICPs in two clusters in TCGA cohort (A) and subgroups based on IDH mutational status (B, C); tumor immunologic phenotype

analysis for classified tumors as “cold” and “hot” (D–F); and TIDE algorithm for predicting the therapeutic response (G–I). ICP, immune checkpoint;

TCGA, The Cancer Genome Atlas; IDH, isocitrate dehydrogenase; TIDE, tumor immune dysfunction and exclusion.
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FIGURE 6

Screening of prognostic GMRGs. (A) Forest plot for preliminary screening prognostic GMRGs; (B) LASSO Cox regression for screening stable

prognostic GMRGs; (C) forest plot for displaying 10 robust prognostic GMRGs; (D) optimal cuto� value of GMRS in the TCGA training group; (E) K–M

curves for assessing GMRS in TCGA-validation group; (F) alluvial plot for showing the connection between clusters and GMRS risk groups; (G)

univariate Cox regression of clinical variables in the entire TCGA cohort; and (H) multivariate Cox regression of clinical variables with a p-value of

<0.1 in univariate Cox regression in the entire TCGA cohort. GMRG, glutamine metabolism-related gene; LASSO, least absolute shrinkage and

selection operator; GMRS, glutamine metabolism risk score; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; WCH, West

China Hospital.

Frontiers inNeurology 12 frontiersin.org

https://doi.org/10.3389/fneur.2023.1104738
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Fan et al. 10.3389/fneur.2023.1104738

FIGURE 7

Prognostic predictive performance of GMRS and nomogram construction. (A–D) ROC curves for predicting 1-, 2-, and 3-year overall survival in the

TCGA, CGGA325, CGGA693, and WCH cohort; (E–H) nomogram construction based on independent prognostic clinical variables; and (I–L)

calibration curve for assessing the performance of each nomogram. GMRS, glutamine metabolism risk score; ROC, receiver operator characteristic;

TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; WCH, West China Hospital.
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Discussion

In the current study, through the mining of RNA-seq

transcriptome data from diffuse glioma specimens, we conducted

a comprehensive analysis to elucidate the relationship between

glutamine metabolism and diffuse gliomas. To the best of our

knowledge, glutamine metabolism is governed by numerous

relevant enzymes and the driving force behind it, which involves

gene expression and regulation. Hence, studying the expression

pattern of GMRGs is a feasible approach to understanding the

status of glutamine metabolism in glioma tumors. Unsupervised

consensus clustering and prognostic gene signature screening were

employed to classify diffuse gliomas into distinct groups, which

helped us explore the influence of glutamine metabolism on diffuse

gliomas lucidly.

Metabolic reprogramming is an eternal theme in cancer

research. For a long time, it was thought that carcinogenesis and

cancer progression required reprogramming their catabolic and

anabolic metabolisms for energy supply and biomass synthesis

(25). The most classic and well-known reprogrammed metabolic

pathway in cancer is the Warburg effect, which discovers that

cancer cells take up glucose and proceed to glycolysis regardless

of oxygen availability (26, 27). Changes in glutamine metabolism

are common metabolic alterations in cancer cells, ranking only

after glucose metabolism (28). Glutamine accounts for ∼4.7% of

all amino acids in the human proteome. Beyond protein synthesis,

glutamine also serves as a nitrogen donor, carbon donor, and

amino acid precursor, and even participates in redox regulation and

contributes to chromatin organization (29).

Glutamine metabolism has been studied in gliomas. Despite

being a non-essential amino acid, “Glutamine addiction”

extensively occurs in gliomas, particularly in GBMs (30).

Elevated uptake of glutamine is accompanied by an increase

in the malignancy of gliomas. In the study of Oizel et al. (31),

results implied that mesenchymal GBM displayed the largest

glutamine uptake compared to the brain tissue and other GBM

subtypes. Other researchers also indicated that glutaminolysis

dynamics during astrocytoma progression correlate with tumor

aggressiveness (32). In addition, with the technique of high-

performance liquid chromatography (HPLC), researchers found

that glutamine required for the growth of GBM tumors was

contributed partly by the circulation and was mainly either

autonomously synthesized by GS-positive glioma cells or

astrocytes (33).

Growing evidence disclosed that the expression and alteration

status of genes related to glutamine metabolism not only reflect

the actual biological process but also serve as the predictor of

the prognosis of patients with cancer. An aberrant expression

of GMRGs, such as GS, GLS, and glutamine transporter,

was significantly associated with the prognosis in various

cancers including breast cancer (34), hepatocellular carcinoma

(35–37), ovarian cancer (38, 39), adrenal cortical neoplasms

(40), lung squamous cell carcinoma (41), and intrahepatic

cholangiocarcinoma (42). As for gliomas, high expression of GS

and GLS was reported for both predicted poor prognoses (43, 44).

In the prognostic model we conducted, a total of nine prognostic

GMRGs (ASL, MTHFS, SLC7A7, GCLM, HAL, ADHFE1, FBLL1,

SLC38A1, and OAT) were screened and included. The prognostic

score based on the nine GMRGs exhibited powerful capability in

predicting prognosis in patients with diffuse glioma.

Immune cells in TME, which are represented by macrophages,

neutrophils, monocytes, lymphocytes, and NK cells, also

underwent metabolic reprogramming along with the changes in

cancer cells or stromal cells (45). In fact, metabolic reprogramming

is also a hallmark of immune cell activation and is required for an

antitumor immune response (9). Recent studies indicated that in

the resting state and the activated state, there existed a significant

difference in metabolic changes in immune cells (46, 47). Tumor

cells could affect the immune cell function by competitively

consuming nutrients in the TME, and metabolites from tumors

that distribute in TME could also regulate immune cells (48). Here,

we found that cluster 2 gliomas were characterized by significantly

higher infiltration of M2 macrophages compared to cluster 1

gliomas, despite their IDH mutational status. This result was

consistent with the result of a previous study which showed that

glutamine synthesis was crucial in maintaining M2 polarization

(49). Conversely, the lower plasma cell fraction in cluster 2 gliomas

could be attributed to glutamine deprivation by the overpopulated

tumor cell and M2 cells, which has been known to hinder the

activation of B cells (50).

Based on the concept that glutamine plays an important role

in the function of cancer cells and immune cells, anti-cancer

strategies interfering with glutamine synthesis, transport, uptake,

and other major biological processes have been developed in

recent years. By targeting glutamine metabolism, the compound

JHU083 was utilized, and the result indicated that glutamine

blockade not only suppressed the growth of tumors but also

remodeled the TME, which remarkably enhanced the efficacy

of immunotherapy (51). Byun et al. (52) discovered the co-

targeting of glutamine metabolism, and PD-L1 could significantly

increase T cell-mediated cancer cell death. Clinical trials about

the glutamine metabolism blockade in gliomas have been started

in recent years. In the late stage of experimental GBM, a calorie-

restricted ketogenic diet coordinated with glutamine antagonists

could improve OS and relieve the symptoms of mouse models (53).

Targeting glutaminase was also confirmed to be an effective means

of inhibiting the growth of IDH1 mutant glioma cells (54).

There are still some inevitable limitations in the research.

First, we only included cohorts of patients with glioma with

clinicopathological data that were as complete as possible, and

this might lead to selection bias. Second, in consideration that

very few patients in these cohorts had received ICB therapy, the

predictive ability of the therapeutic response for treating patients

with glioma with ICBs was limited. Third, the current study only

included primary diffuse gliomas, whether and how GMRGs affect

recurrent gliomas is unknown. Fourth, actual metabolite detection

from glioma specimens is needed to further verify the results from

transcriptome data.

Conclusion

In the current research, we conducted a comprehensive

analysis based on transcriptome data to evaluate the relationship

between glutamine metabolism and glioma biology. We found

that the expression pattern of glutamine metabolism-related
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genes was closely associated with their IDH mutational status,

but a significant distinction in tumor aggressiveness and TME

profile persisted in both IDH-mutants and IDH-wildtype gliomas.

A glutamine metabolism-related risk signature based on the

expression of these genes could be utilized to predict the outcome

of patients with glioma and integrated into a comprehensive

prognostic model.
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SUPPLEMENTARY FIGURE 1

CIBERSORTx algorithm for evaluating TME immune cell infiltration of two

clusters in CGGA325, CGGA693, and WCH cohorts, (A–C); the ESTIMATE

algorithm for evaluating TME immune characteristics of two clusters based

on IDH mutational status in CGGA325 (D, G, J); CGGA693 (E, H, K); and

WCH (F, I, L) cohorts. TME, tumor microenvironment; CGGA, Chinese

Glioma Genome Atlas; WCH, West China Hospital; ESTIMATE, estimation of

stromal and immune cells in malignant tumor tissues using expression data;

IDH, isocitrate dehydrogenase.

SUPPLEMENTARY FIGURE 2

(A–C) ICP expression level of two clusters in CCGA325, CGGA693, and

WCH cohorts. Tumor immunological phenotype analysis for classifying

tumors as “cold” and “hot” based on IDH mutation status in CGGA325 (D, G,

J), CGGA693 (E, H, K), and WCH (F, I, L) cohorts. ICP, immune checkpoint;

TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas;

WCH, West China Hospital; IDH, isocitrate dehydrogenase.

SUPPLEMENTARY FIGURE 3

TIDE algorithm for predicting the therapeutic response based on IDH

mutation status in CGGA325 (A, D, G), CGGA693 (B, E, H), and WCH (C, F, I)

cohorts. TIDE, tumor immune dysfunction and exclusion; CGGA, Chinese

Glioma Genome Atlas; WCH, West China Hospital; IDH, isocitrate

dehydrogenase.

SUPPLEMENTARY FIGURE 4

Di�erences in clinicopathological variables between glutamine metabolism

risk groups: age at diagnosis (A), gender (B), WHO grade (C), IDH mutation

status (D), 1p19q codeletion status (E), ATRX mutation status (F), MGMT

promoter status (G), TERT promoter status (H), histology (I), and the

waterfall plot for demonstrating the impact of each screened GMRG on

clinic variables (J). WHO, World Health Organization; IDH, isocitrate

dehydrogenase; codel, codeletion; TERT, telomerase reverse transcription;

MGMT, O6-methylguanine-DNA methyltransferase; ATRX, alpha

thalassemia/mental retardation syndrome X-linked protein/gene; TCGA,

The Cancer Genome Atlas; GMRG, glutamine metabolism-related gene.

SUPPLEMENTARY FIGURE 5

The optimal cuto� value of GMRS in CGGA 693 (A), CGGA 325 (B), and

WCH (C) cohorts, respectively; K–M curves for assessing GMRS in CGGA

693 (D), CGGA 325 (E), and WCH (F) cohorts according to the optimal

cuto�. CGGA, Chinese Glioma Genome Atlas; WCH, West China Hospital;

GMRS, glutamine metabolism risk score.

SUPPLEMENTARY TABLE 1

Glutamine metabolism-related pathway acquired from MSigDB. MSigDB,

molecular signature database.
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