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Generally, axons located at the central end of the nerve system will sprout after

injury. Once these sprouts cannot reach the distal end of the severed nerve, they will

form a traumatic neuroma. Traumatic neuromas bring a series of complex symptoms

to patients, such as neuropathic pain, skin abnormalities, skeletal abnormalities,

hearing loss, and visceral damage. To date, the most promising and practical clinical

treatments are drug induction and surgery, but both have their limitations. Therefore,

it will be themainstream trend to explore newmethods to prevent and treat traumatic

neuroma by regulating and remodeling the microenvironment of nerve injury.

This work first summarized the pathogenesis of traumatic neuroma. Additionally,

the standard methods of prevention and treatment on traumatic neuroma were

analyzed. We focused on three essential parts of advanced functional biomaterial

therapy, stem cell therapy, and human-computer interface therapy to provide the

availability and value of preventing and treating a traumatic neuroma. Finally, the

revolutionary development of the prevention and treatment on traumatic neuroma

has been prospected. How to transform the existing advanced functional materials,

stem cells, and artificial intelligence robots into clinical practical technical means

as soon as possible for high-quality nerve repair and prevention of neuroma was

further discussed.

KEYWORDS

traumatic neuromas, complex symptoms, functional biomaterial therapy, stem cell

technology, human machine interface

1. Introduction

The traumatic neuroma is usually caused by the random arrangement of nerve branches at
different sizes after nerve injury (1). Macroscopically, the neuroma usually presents as a white
oval mass surrounded by dense fibers, low blood vessel density, and nerve connections (2). Its
size generally does not exceed 2 cm (2–4). According to the pathophysiological mechanism, the
traumatic neuroma could be divided into two categories: terminal neuroma (i.e., “terminal” or
“stump”) and discontinuous neuroma (4, 5). Not all neuromas are dangerous and problematic,
but symptomatic neuromas could cause sensory disorders and persistent pain (6), and ultimately
lead to a significant decline in patients’ quality of life. It was reported that the incidence of
painful neuromas in amputees has been as high as 50–80% (3). The International Association
for Pain Research (IASP) (7) defines neuropathic pain as pain caused by diseases or lesions of
the somatosensory nervous system (8). The arguments that mediate the pain mechanism of a
neuroma include peripheral and central sensitization (9), expression of nerve growth factor (10),
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α-smooth muscle actin (α-SAM) (11), the change of neuroma
fiber structure (2), connection between fibers, destruction of nerve
function, and adrenaline sensitivity, etc. To avoid pain caused by
neuroma, the injured or severed nerves should be treated with
high quality.

The clinical treatment of neuroma was mainly divided into
conservative treatment and surgical treatment (3). Among them,
traditional conservative treatment specifically includes early
prevention, intervention, and non-surgical treatment, such as
anesthesia steroid injection, opioids, transcutaneous electrical nerve
stimulation, and other methods (3). Once the symptoms and pain
become severe, the neuroma needs surgical treatment, which includes
epineural grafts, suture ligature, transposition into vein graft, muscle,
bone, and traction neurectomy (12–14). The specific differences
and connections between the two treatment modes were shown in
Table 1. However, there are limitations to both treatments mentioned
above. For example, up to 42% of patients may have persistent
symptoms and undergo additional intervention (4). Therefore,
exploring and developing new technologies are mainstream trend in
the future prevention and treatment on a traumatic neuroma.

Supramolecular biomaterials have developed rapidly in
biomedical treatment due to their incomparable characteristics.
The complexity of biology, pathology, and related biomedical
issues requires that supramolecular biomaterials should be
practical and designable. The designability and modifiability
of supramolecular biomaterials (16) endow them with many
advantages, such as responsiveness, reversibility, adjustability,
bionics, modularity, predictability, and adaptability, which provides
unlimited possibilities and opportunities to solve challenging
biomedical problems (17). Therefore, the combination of advanced
functional biomaterials and pathology provides a favorable guarantee
for treating and preventing traumatic neuroma.

This review has focused on the research progress in the cross
field of supramolecular biomaterials, stem cells, human-computer
interface, and neuroma medicine in recent years. We hope this
can make contributions to the treatment of traumatic neuroma. In
addition, based on many excellent basic research, the effect of various
new technologies and surgical treatment schemes should be strictly
compared to prevent and treat neuroma in the future.

2. Di�culties and challenges in nerve
repair

The occurrence of neuroma is actually a kind of transitional
repair or body disorder in the process of nerve repair. The
essence of improving or inhibiting the occurrence of neuroma
is based on the research of biological mechanisms. Therefore,
how to prevent the formation of neuromas requires profound
understanding of neuroanatomy and neurobiological mechanisms
after injury (18). As shown in Figure 1A, the central nervous system
was composed of sensory and motor neurons (19). Their cytoplasm
could spontaneously extend and gradually form axons, which were
used to transmit signals to corresponding organs. Anatomically
speaking, the nerve intima protects the axons to form nerve bundles.
The adventitia gathers several nerve bundles together. In addition,
there are a large number of capillary micro nerves with delicate
network structures in the inner layer to provide energy. Once the
nerve is injured (Figure 1B), different levels of the injured site

may lead to various phenomena, such as axotomy leading to the
fracture of distal axons and myelin sheath leading to Wallerian
degeneration. To repair the nervous system, Schwann cells (SCs)
begin to proliferate, macrophages invade the distal nerve segment
and phagocytize degradation substances. After the fragments were
removed (Figure 1C), axons began regenerating.

The perfect repair of damaged nerves inhibits the formation
of inflammatory reactions, peripheral fibrosis, and scar tissue,
thereby inhibiting or preventing neuroma formation. In the whole
process of nerve repair, it was difficult to improve or block
the occurrence of inflammation due to the significant differences
between individuals. When the body was damaged, the immune
system starts to collect granulocytes (neutrophils and mast cells)
and agranulocytes (monocytes/macrophages and lymphocytes) to
key positions in the first few hours (Figure 2A) (22). Effectively
controlling neuroinflammatory diseases was a highly complex
problem requiring specific intervention. In addition, fibrosis or scar
tissue formation around the implant was another expected natural
event after injury (Figure 2B) (18). However, the excessive deposition
and subsequent remodeling of the extracellular matrix (ECM) will
lead to permanent scars and eventually form a neuroma. Fibrosis can
hinder regeneration in two ways: (i) Intraneural fibrosis will prevent
axons from passing from proximal to distal segments; (ii) Extraneural
fibrosis will limit the physiological movement of the nerves during
exercise, leading to pain and functional limitations.

In terms of damage types, it is also necessary to distinguish
between minor and long gaps. The small space (<30mm) for
clinical treatment of nerve injury generally adopts autologous
transplantation, allograft transplantation, and hollow lumen cannula.
However, it is limited clinically due to insufficient autologous supply
and allogeneic immune response. The injured nerve site must be
protected as a guiding substrate for further repair. In addition,
nutrients and oxygen diffuse to the regeneration site, so the hollow
catheter is more demanding for nerve repair (23). Considering that
most recoveries of long space injuries still have obstacles, this is
because the distal stump is too far away from the proximal end,
leading to the degradation of targeted organs. Worst of all, neuromas
can also occur when the treatment of nerve injuries is ineffective.
Therefore, these complex challenges could stimulate researchers to
seek suitable new technologies to solve neuroma.

3. Emerging methods for treatment of
traumatic neuroma

In clinic, the treatment of traumatic neuroma is mainly surgical
treatment, but after the initial surgical treatment, up to 42% of
patients may have persistent symptoms, which requires additional
intervention (4). The determinants of secondary neuroma are
complex, including patient symptoms, patient living environment,
patient living habits, surgeon experience, and available reconstruction
techniques. To avoid the occurrence of secondary neuroma and
traumatic neuroma, it is necessary to develop new materials
combined with clinical techniques. With the progress of materials
science, stem cell biology, and bioengineering, new thinking models
for treating diseases are increasingly taken into account in the scope
of basic researches, transformations, and clinical applications (24).
They can be used to explore the basic mechanisms of health and
disease, such as in vitro tissue model drug screening and bridging or
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TABLE 1 Two di�erent clinical treatments for neuroma.

Treatment methods Advantages and disadvantages

Conservative treatment Early prevention and intervention Avoid pulling and compressing the nerve; Cut the nerve
away from the stump quickly or carbonize the nerve with
electric knife, and give professional rehabilitation massage
after operation

Nonoperative treatment

Bioactive substances (15);

Reduce the pain intensity and sensitivity of neuroma; Early
patients or adjuvant therapy for patients with painful
neuroma after surgery

Professional rehabilitation massage

Radiofrequency ablation

Electrical stimulation

Surgical treatment Resection of simple neuroma Simple operation; Postoperative recurrence or reoperation;

Closure of nerve stump Repair of injured nerve with artificial catheter; Simple
operation; Reduce pain;

Nerve stump dredging

Method of embedding nerve stump into muscle

Reduce pain and tenderness; Provide additional cushioning
and protection;Embedding nerve stump into blood vessel

Intramedullary implantation of nerve stump

Reconstruct neural
continuity

End to end neurorrhaphy

Less recurrence; Reduce pain; Allogeneic transplantation;
Accurate operation; Long cycle of nerve recoveryEnd to side neurorrhaphy

Nerve transplantation

Reinnervation
Targeted muscle reinnervation Appropriate free muscle size; Transplanted muscle with

vascular reconstruction
Regenerative peripheral nerve interface

FIGURE 1

(A) Schematic diagram of peripheral nerves reprinted (adapted) with permission from (19), Copyright (2014) BioMed Research International. (B) Schematic

diagram of disorder and regeneration after nerve damage reprinted (adapted) with permission from (20), Copyright (2012) Elsevier. (C) Schematic diagram

of SCs surrounding the nerve axis reprinted (adapted) with permission from (21), Copyright (2014) Elsevier.

substitutes for trauma tissue. Although many “systemic drugs” have
been developed clinically to guide the treatment of neuroma, it is
now clear that locally mediated modified new materials can rapidly
adjust the surrounding pathological environment to recommend the

repair. In this review, we discussed how “local” biomaterials affect
or treat neuromas, how stem cells secrete factors or self-regulate the
surrounding environment of neuromas, and how human-computer
interfaces treat neuromas.
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FIGURE 2

(A) Immunoregulatory properties of nerve repair macrophages reprinted (adapted) with permission from (22), Copyright (2015) Elsevier. (B) Excessive

deposition of fibrous cells in the injured site leading to peripheral fibrosis reprinted (adapted) with permission from (18). Copyright (2019) Elsevier.

FIGURE 3

(A) Schematic diagram of nerve sca�old synthesis reprinted (adapted) with permission from (27), Copyright (2022) Elsevier. (B) Schematic of PRGD/PDLLA

conduit in preventing traumatic neuroma reprinted (adapted) with permission from (28), Copyright (2018) Wiley. (C) Schematic diagram of nerve cannula

design reprinted (adapted) with permission from (29), Copyright (2020) The American Association for the Advancement of Science.

3.1. Biomaterials for treatment of traumatic
neuroma

In the early clinical stage, the neuroma is mainly treated by
surgical resection, but it is easy to recur. In addition, nerve axons
buried in adjacent tissues may lead to direct contraction or traction
of nerves. Using nerve conduits to bridge or covering injured nerves
is a promising method. Nerve grafts have become the gold standard
for nerve reconstruction and neuroma prevention, while donor
incidence rate and immunogenic host response remain challenges.

With the rapid development of biotechnology and biomaterials,

various biomaterials are being used to promote the functional
recovery of injured nerves, prevent the occurrence of neuromas,

and treat neuroma pain. The materials have been endowed with

biological functions, from simple biopolymers to blends of bioactive
substances and polymers. Additionally, the modifiability of materials

endows them with multifunction, such as adjustable mechanical
properties, degradability, good biocompatibility, convenience, and
non-immunity. During the treatment period, biomaterials should
also avoid swelling and not elicit inflammatory responses during
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FIGURE 4

(A) The graphene mesh supported double network (DN) hydrogel sca�old is loaded with netrin-1 to form a neural sleeve reprinted (adapted) with

permission from (35), Copyright (2021) American Chemical Society. (B) Multichannel nerve cannula reprinted (adapted) with permission from (37),

Copyright (2020) Elsevier. (C) The 3D printing realizes personalized neural channel reprinted (adapted) with permission from (38), Copyright (2015) John

Wiley and Sons.

degradation. Notably, the modified biomaterials should have the
ability to maintain cell vitality and guide directional tissue growth.

In recent years, many researchers have been committed
to replace promising alternative biomaterials to autologous or
allogeneic nerve transplantation, and simulate the macro or micro
ring structure of peripheral nerves to improve the therapeutic
effect and inhibit the occurrence of neuroma (25, 26). Yang
et al. (27) designed a biodegradable cannula based on chitin
for peripheral nerve injury in long-segment defects. The hollow
cannula was prepared through chitin dissolution, molding, and
regeneration, and then the hollow cannula was immersed in the
anti-inflammatory dopamine solution (Figure 3A). The deposited
cannula shows excellent inhibition on nerve regeneration and
neuroma. Yi et al. (28) synthesized that biocompatible poly(D, L-
lactic acid)/arginyl glycyl aspartic acid (RGD peptide) modification of
poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]}(PRGD/PDLLA)
nerve cannula (Figure 3B). The catheter inhibits inflammation
by modifying RGD, providing an appropriate microenvironment
for nerve endings recovery, and avoiding neuroma formation
during nerve recovery. Given severe peripheral nerve injury, the
possibility of neuroma formation caused by auto-transplantation
was enhanced, and the sensory function of the donor site was
lost. Fadia et al. (29) studied a biodegradable polycaprolactone
catheter (Figure 3C). Glial cell-derived growth factor (GDNF)
was wrapped in the catheter, which showed that the degradable
nerve catheter effectively bridged the long peripheral nerve gap
and prevented the occurrence of neuroma. In general, although
a single cannula could promote nerve regeneration and reduce

the occurrence of neuroma, the single cannula cannot fully meet
clinical requirements.

The traditional casing manufacturing process is complex, time-
consuming, and single in practicability. The emerging 3D printing
technology is a revolutionary change for the effective prevention and
treatment of neuroma (30). Additionally, 3D printing technology
overcomes the permeability problem of traditional nerve cannulas.
It can also simulate the structure and function of the peripheral
nerve through biomaterials, biomolecules, growth factors, exosomes,
and cells (31). Importantly, the size and morphology of the gap
with nerve damage are diversified. For example, the axonal fibers of
the same neuron are scattered to different target tissues, sometimes
controlled by multiple nerves (32). However, 3D printing technology
enables patients to create personalized cannulas to treat and prevent
neuromas (33). The multifunctional 3D-printed nerve cannula
actively promotes axon regeneration and nerve growth to avoid
the occurrence of neuroma through various methods. For example,
the implantation of growth factors (34), conductive biomaterials
(35), and stem cells (36), lack in the neural environment into the
neural cannula can realize the multi-function of the neural cannula.
Huang et al. (35) fabricated a 3D graphene mesh tube (GMT) using
nickel mesh as a template (Figure 4A). The graphene mesh can
promote the proliferation of SCs and guide their alignments. Nerve
stents can significantly promote the regeneration of peripheral nerves
and the recovery of denervated muscles, which is even better than
autologous transplantation.

Considering that the nerve is composed ofmany axons, themulti-
lumen nerve cannula has better advantages than the single-lumen
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FIGURE 5

(A) Three-dimensional structure maintains the stemness of stem cells reprinted (adapted) with permission from (47), Copyright (2022) American Chemical

Society. (B) Growth factors and drugs maintain the stemness of stem cells (47).

cannula in reducing the misorientation rate of the regenerative
axons (39). For example, the large specific surface area in the multi-
cavity catheter promotes cell adhesion and provides appropriate
directional guidance for axon growth (40). Wang et al. (37) adopted a
multi-scale strategy based on natural peripheral nerves’ composition
complexity and structure level. The tussah silk fibroin/poly (l-lactic
acid-ε-Caprolactone)/graphene oxide (ApF/PLCL/GO) nanofibers
were used to prepare multicavity nerve conduits (Figure 4B). This
customized 3D bionic nerve scaffold can improve the mechanical
properties and almost completely degrade after 12 weeks in vivo. In
addition to the single hole and porous nerve cannula, nerve damage
may also occur at the bifurcation and taper. Based on this, Johnson
et al. (38) produced a “dendritic” nerve cannula with silica gel as
raw material through the designability and customization of 3D
printing (Figure 4C), which was used to promote nerve regeneration
and reduce the occurrence of neuroma. Importantly, 3D printing
allows branch nerves to extend to targeted distal nerves. This mode is
difficult to realize with traditional single-hole casing.

In general, the 3D printing stent has successfully regenerated
complex nerve injuries, thus enhancing the functional recovery of the
regenerative nerve. The 3D printing method used for nerve repair to
prevent neuroma has the following potential advantages:

(1) Customize the geometry of the stent to match the inherent tissue
anatomy (36);

(2) Combine the biological manufacturing method with the
calculation modeling of design, analysis, and optimization;

(3) Use physical and biochemical functions of space control to
enhance equipment performance.

(4) The personalized design endows the nerve scaffold with more
clinical applicability.

3.2. Treatment of traumatic neuroma with
stem cells

Considering that the formation of traumatic neuroma is due to
the disorder accumulation of scar tissue, and the irregularity and
immaturity of axon regeneration. The nerve tissue is a complex
structure composed of multiple interacting cells. Due to the highly
complex structure, it is difficult for researchers to assess the degree
of nerve damage. According to different nerve injuries of patients,
exploring new methods and strategies to develop more personalized
treatment methods that are more suitable for clinical application is
necessary. In this way, the formation of traumatic neuroma, especially
to prevent the irregular axon the regeneration of neuroma and
the disorder accumulation of scar tissue, could be thoroughly and
effectively prevented (41).

After the damage to local cells and tissues, the body will repair the
defects. Tissue repair is mainly a repair process through the division
and proliferation of adjacent normal cells (16). Considering that the
damaged organism causes tissue lesions, the key to repair is to restore
the physiological function state. Furthermore, the maintenance and
development of peripheral nerves depend on local signals between
axons and SCs. The proliferation of SCs provides mechanical
matrix and growth factors to promote axonal regeneration. In
addition, factors secreted by SCs can activate signals for nerve
repair. However, the procedure of extracting SCs is cumbersome.
In addition, it is difficult to culture SCs in vitro. Stem cells are
original undifferentiated cells with multipotent differentiation and
self-replication ability, which are the original cells forming various
tissues and organs (42). The extractionmethod of stem cells is simple,
especially mesenchymal stem cells (MSCs). The pluripotent stem cells
can activate the “self-healing function” of the human body itself,
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FIGURE 6

(A) A power e�cient skin-inspired mechanoreceptor reprinted (adapted) with permission from (52), Copyright (2015) The American Association for the

Advancement of Science. (B) A neuromorphic interface producing receptor like spiking neural activity for tactile stimuli feedback reprinted (adapted) with

permission from (53), Copyright (2018) The American Association for the Advancement of Science.

supplement and regulate the diseased cells, activate the cell function,
improve the activity and quality of cells, and finally restore the normal
physiological function of cells (43).

In 2017, Kizilay et al. (44) found that bone marrow mesenchymal
stem cells are a promising regeneration trigger following axonal and
nerve damage. Masgutov et al. (45) prepared a method to transport
MSCs to the traumatic injury area using fibrin glue. Collagen scaffold
immobilizes cells and also provides extracellular matrix support.
The researchers thoroughly used the sciatic nerve injury model
to demonstrate that sensory nerves protect neurons and stimulate
axon growth and myelination. The phenotype of sensory neurons
was also improved after trauma. Significantly, MSCs promote neuro
angiogenesis and motor function recovery. Masgutov et al. (46)
studied the effect on rat sciatic nerve regeneration after trauma
by transplanting human-derived stem cells (hADSCs). His team
built a complete sciatic nerve transection model. After 2 months
of repair, the results showed that hADSC promoted the survival of
neurons in the spinal ganglia, announced axon repair, and stimulated
peripheral nerve regeneration (46). Although stem cells are rich
in resources and advanced in extraction technology, stem cells
gradually lose the ability of directional differentiation after long-
term in vitro culture. The current method was to encapsulate stem

cells in three-dimensional (3D) spheres to maintain and promote the
stemness of stem cells, which can play a paracrine effect in three-
dimensional space due to hypoxia (Figure 5A) (47). Furthermore,
stemness maintenance could also be realized by adding growth
factors or drugs (Figure 5B) (47). Otherwise, bone marrow stem
cells are the first seed cells to conduct clinical application research.
Because of their self-origin and harvest, they will cause less damage
to the body compared with other tissues. However, the quantity and
quality of bone marrow stem cells are closely related to the age
and quality of individuals. With the increase of age, the quantity
and quality of bone marrow stem cells will decrease dramatically.
The incidence rate of some diseases will increase sharply with
age. For older patients, there is a practical problem that it is
challenging to use autologous bone marrow stem cells to transplant
and repair related diseases. Therefore, the critical issue to be solved
in regenerative medicine today is finding stem cell sources with rich
sources, convenient harvest, low immunity, and multi-differentiation
potential. The role of stem cells in neural repair has many beneficial
and exciting things to be developed by researchers. In the future,
researchers should maximize the advantages of stem cells and gather
them into neural repair projects to make them more suitable for
clinical application.
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TABLE 2 Summary of clinical trials of existing materials.

Materials Therapeutic pathology Clinical evidence Ref

Chitosan nerve tube Treatment of permanent loss of sensitivity
and painful neuroma

Therapeutic, I. (57)

Chitosan membrane (ChiMe) The neurovascular bundles (NVBs) after
nerve-sparing robot-assisted radical
prostatectomy (NS-RARP)

Therapeutic, II. (58)

PGLA [poly(glycolide-co-L-lactide)] nerve conduit Treatment of nerve injury and nerve repair
and regeneration

Therapeutic, I. (59)

Glial cell line-derived neurotrophic factor (GDNF) Treatment of Amyotrophic lateral sclerosis
(ALS)

Therapeutic, phase 1/2a trial (60)

3.3. Treatment of traumatic neuroma with
human machine interface

In recent years, soft robots, nanorobots, and flexible electronic
interfaces have attracted great attention due to their good
biocompatibility, low cost, high security, versatility, and adaptability
(48). Medical performance robot is a treasure for non-drug treatment
of diseases, especially the man-machine interface equipment used
for artificial limb or nerve repair, which could significantly improve
the quality of life of injured patients (49). According to the
United States Centers for Disease Control data, 13.7% of Americans
with disabilities have mobility disorders, and 10.8% have cognitive
disorders (50). These barriers could be alleviated through medical
robots and new methods. In the twentifirst century, 3D printing
technology will gradually replace complex, heavy, and insensitive
metal robot brackets to achieve flexibility, portability, and safety.
At the end of the twenteeth century, researchers found that
rehabilitation training, brain function, acting ability, and neural
function loss were significantly improved after a long period (51).
The nerve was a complex sensory and response signal processing
system that senses subtle changes in the environment. Once the
nerve is damaged and the signal transmission is interrupted, a slight
carelessness in the follow-up treatment and repair may evolve into a
neuroma. However, due to the lack of interface between mechanical
parts and the human body, the external signal of the robot cannot be
transferred to the nerve as the skin communication path (Figure 6A)
(52). Although in vitro and in vivo artificial sensory nerves could
communicate with cells through optical methods, they have not yet
reached the link with a single neuron. Based on the concept of
electronic skin sensing (54), if tiny sensory devices are transplanted
and integrated into the “machine with the artificial interface,” they
could be used for nerve repair to prevent neuroma.

The pain of patients will be caused during and after the repair
of nerve injury. Especially after amputation, neuroma caused by
neuropathy affects the normal quality of life of patients. Amputees
complete a series of activities in life by using artificial limbs. To
prevent further injury and pain in amputees, Osborn et al. (53)
developed a multi-layer electronic dermis (e-dermis) and a neuro
morphological interface (Figure 6B), which proved the ability of
the prosthesis and the users to distinguish safe (harmless) and
painful (harmful) tactile sensation during grasping. They used the
prosthesis reflex (simulated as a multi-synaptic retraction reflex)
to respond appropriately. With the advent of the digital era, in
the case of biocompatibility, the search for functional materials
of the human-computer interface can gradually reduce or prevent

various injuries in patients and promote nerve repair. The researchers
sought to combine biomaterials that could transmit signals with
“artificial robots” to reduce neural pain. These two methods are the
mainstream research directions of the human-computer interface. In
the increasingly developing spiritual culture, researchers should strive
to improve patients’ quality of life.

The main challenge of the human-computer interface mainly
comes from materials. The existing machines mostly use traditional
materials, such as metal, silicon, glass, ceramics, and plastics.
However, these conventional materials’ hard, dry and non-biological
characteristics are essentially contradictory to biological tissues’ soft,
wet, and living characteristics (55). Furthermore, the existing human-
computer interface materials only change the structure design. They
do not modify the inherent characteristics of the materials, which
may still hinder their communication and interaction with biological
tissues. In addition, biological tissues of the body often identify these
materials as foreign bodies, which will seriously damage the long-
term reliability and effectiveness of communication and interaction
between people and machines (56). Notably, developing new
materials also faces many scientific, engineering, and transformation
challenges. Researchers should devote themselves to the development
of biological materials for the combination of natural systems and
abiotic systems to better integrate humans and computers. Based
on the above characteristics, we summarized the new development
direction of the human-computer interface.

• Considering the softness and wetness of biological tissue, the
hydrogel is a promising candidate material for bioengineering;

• In addition to considering the design of materials, researchers
should also endow materials with multi-function to better
bionic tissue;

• Human-computer interface materials should be combined
with more bionics and tissues to improve long-term safety
and accuracy.

4. Clinical trials to evaluate the
e�ectiveness and safety of new
technologies and methods

Clinical trial refers to any systematic study of drugs in
humans (patients or healthy volunteers) to confirm or reveal
the effects, adverse reactions and/or absorption, distribution,
metabolism, and excretion of the test drugs (57). The purpose
is to determine the efficacy and safety of the test drugs (58).
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Considering the protection of patients’ interests, a new drug
must undergo clinical trials before entering clinical practice
to obtain pharmacologically (effect) and toxicological (adverse
reaction) data and effective rate and survival period data (57–
60). Therefore, it is necessary to conduct clinical trials on the
effectiveness and safety of new technologies and methods. We
summarize the clinical trials of some existing new materials as
follows (Table 2).

5. Conclusion

To sum up, many research results have sound effects on
the prevention and treatment of neuromas, such as reducing the
incidence rate and the pain of patients. In the future, it should be
easier to meet the needs of treating traumatic neuroma based on
the advantages of existing treatment methods and combined with
existing science and technology. This review focuses on preventing
and treating neuroma with biomaterials, stem cells, and human-
computer interfaces. Although these scientific researches are only at
the research stage, they are also a big step toward clinical application.
From the perspective of medical materials, the effectiveness and
safety of all materials are the core issues in the treatment and
prevention of neuroma. An effective design will better solve the
complex problems in the treatment and prevention of neuroma, for
example, how the existing human-computer interfacemetal materials
deal with the humid environment of biology. Regarding safety,
how to effectively avoid adverse reactions, such as inflammation,
metabolism, toxicity, and antigen reaction in tissues. Furthermore,
expensive materials will also bring financial pressure on patients. In
future clinical work, the treatment and prevention of neuroma is still
a scientific problem. Interdisciplinary methods such as biomaterials,
3D printing technology, stem cells, and human-computer interface
can assist, intervene, prevent, and treat neuromas. Therefore,
the interdisciplinary combination of medicine and biomaterials
must be an essential way to treat neuroma and nerve repair in
the future.
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