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Rehabilomics is an important research framework that allows omics research built

upon rehabilitation practice, especially in function evaluation, outcomeprediction,

and individualized rehabilitation. In the field of rehabilomics, biomarkers can serve

as objectively measured indicators for body functioning, so as to complement the

International Classification of Functioning, Disability, and Health (ICF) assessment.

Studies on traumatic brain injury (TBI), stroke, and Parkinson’s disease have

shown that biomarkers (such as serum markers, MRI, and digital signals derived

from sensors) are correlated with diagnosis, disease severity, and prognosis.

Rehabilomics also examines a wide range of individual biological characteristics

in order to develop personalized rehabilitation programs. Secondary prevention

and rehabilitation of stroke have already adopted a rehabilomic approach to

individualize treatment programs. Mechanisms of non-pharmacological therapies

are expected to be unveiled in light of rehabilomics research. When formulating

the research plan, learning from established databases is recommended and a

multidisciplinary collaborative team is warranted. Although still in its infancy, the

advancement and incorporation of rehabilomics has the potential to make a

significant impact on public health.

KEYWORDS

rehabilomics, biomarkers, personalized treatment, functional evaluation, rehabilitation

mechanisms

Introduction

Rehabilitation offers services for populations who differ in individual impairments,
functional limitations, and response to treatments. Rehabilitation practitioners tailor
programs to clients based on their specific needs, individual dysfunctions, and personal
factors, thereby making standardized protocols not optimal for maximizing individual
outcomes. The issue of individual variability comes to the fore when verifying the
therapeutic effect of a particular intervention or clinical decision (1). Differences in
rehabilitation outcomes may be attributed to different rehabilitation regimens, biological
effects of therapies, and patient responsiveness. Therefore, researchers proposed that an
individual’s biological characteristics (biomarkers) can be used to tailor a personalized
approach to rehabilitation, termed “rehabilomics” (2, 3). Essentially, this biomarker-based
concept provides an omics integration for the study of rehabilitation processes and
outcomes, providing personalized rehabilitation programs designed to optimize individual
outcomes (4).

Biomarkers are a group of objectively measured indicators of physiology, pathogenic
processes, or response to treatments (5). In most areas of omics research, biomarkers
identified in blood and other body fluids are typically considered. However, in the
context of rehabilomics research, medical imaging and sensor measurements can also
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TABLE 1 General process of identifying biomarkers.

Differential analysis Identification of markers by differences
between cases and controls

Correlation analysis The correlation between the level of the
marker and certain functions

Predictive model Prediction of the patient’s response to a
certain therapy

Prognostic model Prediction of the patient’s functional
outcome

be candidate biomarkers. The identification of biomarkers
generally includes differential analysis, correlation analysis,
predictive model, and prognostic model (Table 1). The present
article aims to review the framework, applications, and challenges
of rehabilomics, thereby providing a reference for researchers in
this field.

Rehabilomics and International
Classification of Functioning, Disability
and Health (ICF)

The World Health Organization (WHO) proposed ICF in
2001 (6), which incorporated three domains (body function and

structures, activity, and participation) in human functioning. ICF

is a classification designed to organize and record information

about functioning and disability (7). However, ICF has more
than 1,400 categories, and its applicability warrants optimization.

Although some studies have proposed simplified forms of

ICF such as generic set (8), core set (9), and rehabilitation

set (10), the objectivity, accuracy, and repeatability of ICF

assessment are still major challenges. With the development

of omics and big data technology, we may be able to use
biomarkers to measure the functional level of individuals in
the future. Biomarkers have the advantages of objectivity,
high measurement accuracy, and good repeatability, which

can serve as a powerful supplement for functional evaluation.
Linking individual dysfunction to biomarkers is central to

the concept of rehabilomics, and combining biomarkers with
rigorous design and data collection is essential to rehabilomics
research. Wagner (4) proposed that incorporating the ICF
model into the identification of rehabilitation-related biomarkers
will contribute to the report of patient-centered results and
promotion of function-oriented practice. The rehabilomics model
was adapted from the ICF on the relationship between injury,
activity, and participation. The model describes how the biology
underlying individual characteristics evolving from environmental
exposures affects the physiological environment, leading to disease
and its complications, and ultimately to impaired functioning
and compromised quality of life. The rehabilomics model
also considers how these individualized physiological factors
interact with other individual factors in the ICF model to
affect functioning.

Biomarkers for functional evaluation

Numerous studies have shown that serum biomarkers can
predict the risk of cognitive and behavioral dysfunctions in
traumatic brain injury (TBI). Serum hormones, inflammatory
markers, and neurotrophic factor levels can predict fatigue (11),
depression (12, 13), behavioral problems (14), and cognitive deficits
(12, 15) after TBI, which are associated with impaired self-care
capacity and quality of life. There is a strong association between
the levels of cell surface markers characterizing neuroinflammation
[soluble intracellular adhesion molecule (sICAM), soluble vascular
adhesion molecule (sVCAM), and soluble Fas (sFAS)] in the
acute phase and depression 6 months after moderate to severe
TBI (12, 13). Specifically, individuals with high levels (>75%) of
these three biomarkers had a positive predictive value of 85.7%
for post-traumatic depression at 6 months. In addition, both
acute and chronic TNF-α (Tumor necrosis factor-α) levels were
associated with suicidal tendencies at 6 months (14). Serum levels
of Brain-Derived Neurotrophic Factor (BDNF) within the first
week after brain injury were associated with functional memory
scores at 6 and 12 months after injury; lower serum BDNF
levels in the early post-injury period were associated with poor
memory scores (12, 15). Likewise, elevated serum cortisol levels,
measured within the first week of moderate-to-severe TBI, were
also associated with poor functional outcomes and performance on
neuropsychological cognitive tests (cognitive composite score and
functional Independence Measure–Cognition) 6 and 12 months
after injury (12, 15). The above studies show that these biomarkers
predict the prognosis of TBI patients and can serve as a supplement
to the existing evaluation indicators.

Notably, the biomarkers in rehabilomics are not limited
to microscopic molecules such as gene expression, proteins,
and metabolites. Emerging studies using medical imaging,
electrophysiological indicators, and sensor data in rehabilomics
have become a new research focus. Omics research based on
medical imaging data is called “Radiomics” (16). Magnetic
resonance imaging (MRI) data, which can reflect the structure
of the brain and the activation of specific brain regions, are
commonly-used markers in neurorehabilitation research. It can
be used to measure neuroplasticity in patients with cerebral palsy
(17), monitor the efficacy of stroke rehabilitation (18), and predict
the treatment response to transcranial magnetic stimulation (TMS)
in stroke survivors (19). Studies have shown that MRI texture
analysis contributes to the early diagnosis of ischemic stroke (20),
and imaging quantitative analysis of the penumbra can predict
the short-term prognosis of acute ischemic stroke (21), while MRI
white matter hyperintensity is associated with long-term mortality
from ischemic stroke (22). MRI data can also be used to study
mechanisms of recovery in Parkinson’s disease (23) and traumatic
brain injury (24), which is likely to be applied in other dysfunctions.

With the popularization of wearable devices, digital biomarkers
collected by sensors have gradually gained attention. Built-in
sensors such as accelerometers and gyroscopes in mobile devices
are capable of converting motion characteristics into digital signals,
which can serve as quantitative surrogate indicators of diagnosis
and assessment of Parkinson’s disease (25, 26). Digital biomarkers,

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1103349
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Cao et al. 10.3389/fneur.2023.1103349

which can be collected remotely and transmitted in real-time with
little interference in daily life, have broad application scenarios
in the mobile internet era. Using machine learning or deep
learning techniques such as support vector machines (27, 28) and
convolutional neural networks (29), diagnostic models for PD were
established on these smartphone-based gait data, finger touches,
and typing time series data. Meanwhile, sensor-based data can
not only classify different motor symptoms such as bradykinesia,
tremor, and dyskinesia in Parkinson’s disease but can also be used
to assess the severity of these symptoms (30). Similar application
can be found in other conditions. For instance, bioelectrical signals
collected from wearable devices such as electroencephalogram
(EEG) and Transcranial Doppler are enabling the soild objective
data to help the clinicians evaluate functional impairments of mTBI
(mild traumatic brain injuries) (31). In another study, three novel
digital biomarkers including convergence points (CP), physical
activity (PA), and functional range of motion (fROM) were devised
to evaluate the longitudinal, bilateral movement, and allow for
personalized therapy schedule in hemiparetic patients. This study
indicated the advantage of digital biomarkers in the recovery
process (32). The data collected from accelerometers revealed the
positive association between more sedentary behaviors and worse
physical function in a large epidemiological study including 1,168
knee osteoarthritis patients (33).

Personalized rehabilitation based on
biomarkers

Rehabilomics is a biomarker-centered framework that not
only complements existing evaluation metrics but also examines
a wide range of individual biological characteristics to develop
individualized rehabilitation programs. Taking stroke as an
example, rehabilomics research has provided new insights for
stroke prevention and rehabilitation. In the secondary prevention
of stroke, the commonly used antiplatelet drug clopidogrel
needs to be converted into its active metabolite by hepatic
cytochrome p450 (CYP) to take effect, and decreased effects
of clopidogrel were observed in carriers of CYP2C19 loss-of-
function allele (34). However, up to 25% of White patients
and 60% of Asian patients carry this genotype, which leaves
clopidogrel a bad choice for the subgroups. In comparison,
ticagrelor does not require metabolic activation for its antiplatelet
effect, and therefore similar or greater levels of inhibition of
platelet aggregation can be expected (35). The results of the
multi-center clinical trial CHANCE-2 (ClinicalTrials.gov identifier:
NCT04078737) showed that in Chinese patients with mild ischemic
stroke or TIA carrying the CYP2C19 loss-of-function allele, the
ticagrelor (+aspirin) has a modestly lower 90-day stroke risk
than clopidogrel (+aspirin) with no significant increase in the
risk of moderate to severe intracranial bleeding (36). The use of
ticagrelor plus aspirin regimen for secondary stroke prevention
reflects the value of omics research to guide individualized and
precise therapy.

Stinear et al. (37) proposed the PREP model (Predicting
REcovery Potential) for upper-limb rehabilitation in stroke,
which combines muscle strength on shoulder abduction and
finger extension (SAFE), TMS motor-evoked potentials, and MRI

asymmetry metrics. As shown in Figure 1, in the cases with SAFE<

8, TMS was utilized to ascertain whether the MEPs (motor evoked
potentials) of paretic upper limb can be elicited. The asymmetry
index was calculated by MRI to make the eventual classification
if the MEPs were absent. Thus, the function of the upper limb
on the affected side 6 months after stroke onset was predicted,
and the patients were divided into four categories according to
their recovery potential, and the corresponding intervention focus
was formulated (37). In patients with good or excellent outcome,
minimizing the compensation of the unparetic upper limb is the
focus; whereas, incorporating the affected upper limb should be
the main strategy in patients with limited predicted outcome.
In the meantime, learning to complete daily activities with the
stronger hand and arm is encouraged in cases with poor outcomes
(Figure 1). It was reported that the implementation of the PREP
algorithm leads to reduced length of stay without compromising
rehabilitation outcomes (37).

Due to the modifiability of the gut microbiome, its application
in rehabilitation settings has also gained research interests
(38). Multiple clinical studies have found 62 up-regulated (e.g.,
Streptococcus, Lactobacillus, Escherichia) and 29 down-regulated
microbial taxa (eg, Eubacterium, Rosella) in stroke patients
compared with healthy controls (39). Consumption of foods
rich in choline and L-carnitine such as red meat (40) produces
trimethylamine N-oxide (TMAO) is positively associated with
stroke (41). However, intervention studies targeting microbiota for
stroke have mainly focused on animal models and no reports are
presented in clinical settings. Clinical intervention targeting gut
microbiota and its derived metabolites may provide new strategies
for stroke prevention and treatment.

Biomarkers for revealing mechanisms
of rehabilitation therapy

With advances in the biomedical field, rehabilomics research
may contribute to the identification of non-pharmacological
therapeutic mechanisms. Immune cells in the tumor
microenvironment have become the basis for a new paradigm of
exercise therapy for cancer. Researchers have found that voluntary
movement induces an influx of immune cells into tumors and
reduces tumor incidence and proliferation by more than 60% in
several mouse models (42). The most responsive immune cells
to exercise are natural killler (NK) cells, which were observed
in the circulation in large numbers during physical activity
(43). The mobilization of NK cells mediated by exercise is very
rapid; NK cells increase 6-fold 70s after climbing stairs (44), and
the maximum mobilization of NK cells can be achieved after
30min of endurance training, which lasts for 3 h (45). During
exercise, muscle-derived actin, increases in body temperature,
and intratumoral vascularization and perfusion induce regulation,
redistribution, and activation of NK cells. These activities of NK
cells correlate with reduced tumor growth (46, 47). It is worth
noting that more and more clinical trials of cancer rehabilitation
use biomarkers such as serum inflammatory markers, hormones,
and cytokines as secondary outcome indicators of clinical trials to
reveal relevant mechanisms (Table 2).
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FIGURE 1

The flowchart of PREP model.

TABLE 2 Clinical trials for revealing relevant mechanisms in rehabilitation.

Clinical trials ClinicalTrials.gov ID

The effects of exercise on cardiovascular
health in patients with prostate cancer

NCT03776045

Effects of exercise on metastatic breast cancer NCT04120298

Effects of an exercise intervention on physical
activity during chemotherapy in early breast
cancer patients

NCT02159157

Future considerations in advancement
of rehabilomics

In the authors’ opinions, the appropriate timing for using
biomarkers in clinical decision-making depends on what the
specific decision is, namely diagnosis, prognosis, or treatment
strategies. When examining the diagnosis, the use of biomarkers
certainly is as early as possible to acquire the information
needed. Likewise, the investigation of predicting function outcomes
(prognosis) requires early use of biomarkers (if any), as further
time since the onset of a condition introduces increasingly more
factors that contribute to function. These early stages often involve
rapid changes in the underlying disease processes, biomarkers
may provide critical information for early diagnosis (20–22) and
prognosis (11–15, 37). However, in the later stages of a condition,

biomarkers could be as useful in monitoring disease activity (25,
26, 30) and treatment response (19, 48) for adjusting treatment
accordingly. Simpkins holds the opinion that omics can be pursued
during each phase of diseases (49), which is consistent with ours.
The appropriate timing for using biomarkers will ultimately depend
on the specific biomarker and the condition under examination.
Data from wearables could be more applicable in chronic phases of
various conditions, where treatment/changing the biology itself is
not the goal and the goal shifts to improving function. Biofeedback
intervention based on these digital biomarkers are currently
investigation, which is also known as digital medicine (50–53).

Several limitations in the application of biomarkers in
rehabilitation need to be considered. One limitation is the lack
of specificity, as some biomarkers can be elevated or altered
due to other conditions or factors, leading to false positive or
false negative results. For example, heartrate variability has been
associated with a number of conditions/symptoms (54), and may
be too unspecific or variable across people to be useful clinically
(55). A significant challenge is how to choose the most relevant
one among the massive biomarkers. Notably, a single biomarker
may not be sufficient, where panels of biomarkers could serve
as better indicators (56). Another limitation is variability, as the
measurement of biomarkers can be affected by factors such as age,
sex, diet, physical activity, and medications, leading to differences
in results between individuals. Additionally, the cost of measuring
biomarkers can limit their accessibility, especially for low-income
families. Furthermore, the lack of standardization in methods
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used to measure different biomarkers can lead to difficulties
in comparing results across studies or patient populations (57).
Finally, the same biomarkers could yield contradictory results
(58, 59) due to heterogeneity of clinical profiles, sample size,
and different methods for measurements. Therefore, extensive
validation in clinical studies are needed before the putative
biomarkers can be used to inform clinical decision-making
in rehabilitation.

When formulating a rehabilomics research plan in clincal
studies, multiple issues must be considered, including (1)
Construction of a research framework including a real-world
cohort with the rigorous design of acquisition variables (including
omics data, functional variables, etc.); (2) Measurement and
collection of biomarkers including genetics, epigenetics,
microbiomics, metabolomics, medical imaging, and sensor
data; (3) Infrastructure required for large-scale longitudinal studies
and long-term follow-up information, involving the establishment
and maintenance of databases; (4) Standardization of analysis
workflow for informatics, including imaging information based on
expertise and data characteristics. To ensure the reproducibility
of rehabilomics research, three basic elements including data
management, analysis process, and algorithm code need to be
considered (60). To our knowledge, data management is one of
the most important. To better manage data, we refer to relatively
mature databases, such as The Cancer Genome Atlas (TCGA)
(61), The Gene Expression Omnibus (GEO) (62), and Medical
Information Mart for Intensive Care IV (MIMIC-IV) database
(63). TCGA is a landmark cancer genomics initiative that has so far
molecularly characterized more than 20,000 primary cancers and
matched normal samples covering 33 cancer types. GEO includes
gene expression profile data including tumor and non-tumor
diseases with more than 800,000 samples incorporated. The
MIMIC-IV is a critical care database of more than 40,000 patients
admitted to the ICU of Beth Israel Deaconess Medical Center.
Relevant health-related data, including demographics, physical
measurements, laboratory tests, procedures, medications, caregiver
records, imaging reports, and mortality (including post-discharge).
The structure and analysis process of these established databases
set examples as to how to deal with local data for rehabilomics
research. In the upcoming 5G era, the application scenarios of
rehabilomics may be further enhanced through the development
of telerehabilitation and point-of-care detection platforms to
support clinical data collection for use in conjunction with
rehabilitation-related biomarkers.

The identification of rehabilitation-related biomarkers often
requires the use of machine learning algorithms to establish
models by screening features. Some commonly used machine
learning algorithms in rehabilitation such as support vector,
Random Forest Logistic Regression (LR) has been of value in
rehabilitation evaluation. Toyohiro Hamaguchi et al. developed
a support vector machine (SVM)-based classifier to train and
test the kinematics-related parameters of peak angle and peak
velocity in stroke patients with finger movements impairment.
High separation accuracy was obtained when predicting the
classification of paralytic movements (64). Domenico Scrutinio
et al. predict the 3-year mortality of patients with severe stroke
through the implementation of synthetic minority oversampling

technique and the Random Forests. The finding suggested
that the machine learning algorithms have the higher accuracy
compared with traditional regression models in predicting
outcome (65).

In the framework of machine learning, there are generally two
datasets, one is used to train the model, and the other is used
to test or verify the performance of the model (66). Based on
this research paradigm, only markers that have been extensively
validated in external validation sets have stable and reliable
diagnostic, predictive, or prognostic value. In this regard, real-
world studies (RWS) conducted in real medical settings, especially
with large samples, are preferred. Compared with randomized
controlled trials (RCTs), the eligibility criteria for RWS patients
are relatively loose, and the conclusions have more generalizability,
thereby avoiding the realistic trap of difficulty in implementation.
In the authors’ opinions, a multidisciplinary collaborative team
that includes clinical and translational researchers, biostatisticians,
and rehabilitation experts is needed for the translation of
research findings.

Conclusion

Rehabilomics is a theranostic approach that exploits
biomarkers for evaluation of rehabilitation process/outcomes,
as well as for personalized treatment programs and identification
of therapeutic mechanisms. Although still in its infancy, the
advancement and incorporation of rehabilomics has the potential
to make a significant impact on public health.
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