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Background: Stroke is an acute disorder and dysfunction of the focal neurological

system that has long been recognized as one of the leading causes of death and severe

disability inmost regions globally. This study aimed to supplement and exploitmultiple

comorbidities, laboratory tests and demographic factors to more accurately predict

death related to stroke, and furthermore, to make inferences about the heterogeneity

of treatment in stroke patients to guide better treatment planning.

Methods: We extracted data from the Medical Information Mart from the Intensive

Care (MIMIC)-IV database. We compared the distribution of the demographic factors

between the control and death groups. Subsequently, we also developed machine

learning (ML) models to predict mortality among stroke patients. Furthermore, we

used meta-learner to recognize the heterogeneity e�ects of warfarin and human

albumin. We comprehensively evaluated and interpreted these models using Shapley

Additive Explanation (SHAP) analysis.

Results: We included 7,483 patients with MIMIC-IV in this study. Of these, 1,414

(18.9%) patients died during hospitalization or 30 days after discharge. We found that

the distributions of age, marital status, insurance type, and BMI di�ered between the

two groups. Our machine learning model achieved the highest level of accuracy to

date in predictingmortality in stroke patients.We also observed that patientswhowere

consistent with the model determination had significantly better survival outcomes

than the inconsistent population and were better than the overall treatment group.

Conclusion: We used several highly interpretive machine learning models to predict

stroke prognosis with the highest accuracy to date and to identify heterogeneous

treatment e�ects of warfarin and human albumin in stroke patients. Our interpretation

of the model yielded a number of findings that are consistent with clinical knowledge

and warrant further study and verification.
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1. Introduction

Stroke is an acute disorder characterized by dysfunction of the focal neurological system,

underlying cerebral vascular spontaneous hemorrhage, and inadequate blood supply (1).With its

concomitant cardiovascular and cerebrovascular diseases, patients of stroke typically have poor

prognosis and outcomes (2, 3). Stroke has been recognized as the second most deadly threat and

the second leading contributors to severe disability worldwide (4, 5). The global epidemiology
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of stroke has also not been optimistic over the past few decades. The

incident cases of stroke were 12.2 million in 2019, among which,

62.4% were of ischemic stroke, while 27.9% were of intracerebral

hemorrhage, and 9.7% were subarachnoid hemorrhage cases (6).

Meanwhile, the lifetime risk of stroke is approximately 25% from the

age of 25 among bothmen and women (6). In 2019, the deaths caused

by stroke amounted to 6.55 million and the disability-adjusted life

years (DALYs) of stroke patients also reached 143 million (6).

Clinically, there are many factors that can affect the prognosis of

stroke, which in general can be mainly divided into basic information

for patients, complications, subtypes of stroke, and the treatments

(7–9). Many complications can have an impact on the prognosis of

stroke, including atherosclerosis (10), diabetes mellitus (9, 11), atrial

fibrillation (12), cerebral palsy (13), and some cancers (14). Some

stroke subtypes interact with specific complications and lead to a

deterioration in prognosis (15–17). For instance, certain coagulation

defects can cause abnormal traumatic injuries with blood-brain

barrier disruption and exacerbate risk of hemorrhagic stroke (18,

19). Stroke patients may also face difficult treatment choices, such

as the controversy over the use of anticoagulants like warfarin in

cases of ischemic stroke complicated by gastrointestinal bleeding

(20–22). The influence of a multitude of factors leads to increased

complexity in the identification and therapeutic management of

stroke patient prognosis.

Several previous studies used machine learning to solve problems

related to stroke and other diseases. Cheon et al. used a fully

connected neural network (FCNN) to identify factors affecting

stroke mortality and had an AUC of 0.8. However, their principal

component analysis (PCA) was not clinically interpretable (23).

Heo et al. built a model using machine learning to predict long-

term outcomes in acute stroke, but they only used six variables

from the Analysis of Lausanne (ASTRAL) scores, which did not

include comprehensive comorbidities and demographic factors (24).

Ambale-Venkatesh et al. combined machine learning with deep

phenotyping to improve the accuracy of cardiovascular event

predictions (25). Some existing research generally lacks overall

consideration of all comorbidities together and sometimes the model

is not optimal.

Given the particular complexity and variety of contributing

factors to stroke outcomes, which are difficult to predict globally

using traditional research methods, such study limitations reduced

predictive accuracy and limited to a comprehensive consideration of

multiple factors. The aim of our study is to supplement and exploit

multiple comorbidities, laboratory tests and demographic factors to

more accurately predict death related to stroke, and furthermore,

to make inferences about the heterogeneity of treatment in stroke

patients to guide better treatment planning.

2. Materials and methods

2.1. Study design

We conducted a retrospective study of the risk factors for death

in stroke patients and trained several machine learning (ML) models

to predict their mortality during hospitalization and within 30 days

after discharge. Patients with stroke were enrolled from the Medical

Information Mart from Intensive Care (MIMIC)-IV version 2.0 (26),

based on the International Classification of Diseases version 10 (ICD-

10), a public dataset maintained by the Beth Israel DeaconessMedical

Center. The period for study enrolment was from 2008 to 2019. The

study was approved by online certification.

Patients diagnosed with stroke were included according to the

ICD-10. We extracted a total of 8,276 patients with stroke, excluding

36 patients admitted to the hospital many times and 757 patients

whose records did not contain adequate and relevant information

within one month from the outcome (more than 30%). Finally, we

extracted and sorted all the information of the remaining 7,483

patients, and a flowchart of patient selection and data collection is

shown in Figure 1A.

2.2. Principle variables

The dependent variable was the mortality rate of stroke

patients. Participants who died during hospitalization and within

30 days after discharge were considered deaths. The independent

variables reflecting sociodemographic status included age, gender,

marital status, race, insurance type, height, weight, and body

weight index (BMI). Medical variables included the course of

the disease, laboratory tests, and complications. Drug-related

information included the usage of warfarin and human albumin,

which was the most frequently used medicine for stroke patients

in this database. We also included the detailed subtypes of stroke

and whether the stroke was recurrent as independent variables. We

excluded complications without a clear diagnosis to make our study

reproducible and explainable. We obtained 145 variables for the

ML model.

2.3. Machine learning algorithms and
training strategy

We used six ML algorithms, which were Neural Oblivious

Decision Ensemble (NODE) (27); CatBoost (28); XGBoost (29);

LightGBM (30); fully connected neural network (FCNN); and logistic

regression (LR).

NODE, a state-of-the-art Deep Learning (DL) model specialized

for tabular data, uses oblivious decision trees (ODTs) (31) as weaker

learners and inherits hierarchical representation and attention

mechanism from neural networks. Every layer of NODE is densely

connected to the original inputs and is trained end-to-end via

backpropagation. The final prediction of NODE was obtained

by averaging the outputs of all ODTs from all layers. We used

Quasi-Hyperbolic Adam as an optimization strategy, which was

recommended in the original paper (32). An FCNN is a common DL

structure that contains several fully connected layers and uses ReLU

as a nonlinear activation function. CatBoost is a gradient-boosted

decision tree (GBDTs) model released in 2018 that also uses ODTs

as weaker learners. The other two GBDTs models are XGBoost and

LightGBM. We also used LR for comparison.

All patients were randomly allocated to a testing set of 25%

samples unseen in the model development and used to evaluate the

final model performance. A training set of 75% of the samples was

used for building the model. During the training period, we used 3-

folds-cross-validation to tune the model hyperparameters; for each
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FIGURE 1

The flow chat of patients’ enrollment, model development and validation, and treatment e�ect estimation. (A) Flow chart of patients’ enrollment; (B) Flow

chart machine learning models development and validation; (C) Flow chart of estimation of treatment heterogeneity e�ects. CATE, conditional average

treatment e�ect; t = 1, patients treated with warfarin or human albumin; t = 0, patients not treated with warfarin or human albumin.

time, themodel trained on two-thirds of the training set and validated

on the remaining one-third of the training set. For DL models,

the loss of each step was recorded. The training was terminated

automatically if it did not decrease in 1,000 iterations. For GBDTs,

we used a random search algorithm to obtain the best models. A

flowchart of the model development is shown in Figure 1B. We used

the median to fill in missing values.

2.4. Estimation of treatment heterogeneity
e�ects

We further estimated the therapeutic effects of human albumin

and warfarin in individual patients using Meta-learner (33). It was

a three-stage estimation, in which two GBDTs were used in the first

stage to estimate the conditional average treatment effects (CATE) for

the treatment and control groups separately, followed by estimation

of the control group outcome using a GBDT built on the treatment

group and estimation of the treatment group outcome using another

one built on the control group, and finally estimation of the final

CATE was weighted by the estimates obtained in the second stage.

This leads to a more causal inference for individual treatment

effects (ITE).

ITE was defined as the outcome estimation of a patient receiving

human albumin or warfarin minus the outcome estimation for

the same patient not receiving human albumin or warfarin. We

then divided patients into consistent (Consis.) and inconsistent

(In-consis.) groups in the testing set based on the actual treatment
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TABLE 1 Comparison of demographic status.

Control Dead p-value

Age, median (IQR), y 68.0 (57.0–77.0) 74.0 (64.0–83.0) <0.001∗∗

BMI, median (IQR) 27.3 (23.8–31.4) 26.3 (22.9–30.3) <0.001∗∗

Sex 0.5136

Male 3042 (50.1%) 723 (51.1%)

Female 3027 (49.9%) 691 (48.9%)

Race 0.505

Asian 212 (3.5%) 60 (4.3%)

Black 801 (13.2%) 194 (13.7%)

White 3975 (65.6%) 926 (65.6%)

Latin 227 (3.7%) 46 (3.3%)

Other race 844 (13.9%) 185 (13.1%)

Insurance type <0.001∗∗

Medicare 2896 (47.7%) 796 (56.3%)

Other insurance 2906 (47.9%) 563 (39.8%)

Medicaid 267 (4.4%) 55 (3.9%)

Marital status <0.001∗∗

Married 2767 (45.6%) 532 (37.6%)

Widowed 878 (14.5%) 295 (20.9%)

Single 1492 (24.6%) 285 (20.2%)

Divorced 537 (8.8%) 92 (6.5%)

Other races, including unknown, unable to obtain, and multiple races; other insurance,

including no insurance, employer-based insurance plan, and individual health insurance.

Statistical analysis: ∗∗p < 0.01.

they received and the ITE values. This process was illustrated in

Figure 1C.

2.5. Statistical analysis

PostgreSQL was used to extract and store the data from

MIMIC-IV. All statistical analyses were performed using

R, continuous variables were reported as the median and

interquartile range (IQR), and categorical variables were presented

as numbers and percentages (%). To compare continuous

variables between the two groups, we used the Welch t-test

and Mann–Whitney U-test, as appropriate. The chi-square test

and Fisher’s exact test were used to compare categorical variables,

as appropriate.

3. Results

3.1. Demographic results

A total of 7,483 participants were included in this study, with

6,069 and 1,414 participants in the control and death groups,

respectively. The median age was 69.0 years (59.0–79.0 years), and

50.3% of the patients were male. The total mortality rate was 18.9%

(95% CI 18.0–19.8%).

A comparison of demographic status is shown in Table 1. The

death group was older than the control group (74.0 vs. 68.0, p <

0.001). Most of the participants in the control group were married

(45.6%, 95% CI 44.3–46.9%), whose proportion was higher than that

of the death group (37.6%, 95% CI 35.1–40.2%). The proportion

of single and divorced showed the same traction. However, the

proportion of widowed individuals showed an opposite trend. The

proportion of widowed individuals was 20.9% (95% CI 18.8–23.1%)

in the death group and 14.5% (95% CI 13.6–15.4%) in the control

group. The bodymass index (BMI) of the death group was lower than

that of the control group (26.3 vs. 27.3, p < 0.001). No statistically

significant differences were found in sex or race.

3.2. Model predictive performance

We calculated accuracy (ACC.), the area under the receiver

operating characteristic curve (AUC), which is the ability to weigh

true positives and false positives, precision score (Prec.), and F-

measure (F1), which is a comprehensive indicator reflecting the true

positive rate and sensitivity rate. The validation AUC curve during

the training period is shown in Figure 2A, which exhibits oscillation

owing to 3-fold cross-validation. The predictive performance of each

model is presented in Table 2. The performances of GBDTs and

NODE were close to acceptable levels. CatBoost has the highest

ACC., Prec., and F1 (ACC: 0.8993 [0.8972–0.9014]; Prec.: 0.8155

[0.8072–0.8214]; AUC: 0.9217 [0.9188–0.9238]; F1: 0.6805 [0.6735–

0.6855]), XGBoost has the highest F1 (ACC.: 0.8969 [0.8955–

0.8987]; Prec.: 0.7783 [0.7689–0.7841]; AUC: 0.9175 [0.9153–0.9194];

F1: 0.6890 [0.6824–0.6939]). However, FCNN performed worse

than GBDTs in ACC., AUC, and F1 (ACC.: 0.8726 [0.8699–

0.8744]; Prec.: 0.8129 [0.8021–0.8227]; AUC: 0.8796 [0.8763–0.8832];

F1: 0.5328 [0.5231–0.5391]). LR has the lowest Prec. and AUC

(ACC.: 0.8753 [0.8729–0.8773]; Prec.: 0.7298 [0.7206–0.7372]; AUC:

0.8591 [0.8555–0.8622]; F1: 0.6003 [0.5923–0.6069]). Additionally,

we demonstrated the receiver operating characteristic (ROC) curve

in Figure 2B.

3.3. Recognition of the heterogenic
treatment e�ects

We presented the fatality rates (FR) of the treatment group,

control group, Consis. group and In-consis. group of warfarin

and human albumin in Figures 3A, C, respectively. We also

demonstrated their average treatment effects (ATE), which was

the Figures 3B, D. In the calculation of the ATE of the factor

that whether the patient’s actual treatment is in line with ITE

(Consis.), treatment was considered as amediator andwas controlled.

Meanwhile, subtypes of stroke, recurrent stroke, age, and sex

were considered as confounders in the calculation of standardized

mortality rate (SMR) and ATE for both Consis. and treatment.

In the estimation of ATE, we used augmented inverse probability

weighting (AIPW) (34) to correct the OR values. Additionally, we

calculated controlled direct effects (CDE) and natural direct effects

(NDE) (35), in which, CDE measures whether a specific patient’s

outcome would have improved if they had been treated (or be in

Consis.) when the confounders hold at a predetermined level, while
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FIGURE 2

Predictive performance of machine learning models in the testing set. (A) the validation area under receiver operating characteristic curve during three

folds cross validation; (B) receiver operating characteristic curve of all machine learning models; (C) the confusion matrix of CatBoost. NODE, Neural

Oblivious Decision Ensembles; FCNN, fully connected neural network; Logistic, logistic regression; AUC, area under receiver operating characteristic

curve; iters., iterations.

NDE holds confounders fixed in the same level under untreated

condition. The CDE and NDE were presented as the slope of a

linear regression.

In the testing set (1,871 of patients), 1,706 (91.2%) patients have

been taken warfarin while the treatment was deemed appropriate

for 987 (57.3% of treated with warfarin) patients, and 96 (58.2% of

non-treated with warfarin) patients were considered should be on

warfarin. 294 (15.7%) patients were in human albumin treatment

group; 821 (52.1% of non-treated with human albumin) patients were

considered by the model that should be treated.

We observed a lower fatality rate (FR) in the Consis. than in the

In-consis. (Consis vs. In-consis: in warfarin, 14.1% vs. 25.6%, p <

0.0001; in human albumin, 13.3% vs. 22.4%, p < 0.0001). Significant

differences remained after correction for confounders (SMRb of

Consis: in warfarin, 0.82, 95% CI: 0.75–0.89; in human albumin, 0.84,

95% CI: 0.76–0.93). The odds ratio (OR), AIPW adjusted OR (adj-

OR), CDE, and NDE of Consis. remained significant and lower than

treatment, except for CDE of human albumin (Consis.: −0.08, 95%

CI:−0.10 to−0.06); human albumin:−0.06). The adj-OR of Consis.

in warfarin was 0.54 (0.47–0.62) and that of human albumin was 0.66

(0.57–0.76), indicating a strong protective factor. The CDE and NDE

also showed that Consis. had a direct effect on outcome (unaffected

by treatment ratio and other confounders).

3.4. Model interpretation

CatBoost exhibits the highest ACC., Prec., and F1. Thus, we

conducted a Shapley Additive Explanations (SHAP) analysis to reveal

the distribution of the effect of each input acting on CatBoost.

Figure 4A shows a SHAP summary plot sorted by the feature

importance of the top 20 important features, wherein every point

represents a sample, and the horizontal coordinate is the SHAP

value of each feature. A higher intensity of red indicates a higher
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TABLE 2 Predictive performance of each model.

Model ACC. [95% CI] Prec. [95% CI] AUC [95% CI] F1 [95% CI]

NODE 0.8857 [0.8833–0.8874] 0.7368 [0.7274–0.7432] 0.9008 [0.8975–0.9029] 0.6528 [0.6455–0.6580]

FCNN 0.8726 [0.8699–0.8744] 0.8129 [0.8021–0.8227] 0.8796 [0.8763–0.8832] 0.5328 [0.5231–0.5391]

XGBoost 0.8969 [0.8955–0.8987] 0.7783 [0.7689–0.7841] 0.9175 [0.9153–0.9194] 0.6890 [0.6824–0.6939]

CatBoost 0.8993 [0.8972–0.9014] 0.8155 [0.8072–0.8214] 0.9217 [0.9188–0.9238] 0.6805 [0.6735–0.6855]

LightGBM 0.8955 [0.8931–0.8972] 0.7753 [0.7657–0.7827] 0.9086 [0.9059–0.9106] 0.6804 [0.6730–0.6854]

LR 0.8753 [0.8729–0.8773] 0.7298 [0.7206–0.7372] 0.8591 [0.8555–0.8622] 0.6003 [0.5923–0.6069]

ACC., accuracy; AUC, the area under the receiver operating characteristic curve; Prec., precision score; F1, F-measure. NODE, Neural Oblivious Decision Ensemble; FCNN, fully connected neural

network; LR, Logistic Regression Model. Bolded font indicates the best indicator among all models.

FIGURE 3

The recognition of treatment heterogeneity e�ects. (A) Fatality of di�erent warfarin treatment groups; (B) Fatality of di�erent human albumin treatment

groups; (C) The average treatment e�ects of warfarin treatment groups; (D) The average treatment e�ects of human albumin treatment groups. FR,

fatality rate; SMR, standardized mortality rate; SMRa, standardized mortality rate that controls age and sex; SMRb, standardized mortality rate that controls

age, sex, and all subtypes of stroke; OR, odds ratio; adj-OR, odds ratio that adjusted with augmented inverse probability weighting; CDE, controlled direct

e�ect; NDE, natural direct e�ect.

feature value, while a higher intensity of blue indicates a lower

feature value.

First, the lower the oxygen saturation (SpO2), the higher

the SHAP value, which means that the patient is more likely

to die. The protective factors were red blood cell count (RBC),

followed by weight, course of disease, and blood bicarbonate

(HCO3−). The most important risk factor was other disorders

of the nervous system (ODNS), followed by white blood cell

count (WBC), age, glucose (GLC), and malignant neoplasms

of ill-defined, secondary and unspecified sites (MNISUS). We

also presented the SHAP plot of Meta-learner of warfarin

(Figure 4B) and human albumin (Figure 4C) that indicated which
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FIGURE 4

Interpretation of models using Shapley Additive Explanations (SHAP) analysis. (A) The variables importance of CatBoost; (B) The importance of variables to

explain warfarin treatment heterogeneity; (C) The importance of variables to explain human albumin treatment heterogeneity. ODNS, other disorders of

the nervous system; WBC, white blood cell count; GLC, blood glucose; MNISUS, malignant neoplasms of ill-defined, secondary and unspecified sites;

ODRS, other diseases of the respiratory system; RBC, red blood cell count; BUN, urea nitrogen; RDW, red blood cell distribution width; CPAOPS, cerebral

palsy and other paralytic syndromes; DBP, diastolic blood pressure; RDW-SD, standard deviation of red blood cell distribution width; HCO3−, blood

bicarbonate; SBP, Systolic pressure; HB, hemoglobin; PLC, platelet count; Na, blood natrium; HCT, hematocrit; MCHC, mean red blood cell hemoglobin

concentration; Ca, serum calcium; K, blood potassium; NSSD, neurotic, stress-related and somatoform disorders; LDDEA, lung diseases due to external

agents; Cl, blood chloride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; AG, anion gap, PH; phosphoric acid.
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variables more significantly affect the inference of heterogeneity

of treatment.

4. Discussion

Stroke remains one of the most destructive and prevalent nervous

system diseases worldwide, responsible for disability or death in

many individuals every year and a significant increase in DALY (36,

37). The importance of our study in the context of stroke mortality

is that the features recognized in this study can identify the factors

significantly related tomortality and treatment effects using statistical

methods and ML models.

We analyzed the distribution of the demographic factors included

in the study. Elderly individuals are more likely to have a stroke and a

serious clinical outcome (38), which is consistent with our study. We

also found that patients with higher BMI were more likely to survive

after stroke (control vs. death, 26.3 vs. 27.3, p < 0.001), however, this

association may depend on age (39). Additionally, we found more

patients with other insurance types in the control group than in the

death group [control vs. death, 47.9 vs. 39.8%, 95%CI (control), 46.6–

49.1%]. Other insurance statuses include no insurance, employer-

based insurance plans, and individual health insurance, most of

which are commercial insurance, which may be related to a better

economic level.

This study showed that the use of the ML method helps predict

death after a stroke. To the best of our knowledge, this study achieved

the highest AUC (AUC: 0.9217 [0.9188–0.9238]). Previous studies

have suggested that FCNN or Deep Neural Network (DNN) is the

best model for predicting post-stroke mortality and outperforms

other traditional ML models (23, 24). However, in our study, the

FCNN performed the worse than GBDTs and NODE (ACC.: 0.8857

[0.8833–0.8874]; AUC: 0.9008 [0.8975–0.9029]). The ML model with

the highest performance was CatBoost and the rest of the GBDTs

achieved high performance. Tree-based models appear more suitable

for structured medical data, regardless of whether the model is

implemented with ensemble methods, such as GBDTs, or layer-

wise structures, such as NODE. However, GBDTs and DL models

have their own advantages. GBDTs can help achieve relatively high

accuracy in a very short period. DLmodels are fully differentiable and

scalable, which means that researchers can arbitrarily change their

model structure to fit the data better.

We further used meta-learner to identify heterogeneous

treatment effects in the stroke population. We observed that 55.6%

of the warfarin current use (or not use) and 52.1% of the status

quo human albumin treatment (or control) in the testing set

were considered inappropriate by model. Even after controlling

for treatment factors, demographic factors and subtypes, survival

outcomes were still significantly better in those who were consistent

with the model judgments than in those who were inconsistent.

Extrapolation of treatment effects for the population level does

not necessarily hold in individual patients (34) and treatment

heterogeneity has been reported to exist in stroke patients (40).

However, studies of ITE in stroke patients are scarce (41) and, to our

best knowledge, there is no such discussion of warfarin and human

albumin, which are common drugs (42–45). Our study shows that

ML can be used to help identify individuals with heterogeneous

responses to treatment in stroke patients and thus make better

treatment plans.

ML is a good predictive tool and usually has high accuracy.

However, it has always been regarded as a “black box,” indicating

poor interpretability. In our study, we conducted SHAP analysis

to interpret one of our best models and obtain several risk and

protective factors to help better understand the role of various factors

in post-stroke mortality. Most of the results were consistent with

clinical knowledge (46–49). In addition, we showed the 20 variables

considered the most important by the model for the estimation

of treatment heterogeneity, mostly laboratory indicators, which are

worthy of further investigation. These results can be referenced in

subsequent studies as a screening of important variables to narrow

the scope.

In summary, we used several highly interpretivemachine learning

models to predict stroke prognosis with the highest accuracy to

date and to identify heterogeneous treatment effects of warfarin

and human albumin in stroke patients. Our interpretation of the

model yielded a number of findings that are consistent with clinical

knowledge and warrant further study and verification.

Our study has some limitations. The data we used included

only inpatients from one hospital. These inpatients are already

affected by stroke and usually have more serious conditions than the

average population of stroke patients (50, 51). This narrow scope

may limit the general applicability of our results. Since this is the

first study to use machine learning to analyze such a wide range

of variables in a population that has complex comorbidity factors,

such as simultaneous hemorrhagic stroke and ischemic stroke [839

(11.2%)], we did not perform further analysis and inferences on all

the conclusions obtained. In further studies, we will explore in depth

the factors affecting survival or treatment effects and group subtypes

of stroke to draw even further conclusions.
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