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Background and purpose: Exposure to contact sports in youth causes brain health

problems later in life. For instance, the repetitive head impacts in contact sports

might contribute to glymphatic clearance impairment and cognitive decline. This

study aimed to assess the e�ect of contact sports participation in youth on glymphatic

function in old age and the relationship between glymphatic function and cognitive

status using the analysis along the perivascular space (ALPS) index.

Materials and methods: A total of 52 Japanese older male subjects were included in

the study, including 12 who played heavy-contact sports (mean age, 71.2 years), 15

who played semicontact sports (mean age, 73.1 years), and 25who played noncontact

sports (mean age, 71.3 years) in their youth. All brain di�usion-weighted images

(DWIs) of the subjects were acquired using a 3T MRI scanner. The ALPS indices

were calculated using a validated semiautomated pipeline. The ALPS indices from the

left and right hemispheres were compared between groups using a general linear

model, including age and years of education. Furthermore, partial Spearman’s rank

correlation tests were performed to assess the correlation between the ALPS indices

and cognitive scores (Mini-Mental State Examination and the Japanese version of the

Montreal Cognitive Assessment [MoCA-J]) after adjusting for age years of education

and HbA1c.

Results: The left ALPS index was significantly lower in the heavy-contact and

semicontact groups than that in the noncontact group. Although no significant

di�erences were observed in the left ALPS index between the heavy-contact and

semicontact groups and in the right ALPS index among groups, a trend toward lower
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was found in the right ALPS index in individuals with semicontact and heavy-contact

compared to the noncontact group. Both sides’ ALPS indices were significantly

positively correlated with the MoCA-J scores.

Conclusion: The findings indicated the potential adverse e�ect of contact sports

experience in youth on the glymphatic system function in old age associated with

cognitive decline.

KEYWORDS

repetitive head impacts, contact sports, glymphatic system, DTI-ALPS, di�usion-weighted

imaging, cerebrospinal fluid, interstitial fluid

1. Introduction

Contact sports, such as American football and soccer, involve
physical contact between players, and these affect brain health
(1). Contact sports have been linked to neurocognitive changes
due to repetitive head impacts (RHIs) (1–3). RHIs refer not
only to mild traumatic brain injury and concussion but also to
asymptomatic subconcussive trauma (4, 5). RHIs in contact sports
are quite frequent, with up to 3–70 head impacts per game that
players were exposed to, depending on the sport (6, 7). Previous
animal studies have suggested that RHIs lead to neuroinflammation,
synaptic changes, and glymphatic system dysfunction (8, 9). Recently,
glymphatic dysfunction has been considered one of the main causes
of cognitive decline due to the accumulation of brain waste products
(10, 11). However, its involvement in older adults with contact sports
participation in their youth is not yet fully understood.

The glymphatic system is a brain waste clearance system (11, 12).
The underlying hypothesis is that CSF flows into the brain through
the perivascular space around the arteries and enters the brain
parenchyma through aquaporin-4 (AQP4) channels in the astrocyte
endfeet. Then, CSF influx into the brain parenchyma promotes
interstitial fluid (ISF). Finally, brain metabolic waste products are
washed out through the perivascular space around the veins (11–
13). Previous animal studies have shown reduced clearance of
intrathecally injected gadolinium contrast agents and fluorescent
tracers in the brain of RHI-injured rodents (8, 12, 14). However, the
tracer-based method used to assess the glymphatic system is invasive
and thus not suitable for human studies.

Taoka et al. proposed diffusion tensor imaging analysis along
the perivascular space (DTI-ALPS) (15). The analysis ALPS index is
a potential indirect noninvasive indicator of the glymphatic system
in humans by estimating the diffusivity of the perivascular space
along the medullary veins at the level of the lateral ventricular body.
Zhang et al. reported a strong correlation between the ALPS index
and glymphatic function assessed using the intrathecal injection of
gadolinium contrast agents in human brains (16). Furthermore, a
reduced ALPS index has been correlated with cognitive decline in

Abbreviations: ALPS, analysis along the perivascular space; AQP4, aquaporin-4;

CNS, central nervous system; FA, fractional anisotropy; FSL, FMRIB Software

Library; GLM, general linear model; HbA1c, hemoglobin A1c; ISF, interstitial

fluid; MMSE, Mini-Mental State Examination, MoCA-J, the Japanese version of

the Montreal Cognitive Assessment; RHI, repetitive head impact.

older adults and patients with Alzheimer’s or Parkinson’s disease
(15, 17, 18).

This study aimed to evaluate the effect of contact sports practice
in youth on the glymphatic function in old age using the ALPS
index and to study the relationship between glymphatic function and
cognitive status.

2. Methods

2.1. Study participants

A total of 52 community-dwelling older adults (66–83 years old)
enrolled in the Healthy Brain Project by the Sportology Center of
Juntendo University in Tokyo, Japan, from 2017 to 2018 (19), were
included in this study. This study was approved by our Institutional
Review Board. Written informed consent was obtained from all
participants before evaluation.

The inclusion criteria included nonathlete subjects with data of
sports experience in their teenage and 20s, diffusion-weighted images
(DWIs), cognitive scores (Mini-Mental State Examination [MMSE],
and the Japanese version of the Montreal Cognitive Assessment
[MoCA-J]). The exclusion criteria were subjects with cerebrovascular
disease, severe cognitive decline (MMSE< 23), and a history of severe
traumatic brain injury or psychiatric or neurological disorders.

Contact sports are sports in which players collide (20, 21). To
further understand the influence of the intensity of the collision in
contact sports on the glymphatic system, study participants were
categorized into heavy-contact and semicontact sports groups (20,
21). Heavy-contact sports are sports with intense physical contact
where the player is allowed to continuously and intentionally strike
or tackle the opponent (20, 21). Meanwhile, semicontact sports are
sports with occasional physical contact, and intentional hitting or
tackling is prohibited (20, 21). For comparison, we also included age-
matched individuals with experience in noncontact sports in their
youth (noncontact group). Only male participants were included in
this study to minimize the influence of sex differences. Noncontact
sports are those with little or no physical contact (20, 21).

2.2. Study participants’ characteristics

This study included data obtained from 52 older Japanese
male adults, of whom 12 (71.2 ± 5.2 years) had experience with
heavy-contact sports in their youth; 15 (73.1 ± 5.9 years) with
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semicontact sports; and age-matched 25 (71.3 ± 4.4 years) with
noncontact sports. Demographic and clinical characteristics of the
study participants in the noncontact, semicontact, and heavy-contact
groups are summarized in Table 1.

The heavy-contact and semicontact groups had significantly
more years of sports experience than the noncontact group. No
significant differences were observed in age, handedness, body mass
index, years of education, systolic and diastolic blood pressures,
high- and low-density lipoprotein cholesterol levels, HbA1c level,
the Brinkman index, daily alcohol consumption, the Fazekas
grade, the MMSE score, and the MoCA-J score among the
three groups.

The number of years of sports experience was 8.0, 5.4, and
5.0 years in the heavy-contact, semicontact, and noncontact
groups, respectively. The subjects were not interviewed about
their participation as varsity athletes. Meanwhile, those in
the noncontact group had no contact sports experience.
Data regarding the heavy-, semi-, and noncontact sports
played by the study participants in their youth are shown in
Table 2.

2.3. MRI data acquisition

All DWIs were acquired on a MAGNETOM Prisma 3T MRI
scanner (Siemens, Erlangen, Germany) with a 64-channel head
coil. Whole brain DWIs were acquired using multislice echo-
planar imaging along 64 diffusion gradient directions in the
anterior-posterior direction at a b-value = 1,000 s/mm2 with
one nondiffusion-weighted (b = 0) volume using the following

TABLE 2 Categorization of sports.

Sports Number of
participants

Heavy-contact sports Rugby, judo, karate, boxing, kendo,
and wrestling, soccer

12

Semicontact sports baseball, basketball, and handball 15

Noncontact sports Tennis, table tennis, track and field,
skiing, archery, and orienteering

25

TABLE 1 Demographic and clinical characteristics of the study participants.

Noncontact
Group

Semicontact
Group

Heavy-
Contact
Group

p-
Values

Semicontact
versus
Heavy-
Contact

Noncontact
versus

Semicontact

Noncontact
versus
Heavy-
Contact

Number of subjects 25 15 12

Age (years) 71.3± 4.4 73.1± 5.9 71.2± 5.2 0.67b

Years of education (years) 15.4± 1.7 14.9± 1.8 14.1± 2.5 0.19b

BMI (kg/m2) 23.5± 2.9 23.9± 1.9 22.7± 3.7 0.27b

Sport experience during youth
(years)

5.0± 4.1 5.4± 2.4 8.0± 2.3 0.005b 0.06c 0.21c 0.002c

Handedness (right, left,
ambidextrous)

23, 0, 2 18, 0, 0 10, 1, 1 0.23a

MMSE 27.6± 1.5 28.6± 1.3 27.9± 1.7 0.17b

MoCA-J 25.4± 2.6 25.0± 3.0 24.5± 2.5 0.16b

Smoking history (Brinkman index) 272.2± 326.8 767.7± 803.5 592.6± 580 0.15b

Alcohol consumption (g/day) 13.0± 15.6 33.2± 36.6 33.3± 24.7 0.10b

Systolic blood pressure (mmHg) 137.2± 14.8 136.5± 20.6 137.9± 12.7 0.91b

Diastolic blood pressure (mmHg) 87.3± 8.1 88.3± 12.7 88.4± 8.6 0.77b

HbA1c (%) 6.0± 0.8 5.9± 0.6 5.5± 0.3 0.07b

Intake of carbonhydrates (g/day) 262.2± 63.6 235.8± 76.9 208.7± 63.9 0.054b

Current exercise time (Mets/week) 14.2± 10.5 9.1± 10.8 9.6± 17.0 0.38b

High-density lipoprotein cholesterol
(mg/dL)

59.5± 12.5 58,2± 10.6 57.0± 16.9 0.86b

Low-density lipoprotein cholesterol
(mg/dL)

116.6± 25.5 113.6± 39.5 107.5± 31.9 0.37b

Fazekas grade:

Periventricular white matter (grade:
0/1/2)

(1, 21, 4) (0, 10, 5) (0, 8, 4) 0.54a

Deep and subcortical white matter
(grade: 0/1/2/3)

(0, 22, 4, 0) (0, 8, 5, 2) (0, 9,3, 0) 0.12a

Data are expressed as mean± standard deviation unless otherwise specified. Statistical analyses are performed using aFisher’s exact test, bKruskal–Wallis test, and cMann–Whitney U-test. BMI, body

mass index; MMSE, Mini-Mental State Examination; MoCA-J, Japanese version of the Montreal Cognitive Assessment; HbA1c, hemoglobin A1c.
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parameters: TR/TE = 3,300/70ms, matrix size = 130 × 130,
resolution = 1.8mm × 1.8mm, slice thickness = 1.8mm, FOV =

229mm× 229mm, and acquisition time= 7min 29 s. Furthermore,
standard and reverse phase-encoded blipped images without
diffusion weighting (blip-up and blip-down) were also acquired to
correct magnetic susceptibility-induced distortions related to EPI
acquisition (22).

2.4. DWI data processing

All DWIs were checked visually for severe artifacts in the
axial, coronal, and sagittal planes. Noise and artifacts in DWIs
were corrected usingMarcenko–Pastur principal component analysis
denoising (23) and degibbs correction using MRtrix (https://www.
mrtrix.org/) (24). Furthermore, the geometric distortions caused by
eddy currents and motion-induced susceptibility (25) were corrected
using the EDDY and TOPUP toolboxes, parts of the FMRIB Software
Library (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) version 6.04 (26).
We obtained diffusivity maps for each study participant in the x-
axis (right–left, Dxx), y-axis (anterior–posterior, Dyy), and z-axis
(inferior–superior, Dzz) directions. We also generated fractional
anisotropy (FA) maps for all subjects and registered them in the
FMRIB58_FA standard space (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FMRIB58_FA) using FSL’s linear image registration tool (http://
www.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT) and nonlinear registration
tool (http://fsl.fmrib.ox.ac.uk/fsl~/fslwiki/FNIRT).

2.5. ALPS index calculation

The ALPS index was calculated using a validated semiautomated
pipeline (27). One subject (a 68-year-old male control subject) with
the smallest degree of warping was selected to place the region of
interest (ROI). Using the color FA map of this subject, spherical
ROIs measuring 5mm in diameter were placed in the projection
and association regions at the level of the lateral ventricular body
in the left and right hemispheres (Figure 1) (27). Then, the obtained
ROIs were registered to the same FA template. Finally, the ROI’s
position on the FA images of each subject was manually checked.
Since all ROIs were correctly positioned, no manual correction
was performed.

The values of x-, y-, and z-axis diffusivities in the ROIs were
calculated for each individual. In the plane of the lateral ventricle,
medullary vessels run in the right-left (x-axis) direction. Therefore,
perivascular spaces are oriented along the x-axis. In this specific
anatomical region, main white matter fibers run orthogonally to the
x-axis (i.e., to the perivascular space direction), with projection fibers
along the z-axis and association fibers along the y-axis. The ALPS
index was then calculated as the ratio of the average x-axis diffusivity
of the projection region (Dxxproj) and the average x-axis diffusivity
of the association region (Dxxassoc) to the average y-axis diffusivity
of the projection region (Dyyproj) and the average z-axis diffusivity
of the association region (Dzzassoc), as follows:

ALPS index=
Mean (Dxx,proj, Dxx,assoc)

Mean (Dyy,proj,Dzz,assoc)
(1)

An ALPS index close to 1.0 indicates less diffusivity along the
space around the perivascular space, while higher values indicate
increased diffusivity. The left and right ALPS indices were calculated.

2.6. Statistical analysis

Data normality was assessed using the Shapiro–Wilk test.
Categorical and continuous data of participants’ characteristics were
compared using Fisher’s exact test and the Kruskal–Wallis test,
respectively. Left and right ALPS indices were compared among the
heavy-contact, semicontact, and noncontact groups using a general
linear model (GLM) analysis, including age and years of education
and Hemoglobin A1c (HbA1c). Although no significant difference
was found in HbA1c values among groups, the values were higher
in the noncontact and semicontact groups. Furthermore, diabetes
mellitus has been reported to cause changes in the function of
the glymphatic system (28). Therefore, in this study, we decided
to include HbA1c as a confounding factor. The heavy-contact
and semicontact groups had significantly longer years of sports
experience than the noncontact group. Thus, as additional analyses,
group comparisons and partial correlation analyses were performed,
including years of sports experience as a confounding factor. Pairwise
comparisons of groups were then performed using the Tukey–
Kramer post hoc tests. In addition, we used Cohen’s d to estimate
the effect size among the three groups. Cohen’s d of 0.1–0.3, 0.3–
0.5, 0.5–0.7, and >0.7 were considered as small, medium, large, and
very large effect sizes, respectively (29). The associations between the
left or right ALPS indices and the MMSE or MoCA-J scores after
adjusting for age years of education and HbA1c were evaluated in
the semicontact and heavy-contact groups combined using partial
Spearman’s rank correlation tests. In all analyses, a p < 0.05 was
considered statistically significant. Due to the exploratory nature of
this study, we did not perform corrections for multiple comparisons.
Statistical analysis was performed using R version 4.12 (The R
Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1. Between-group di�erences

After adjusting for age years of education and HbA1c, the
heavy-contact (p = 0.005, Cohen’s d = −1.03) and semicontact (p
= 0.002, Cohen’s d = −1.05) groups had significantly lower left
ALPS index with very large effect sizes than the noncontact group
(Figure 2). Meanwhile, a trend toward the lower right ALPS index
was demonstrated in the heavy-contact (p= 0.23, Cohen’s d=−0.65)
and semicontact (p = 0.053, Cohen’s d = −0.75) groups with very
large and large effect sizes, respectively, compared to the noncontact
group. As expected, effect sizes were larger in the heavy-contact group
than in the semicontact group. No significant differences in left or
right ALPS indices were observed between the heavy-contact and
semicontact groups.

In the additional group comparison analysis, consistent results
were obtained after adjusting age, years of education, HbA1c,
and years of sports experience. The heavy-contact (p = 0.03)
and semicontact (p = 0.003) groups had significantly lower left
ALPS index than the noncontact group. No significant differences
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FIGURE 1

Region of interest (ROI) placement for calculating the along the perivascular space index. Spherical ROIs measuring 5mm in diameter were placed in the

areas of the projection (yellow) and association (pink) fibers.

FIGURE 2

Violin plots of left and right ALPS indices for noncontact (red), semicontact (green), and heavy-contact (blue) groups. Boxes indicate the interquartile

range (75th [upper horizontal line] and 25th [lower horizontal line]), mean (bold black line), and median (black dot). Upper whiskers indicate the maximum

value of the variable at a distance of 1.5 times the quartile range from the 75th percentile value. Lower whiskers indicate the distance to the 25th

percentile value. Small dots indicate an outlier. Surrounding the boxes (shaded area) on each side is a rotated kernel density plot. The figure shows

p-values after adjusting for age, years of education, HbA1c, and Cohen’s d. *Significant to P < 0.05. ALPS, analysis along the perivascular space.

were observed in the left ALPS index between the heavy-
contact and semicontact groups and in the right ALPS index
among groups.

3.2. Associations between cognitive
performance and ALPS index

Lower left (p= 0.003, r= 0.59) or right (p= 0.01, r= 0.51) ALPS
indices in heavy-contact and semicontact groups combined were

significantly correlated with worse MoCA-J scores after adjusting
for age, years of education, and HbA1c (Figure 3). However, no
significant correlation was observed between MMSE scores and left
(p= 0.74, r = 0.07) or right ALPS (p= 0.56, r = 0.13) indices.

The additional partial correlation analysis showed similar
results when adjusted for age, years of education, HbA1c,
and years of sports experience. The MoCA-J and ALPS
indices showed significant correlations on both sides: left
(p = 0.003, r = 0.59) and right (p = 0.009, r = 0.53),
whereas MMSE and ALPS indices showed no significant
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FIGURE 3

Scatter plots show a significant (p < 0.05) association between left (A) or right (B) ALPS along the perivascular space ALPS indices and MoCA-J scores in

the semicontact (yellow dots) and heavy-contact groups (blue dots) combined. *Significant to P < 0.05. ALPS, analysis along the perivascular space;

MoCA-J, Japanese version of the Montreal Cognitive Assessment.

correlation: left (p = 0.78, r = 0.06) and right (p = 0.39,
r= 0.19).

4. Discussion

We evaluated the effects of youth contact sports experiences
on glymphatic system function in community-dwelling older adult
males (66–83 years old) using the DTI-ALPS index. The study
findings showed a significantly lower left ALPS index and a trend
toward a lower right ALPS index in individuals with semicontact and
heavy-contact sports experience in their youth than in those with
noncontact sports experience, which are likely to be related to the
impairment of glymphatic function (Figure 2). As expected, larger
effect sizes were observed in individuals with heavy-contact sports
experience than in those with semicontact sports experience, which
indicates a more severe decrease in glymphatic function in those with
heavy-contact sports experience. Furthermore, the partial correlation
analyses showed significant associations between lower left or right
ALPS indices and lower MoCA-J scores (Figure 3).

The lower ALPS index reflects decreased diffusivity along the
perivascular space of the deep medullary vein. Previous studies
have reported that RHIs and mild head impacts cause glymphatic
dysfunction in animal experiments using gadolinium contrast agents
and fluorescent tracers (30, 31). Ren et al. found decreased AQP4
expression in mice’s perivascular space in the cerebral cortex and
striatum after mild head impacts (32). AQP4 plays an important role
in facilitating the CSF and ISF exchange (10). Therefore, reduced
AQP4 expression due to RHIs might have also impaired CSF-ISF
drainage toward the perivenous space leading to a reduced ALPS
index. Furthermore, the risk of RHIs is increased in high-intensity
contact sports, such as rugby (33, 34). Given that larger effect sizes
were observed in the heavy-contact group than in the semicontact
group, we also speculate that higher intensity of contact sports might
cause more severe impairment of the glymphatic system.

Although the fluid dynamics of CSF and ISF have not been
fully clarified, CSF/ISF dynamics impairment has been in many
diseases, including Alzheimer’s disease, Parkinson’s disease, and
stroke (15–17). Taoka et al. proposed the concept of central nervous
system (CNS) interstitial fluidopathy, which would group pathologies

associated with abnormal neurofluid dynamics (35, 36). Arterial
pulsatilities are an important driving force of CSF/ISF flow (37).
Several studies have also demonstrated the associations between
RHIs and vascular pathology, which likely contributes to long-term
detrimental effects on cerebrovascular functions (38, 39) and ISF-CSF
exchange (40). Taken together, the results of this study also indicate
that CNS interstitial fluidopathy might be related to contact sports
due to RHIs.

Interestingly, the semicontact and heavy-contact groups showed
a significantly reduced left ALPS index comparedwith the noncontact
group. In contrast, there was only a trend toward a lower right
ALPS index. One possible reason for the left–right difference
observed in this study is that the left cerebral hemisphere may
be more vulnerable to head impact than the right hemisphere.
These findings are consistent with previous studies that examined
subjects experiencing mild traumatic brain injury and reported
white matter hypoperfusion, microstructural changes, and cortical
thinning predominantly in the left hemisphere (41–43). In addition,
as mentioned above, RHIs can cause glymphatic system dysfunction
due to pathological changes in the cerebral arteries. The difference
in the bifurcation of the right and left carotid arteries suggests
that the left carotid is more directly susceptible to strong pulse
pressure from the aortic arch and is more likely to experience severe
plaque formation and intimal damage (27, 44). Thus, this may
have led to increased glymphatic dysfunction in the left cerebral
hemisphere.

The study findings showed a significant relationship between
semicontact and heavy-contact sports-related glymphatic system
dysfunction and MoCA-J scores after adjusting for age, years of
education, and HbA1c. This further supports the negative effect
of RHIs in youth on cognitive function later in life, possibly due
to glymphatic dysfunction, using the ALPS index as an objective
imaging indicator of cognitive function. In line with the study
results, significant correlations were observed between lower ALPS
index and poorer cognitive performance in healthy older adults and
patients with Alzheimer’s disease or cardiovascular disease (15, 16),
and impaired glymphatic function was also observed. In this study,
a significant positive correlation was observed between the ALPS
index and the MoCA-J score, whereas an insignificant correlation
was observed between the ALPS index and the MMSE score, and this
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might be due to the sensitivity of the MoCA-J score, which is greater
than that of the MMSE score, to cognitive decline detection (45).

This study has some limitations. First, the study participants were
only men. Meanwhile, female mice and rats showed a similar or more
severe glymphatic dysfunction induced by RHI than males (14, 46).
It is possible that the glymphatic system may be similarly impaired
in women who have experienced RHI. Therefore, future studies are
needed to investigate this possibility. Second, some confounding
factors that lead to cognitive and glymphatic impairment were
not considered owing to the time lag between the experience of
contact sport and image acquisition. Although there have been no
studies on RHI-related long-term brain pathological in humans,
some animal studies have reported long-term gliosis and pathological
changes in cerebral white matter after RHIs (9, 47), supporting its
chronic effect on the glymphatic system. Third, previous studies
have shown the associations between blood pressure and HbA1c
and glymphatic system function (27). Therefore, we matched blood
pressure among groups to minimize the effects of vascular risk
factors in this study. In this study, HbA1c was not significant but
tended to be higher in the noncontact group than that in the heavy-
contact group, and diabetes mellitus is known to decrease glymphatic
function (28, 48). Nevertheless, a significant difference in the left
ALPS index was consistently observed after HbA1c was included as
a confounding factor. The subjects in the noncontact group had a
greater carbohydrate intake than the subjects in the other groups,
which is the reason for the higher trend in HbA1c values (49).
Furthermore, even when HbA1c was included as a covariate, the
ALPS index tended to be lower in the semicontact and heavy-contact
groups, suggesting that HbA1c had limited influence on the study’s
validity. Fourth, the ROIs for calculating ALPS indices include not
only the medullary veins but also the surrounding cerebral white
matter. Thus, it is impossible to exclusively evaluate the diffusivity of
the perivascular space along the medullary veins. However, a strong
correlation between the ALPS index and the functional assessment of
the glymphatic system by intrathecal injection of gadolinium contrast
agents in vivowas reported, which supports the use of the ALPS index
(16). Fifth, our cohort does not review the history of mild traumatic
brain injuries (concussive head impacts). However, according to the
trauma history of all the subjects, they have not experienced severe
traumatic brain injuries requiring hospitalization. Although the sole
effect of mild traumatic brain injury cannot be considered, this study
analyzed the effects of RHIs, including mild traumatic brain injuries
and subconcussive head impacts, excluding severe traumatic brain
injury. Finally, this study lacked histopathological validation, and no
direct evidence supports the changes in AQP4 expression.

5. Conclusion

In summary, exposure to contact sports in youth may cause
glymphatic dysfunction in old age. Furthermore, contact-sports-
related glymphatic dysfunction is associated with cognitive decline.
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