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Background: Accurate estimation of prolonged length of hospital stay after acute

ischemic stroke provides crucial information on medical expenditure and subsequent

disposition. This study used artificial neural networks to identify risk factors and build

prediction models for a prolonged length of stay based on parameters at the time

of hospitalization.

Methods: We retrieved the medical records of patients who received acute ischemic

stroke diagnoses and were treated at a stroke center between January 2016 and June

2020, and a retrospective analysis of these data was performed. Prolonged length of

stay was defined as a hospital stay longer than themedian number of days. We applied

artificial neural networks to derive prediction models using parameters associated

with the length of stay that was collected at admission, and a sensitivity analysis was

performed to assess the e�ect of each predictor. We applied 5-fold cross-validation

and used the validation set to evaluate the classification performance of the artificial

neural network models.

Results: Overall, 2,240 patients were enrolled in this study. The median length of

hospital stay was 9 days. A total of 1,101 patients (49.2%) had a prolonged hospital

stay. A prolonged length of stay is associated with worse neurological outcomes

at discharge. Univariate analysis identified 14 baseline parameters associated with

prolonged length of stay, and with these parameters as input, the artificial neural

network model achieved training and validation areas under the curve of 0.808

and 0.788, respectively. The mean accuracy, sensitivity, specificity, positive predictive

value, and negative predictive value of prediction models were 74.5, 74.9, 74.2, 75.2,

and 73.9%, respectively. The key factors associated with prolonged length of stay

were National Institutes of Health Stroke Scale scores at admission, atrial fibrillation,

receiving thrombolytic therapy, history of hypertension, diabetes, and previous stroke.

Conclusion: The artificial neural network model achieved adequate discriminative

power for predicting prolonged length of stay after acute ischemic stroke and

identified crucial factors associated with a prolonged hospital stay. The proposed

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1085178
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1085178&domain=pdf&date_stamp=2023-02-09
mailto:10670@s.tmu.edu.tw
https://doi.org/10.3389/fneur.2023.1085178
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2023.1085178/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yang et al. 10.3389/fneur.2023.1085178

model can assist in clinically assessing the risk of prolonged hospitalization, informing

decision-making, and developing individualized medical care plans for patients with

acute ischemic stroke.

KEYWORDS

artificial neural network - ANN, hospitalization, ischemic stroke, length of stay, machine

learning, prediction, thrombolysis, outcome

1. Introduction

Stroke is the second leading cause of death and a significant cause

of disability worldwide (1, 2). Stroke results in substantial health

and economic burdens on patients and the healthcare system (1–3).

Globally,∼12.2 million stroke events are estimated to occur annually

(1, 3, 4).With 101million stroke cases and 6.55million deaths in 2019

alone, the clinical and economic burdens of stroke on the healthcare

system, society, families, and patients are enormous (1, 3, 4). The

economic burden includes direct costs of medical and non-medical

care and indirect costs such as economic losses due to the loss of

productivity (1, 3, 4). The annual cost of strokemanagement is∼e60

billion in Europe (4, 5) and US$65.5 billion (3, 6). With the aging

and an increase in the number of the population, the number of

stroke events and their long-term sequelae and associated costs is

projected to increase significantly (3–6). Therefore, identifying the

risk factors and predicting the stroke burden are valuable for planning

and organizing stroke services.

Depending on stroke severity and its consequences, patients may

have a physical disability and require short- or long-term hospital

care and rehabilitation or constant care for the rest of their life.

Approximately 80% of stroke survivors exhibit motor impairment,

40% develop moderate to severe impairments and require special

care, and 10% require long-term care at stroke facilities (3, 7).

As one of the factors contributing to total hospitalization costs,

prolonged length of stay (LOS) is highly predictive of inpatient

costs (8–13). As LOS is a primary determinant of the cost of

stroke care and poststroke rehabilitation, it is essential to identify

independent predictors of LOS to improve resource allocation and

cost efficiency (14).

In addition to hospitalization costs, prolonged LOS may be

associated with the increased use of healthcare resources, negatively

affecting hospital capacity and medical personnel availability,

reducing the quality of care, and preventing other patients from

receiving inpatient care (15, 16). Furthermore, patients with acute

ischemic stroke (AIS) having prolonged LOS are more likely

to develop complications such as hospital-acquired infections or

gastrointestinal bleeding (17, 18). Prolonged LOS is also associated

with poststroke depression and increased disability, negatively

affecting patients’ quality of life (19, 20). Prolonged LOS after AIS

was also reported to be associated with less favorable neurological

outcomes at hospital discharge (17). Therefore, acquiring knowledge

of the factors associated with LOS and estimating the likelihood of

prolonged LOS enable the prediction of recovery from anAIS episode

and are crucial for clinical applications.

Several previously documented models using linear regression or

scoring systems for predicting LOS for patients with AIS exhibited

limited discrimination (21–23). Conventional linear regression

models examine only the direct effects between dependent and

independent variables and have limitations in analyzing data with

skewed distributions. Linear regression models may also neglect

the effect of covariates having multicollinearity with the dependent

variable (24–28). Therefore, predicting LOS using a single regression

model is difficult and usually ineffective.

An artificial neural network (ANN) is a machine-learning system

that simulates the human nervous system (29–31). It assimilates

the complexity of input–output non-linear interactions by repeating

training and validation processes to optimize inner unit connections

and subsequently uses that knowledge to achieve the desired level

of prediction accuracy for unobserved situations (29–31). ANN has

the advantage of analyzing the complex, multidimensional, or non-

linear relationship between variables and outcomes and continues

to be widely applied in medical diagnosis, outcome prediction, and

healthcare decision-making (25–28, 31, 32).

This study explored the association between neurological

outcomes after AIS and LOS, established and validated an

ANN-based model to predict prolonged LOS in hospitalized patients

with AIS based on clinical parameters obtained at admission, and

identified crucial predictors contributing to LOS.

2. Materials and methods

2.1. Ethics approval

The Joint Institutional Review Board of TaipeiMedical University

(TMU-JIRB Approval No. N202103006) approved this study. For

this retrospective study involving the secondary analysis of existing

anonymized data, TMU-JIRB waived the requirement for informed

consent. All experiments were performed in accordance with relevant

named guidelines and regulations.

2.2. Source of data

This study retrieved the medical records of patients who received

stoke diagnoses and was treated at Taipei Medical University-

Shuang Ho Hospital between January 2016 and June 2020 from

the Taiwan Stroke Registry (TSR, http://taiwanstrokeregistry.org/

TSR/), and retrospective analysis of the data was conducted. TSR

is a multicenter database of the clinical data of patients with stroke

admitted to major medical institutions in Taiwan (33).

2.3. Participants

The inclusion criteria were as follows: patients who (1) were 18

years or older, (2) received AIS diagnoses and were admitted and

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1085178
http://taiwanstrokeregistry.org/TSR/
http://taiwanstrokeregistry.org/TSR/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yang et al. 10.3389/fneur.2023.1085178

treated for AIS at our hospital, and (3) presented to the hospital

within 10 days of AIS symptom onset (33). The exclusion criteria

were as follows: patients who presented with acute intracranial

hemorrhage, without a determined National Institutes of Health

Stroke Scale (NIHSS) score on admission, or with incomplete

registration information. All patients received non-contrast head

computed tomography (CT) or brain magnetic resonance imaging

(MRI) on admission. Two independent neurologists and a radiologist

interpreted all CT/MRI images. Demographic data, including age,

sex, and presence of cerebrovascular risk factors such as hypertension

(HTN), diabetes mellitus (DM), hyperlipidemia, ischemic heart

disease, atrial fibrillation (Af), and previous stroke, were collected

at the presentation. Thrombolytic treatments for AIS, namely,

intravenous thrombolysis (IVT) with or without endovascular

thrombectomy (EVT) and non-thrombolysis, were also documented.

Certified stroke specialists used the NIHSS to assess the overall

severity of AIS. Blood cell counts, prothrombin time (PT), and

activated partial thromboplastin time were measured at admission.

Albumin, fasting glucose, glycated hemoglobin, triglyceride (TG),

and low-density lipoprotein cholesterol (LDL) levels were measured

within 72 h of access.

2.4. Outcome

The LOS of each patient was defined as the time from

admission to discharge from the hospital. Prolonged LOS was

defined as the length of a hospital stay beyond the median

LOS (34, 35).

2.5. Statistical analysis

All statistical analyses were conducted using Statistica version

13.3 (TIBCO Software Inc., Tulsa, Oklahoma, USA). Variables were

summarized using descriptive statistics. Continuous variables are

presented as medians (interquartile ranges [IQRs]), and categorical

variables are expressed as counts and proportions (%).

Student’s t-test was used to compare means between two

groups of continuous variables. One-way ANOVA was used for

comparing the means of ≥3 independent variables from the

prolonged LOS and non-prolonged LOS groups. Pearson’s chi-

squared test was used to determine non-random associations between

two categorical variables from the prolonged and non-prolonged LOS

groups. All hypothesis tests were two-sided, with a p-value of 0.05

indicating significance.

2.6. Development of ANN models

The ANN applied in this study was a feedforward neural network

of multilayer perceptrons with an input layer, a hidden layer, and an

output layer. The ANN model used the standard backpropagation

gradient estimation algorithm with a linear combination of input

variables within the hidden layer that contained an intercept

(bias) and the coefficient for each predictor. The neural networks

were trained using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)

method (36). The variables used in the input layer included those

associated with prolonged LOS in the study cohort (p < 0.05 by

descriptive statistics, Table 1). Figure 1A shows the flow diagram

for the development of the predicting models. Continuous variables

included age, NIHSS score at admission, albumin level, fasting

glucose level, hemoglobin level, white blood cell (WBC) count,

PT, cholesterol level, and TG level. Categorical variables included

initial thrombolytic treatments, Af, DM, HTN, and previous stroke.

Categorical variables were inputted as neurons and converted using

one-hot encoding. During the model training process, the search for

optimal hyperparameters was performed with the following limits: 1

hidden layer, 1–50 neurons in the hidden layer, and the activation

function was chosen to be either the exponential or the hyperbolic

tangent function. The output layer contained two neurons, namely,

“prolonged LOS” and “non-prolonged LOS.” The sigmoid activation

function was used for the neurons in the output layer. All networks

were trained using early stopping. We presented the network with an

input-target pair from the training set and computed the predictions

of the network for the targets. We used the cross-entropy error

function to calculate the difference between the predictions of the

network and the target values until all input-target pairs from the

training set were presented to the network. The training algorithm

was used to adjust the weights of the networks. The error of each

training is compared with the error of the previous iteration. Training

is continued if the error keeps decreasing; otherwise, training is

stopped. All ANN models were developed using Statistica version

13.3 (TIBCO Software Inc.).

2.7. Model evaluation

To avoid overfitting in the ANN model, we performed 5-fold

cross-validation to assess the generalizability of the analysis results.

The original sample was randomly partitioned into five equal-sized

subsamples. In each repetition of the cross-validation process, one

subsample was retained as the validation set, and the remaining four

subsamples were used as the training set. The cross-validation process

was repeated five times, and each of the five subsamples was used once

as the validation set (Figure 1A). Model performance was evaluated

based on receiver operating characteristic (ROC) curve analysis,

and the area under the ROC curve (AUC) of the five training and

validation sets was calculated to represent the level of discrimination.

We chose the model with the highest AUC of the cross-validations

for further analysis. After the models were developed, their mean

accuracy, sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV) were derived from the confusion

matrix of the five validation sets (Figure 1A).

2.8. Relative significance of predictors

To understand the contribution of each predictor to the

likelihood of extending LOS after AIS, we estimated the relative

importance of each variable in the model as representative of that

parameter’s relative contribution to the ANN model. We performed

a sensitivity analysis of each repetition of the 5-fold cross-validation

and reported the mean values (37, 38).
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TABLE 1 Baseline demographic characteristics of patients according to prolonged length of stay (LOS) at hospital.

Variables Whole cohort Prolonged LOS Non-prolonged LOS p-value

Number of patients 2240 1101 1139

LOS (days) 9 (6–20) 20 (13–27) 6 (4–7)

Age (years) 68 (59–79) 70 (61–81) 66 (58.5–77) <0.0001∗

Female, n (%) 844 (37.7) 436 (39.6) 408 (35.8) 0.067

NIHSS score at admission 4 (2–10) 7 (4–16) 3 (1–5) <0.0001∗

Thrombolytic treatment, n (%) <0.0001∗

Non-thrombolysis 1934 (86.3) 899 (81.7) 1035 (90.9)

IVT 197 (8.8) 120 (10.9) 77 (6.8)

EVT 109 (4.9) 82 (7.5) 27 (2.4)

Laboratory data

Albumin, mg/dL 4.0 (3.7–4.2) 3.9 (3.6–4.2) 4.0 (3.8–4.3) <0.0001∗

Fasting glucose, mg/dL 115 (99–149) 122 (102.25–159) 108 (97–137) <0.0001∗

Glycated hemoglobin, % 6.0 (5.6–7.1) 6.0 (5.6–7.2) 6.0 (5.6–7.1) 0.23

Hemoglobin, g/dL 14.1 (12.8–15.3) 14.0 (12.5–15.2) 14.3 (13–15.3) <0.0001∗

White blood cell count,× 103/µL 8.1 (6.5–10) 8.4 (6.8–10.5) 7.8 (6.3–9.6) <0.0001∗

Platelets,× 103/µL 215 (174–261) 215 (175–263) 215 (174–258) 0.83

Prothrombin time, s 12.9 (12.4–13.5) 13 (12.5–13.7) 12.9 (12.3–13.4) <0.0001∗

Activated partial thromboplastin time, s 36.1 (33.3–39.2) 36.1 (33.1–39.2) 36.1 (33.5–39.1) 0.55

Creatinine, mg/dL 0.95 (0.77–1.2) 0.96 (0.77–1.26) 0.93 (0.77–1.15) 0.13

Cholesterol, mg/dL 184 (156–214) 182 (152–214) 185 (159–214) 0.0178∗

Triglyceride, mg/dL 112 (77–160) 107 (72.5–155) 117.5 (81–166.25) 0.0009∗

Low-density lipoprotein, mg/dL 112 (89–140) 110 (86–139) 114 (91–140) 0.31

Vascular risk factors, n (%)

Atrial fibrillation 399 (17.8) 248 (22.5) 151 (13.3) <0.0001∗

Diabetes mellitus 871 (38.9) 459 (41.7) 412 (36.2) 0.0082∗

Hypertension 1572 (70.2) 797 (72.4) 775 (68.0) 0.0266∗

Previous stroke 348 (15.5) 198 (18.0) 150 (13.2) 0.002∗

Ischemic heart disease 240 (10.7) 123 (11.2) 117 (10.3) 0.50

Uremia 26 (1.2) 13 (1.2) 13 (1.1) 1.0

Continuous variables were presented as median (interquartile range, IQR), and categorical variables were expressed as counts and proportions (%). p-value = comparison of the prolonged and

non-prolonged LOS groups. EVT, endovascular thrombectomy; IVT, intravenous thrombolysis; LOS: length of stay; NIHSS, National Institutes of Health Stroke Scale. ∗p < 0.05 and the variables

were used in the input layer of the artificial neural network model.

3. Results

3.1. Study cohort demographics and
baseline characteristics

Of the total 2,384 patients diagnosed with AIS and treated

at Shuang Ho Hospital during the study period, 144 patients

were excluded from baseline analyses because of incomplete

registration information (142 with missing data on medical history,

1 with missing thrombolytic treatment records, and 1 without sex

information). Consequently, 2,240 patients (844 women and 1,396

men) were included in the analysis (Figure 1B). Themedian age of the

study cohort was 68 years, with an interquartile range (IQR) of 50–

79 years. The median baseline NIHSS score at admission was 4 (IQR:

2–10) for the entire cohort. The median NIHSS scores at admission

for patients who received non-thrombolytic treatment, IVT, and EVT

were 4 (IQR: 2–8), 10 (IQR: 5–17), and 19 (IQR: 14.5–24) (p <

0.0001). The mean and median LOS of the entire cohort were 13.6

± 11.3 and 9 days, respectively, with an IQR of 6–20 days (Table 1).

Therefore, a prolonged LOS was defined as a length of stay of more

than 9 days. Among patients, 1,101 (49.2%) had prolonged LOSs, with

a median hospital stay of 20 days (IQR: 13–27).

Prolonged LOS was associated with different thrombolytic

therapies. The median LOS of patients who received non-

thrombolytic treatment, IVT, and EVT was 9 (IQR: 6–18), 13

(IQR: 7–25), and 20 (IQR: 9.5–28) days, respectively (p < 0.0001).

Compared with patients without prolonged LOS, more patients with

prolonged LOS were treated with IVT or EVT. Compared with
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FIGURE 1

The flow diagram of the study. (A) The flow diagram of the development of the current predicting models and the schematic representation of 5-fold

cross-validation. (B) Flowchart showing the study cohort selection and division based on LOS status. AIS, acute ischemic stroke; AUC, area under the

receiver operating characteristic curve; LOS, length of stay; NPV, negative predictive value; PPV, positive predictive value.

patients without prolonged LOS, patients with prolonged LOS were

older; had higher NIHSS scores at admission; had lower albumin,

hemoglobin, serum cholesterol, and TG levels; were more likely to

exhibit higher fasting glucose levels andWBC counts; and had longer

PT upon hospitalization. Patients with prolonged LOS also had a

higher prevalence of Af, DM, HTN, and previous stroke (Table 1).

3.2. Prolonged LOS and AIS outcomes at
hospital discharge

We examined associations between prolonged LOS and

neurological outcomes at discharge in patients with AIS. In the

entire cohort, there were 1,368 patients (61.1%) who had unfavorable

neurological outcomes, defined as a modified Rankin Scale (mRS) ≥

2 at discharge. A higher proportion of the patients with prolonged

LOS had unfavorable outcomes than did those with a shorter LOS

(87.0 vs. 41.7%, odds ratio [OR]= 9.33; 95% confidence interval [CI]

= 7.52–11.59; p < 0.0001). Univariable analysis showed that each

day’s increase in LOS was associated with a 1.2-fold increase in the

risk of unfavorable AIS outcomes (95% CI = 1.18–1.22; p < 0.0001).

For the AIS patients with and without a prolonged LOS, the median

mRS at discharge was 4 (IQR: 3–4) and 1 (IQR: 1–2), respectively (p

< 0.0001). As illustrated in Figure 2, the patients with a prolonged

hospital LOS had a higher mRS score at hospital discharge than

those without a prolonged LOS, indicating that a prolonged LOS is

associated with less favorable outcomes in patients with AIS.

3.3. Prolonged LOS prediction using ANNs

We used 14 baseline features associated with LOS (variables

with a p-value of <0.05 in Table 1) as input attributes to train

the ANN models to predict prolonged LOS (Figure 3). As shown

in Figures 1A, B, the 2,240 patients with AIS in the cohort were

randomly partitioned into training and testing sets for 5-fold cross-

validation. Table 2 shows that the baseline features remained identical

across the five validation sets. Following adequate training, the

models that achieved the best prediction performance after 5-fold

cross-validation were the ANNs containing 5, 10, 20, 25, and 30

hidden neurons. The mean AUC was 0.808 ± 0.001 for the training

set (Figure 4A) and 0.788 ± 0.007 for the validation set (Figure 4B).

The confusion matrices of the five validation sets were shown in

Figure 4C. The mean accuracy, sensitivity, specificity, PPV, and NPV

of the five validation sets were 74.5± 1.1%, 74.9± 4.0%, 74.2± 2.8%,

75.2± 1.2%, and 73.9± 2.5%, respectively.

3.4. Relative significance of predictors

Sensitivity analysis was performed to assess the predictive value

of each parameter. The ranking of predictor significance based on

the mean predictive value from each repetition of 5-fold cross-

validation is shown in Figure 5. The NIHSS score at admission, Af,

receiving thrombolytic therapies, history of HTN, DM, and stroke

history were the strongest predictors of prolonged LOS after AIS. The
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FIGURE 2

Prolonged LOS-stratified mRS banding of patients with AIS. Graphical representation of the di�erential mRS of AIS patients with a prolonged or

non-prolonged LOS at hospital discharge. Digits in each color-coded bar represent the number of patients with indicated mRS scores. AIS, acute

ischemic stroke; LOS, length of stay; mRS, modified Rankin Scale.

FIGURE 3

Artificial neural network (ANN) models. Schema of the network

structure of the study ANN model consisting of 14 baseline predictor

characteristics as the input layer, a hidden layer, and an output layer

containing two neurons, namely, prolonged LOS and non-prolonged

LOS. ANN, artificial neural network; LOS, length of stay; NIHSS,

National Institutes of Health Stroke Scale.

relative significances of predictors of each repetition during 5-fold

cross-validation are reported in Supplementary Table 1.

To assess the performance and generalizability of the prediction

model for different AIS treatments, we applied the developed ANN

model separately for each treatment option, namely, IVT (n = 197),

EVT (n = 109), and non-thrombolytic treatments (n = 1,934). As

shown in Table 3, the mean AUCs for predicting prolonged LOS

for the non-thrombolysis, IVT, and EVT groups were 0.805 ±

0.005, 0.776 ± 0.049, and 0.696 ± 0.054, respectively. This finding

indicates that the model exhibited better predictive power for the

non-thrombolytic and IVT groups than for the EVT group.

3.5. Comparison of the predicting
performance of di�erent machine learning
models

To compare the performance of the ANN model to different

prediction machine learning algorithms, we included the following

models to predict prolonged LOS: logistic regression, support vector

machine, gradient boosting tree, and random forest. All models were

trained using the 14 baseline features and validated through 5-fold

cross-validation. Model performance was evaluated based on the five

validation sets’ mean AUC, accuracy, sensitivity, specificity, PPV, and

NPV of each model. We presented the various parameters used for

the models in Supplementary Table 2. The results of the comparison

of the five machine learning models are reported in Table 4 and

showed that ANN obtained the highest AUC, accuracy, sensitivity,

PPV, and NPV when compared to the other models.

4. Discussion

4.1. LOS and stroke-associated economic
burden

Stroke remains a leading cause of death and disability globally,

and its disease and healthcare burden have increased over the past

three decades (1, 2, 4). The physical and economic impacts of stroke

on patients and their families have been well documented, which has

increased the impact of stroke on public health (1–3). The stroke-

related disability may cause prolonged LOS at hospitals and the

requirement for rehabilitation, and greater LOS invariably indicates

greater economic losses (7, 13). Previous studies have provided robust

evidence that LOS is a major determinant of costs for patients with

AIS. Prolonged hospitalization days are inevitably accompanied by

an increase in medical costs, such as the consumption of beds,

medications, care, and health resources. Complications associated

with prolonged LOS negatively impact the prognosis and quality of

life of patients with AIS and may increase the drain on medical

resources and the financial burden on patients (17, 19, 20). Therefore,

studies such as the present one identifying the independent
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FIGURE 4

Performance of ANN models. ROC curves with AUCs of five (A) training and (B) validation sets of the ANN model for predicting AIS-associated prolonged

LOS using 14 baseline parameters. AUC values are expressed as mean ± standard deviation of the five training and validation sets from the 5-fold

cross-validation. (C) The confusion matrices with heatmaps of the five validation sets of the ANN models. The numbers in each colored box represent the

percentage of instances between the true and the predicted classes obtained by the ANN models. ANN, artificial neural network; AUC, area under the

curve; ROC, receiver operating characteristic.

FIGURE 5

Significance and ranking of variables in ANN models. (A) Relative significance of each parameter in the current ANN model. The numbers in each

color-coded bar indicate the mean value of the total e�ect of the predictors based on sensitivity analysis, with a higher value representing greater

significance attributed to the models. (B) Heatmap and ranking of each parameter. Numbers indicate the ranking (1 = highest, 14 = lowest) of the

corresponding variables. Red indicates rank 1; light brown indicates ranks 2 and 3; light yellow indicates ranks 4–6; light blue indicates ranks 7–10; and

dark blue indicates ranks 11–14. ANN, artificial neural network; NIHSS, National Institutes of Health Stroke Scale.
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TABLE 2 Comparison of the variables among five validation sets for 5-fold cross-validation.

Validation set
1

Validation set
2

Validation set
3

Validation set
4

Validation set
5

p-value

Number of patients 448 448 448 448 448

Prolonged LOS, n (%) 220 (49.1) 220 (49.1) 220 (49.1) 220 (49.1) 221 (49.3) 1.000

Age (years) 68 (60–79) 67 (58–80) 68 (60–78) 68 (59–80) 68 (60–78) 0.877

NIHSS at admission 5 (2–9) 4 (2–10) 4 (2–12) 5 (2–10) 4 (2–10) 0.721

Thrombolytic treatment, n (%) 0.262

Non-thrombolysis 385 (85.9) 389 (86.8) 391 (87.3) 392 (87.5) 377 (84.2)

IVT 46 (10.3) 39 (8.7) 29 (6.5) 39 (8.7) 44 (9.8)

EVT 17 (3.8) 20 (4.5) 28 (6.3) 17 (3.8) 27 (6.0)

Vascular risk factors, n (%)

Atrial fibrillation 85 (19.0) 77 (17.2) 77 (17.2) 84 (18.8) 76 (17.0) 0.888

Diabetes mellitus 180 (40.2) 167 (37.3) 176 (39.3) 187 (41.7) 161 (35.9) 0.405

Hypertension 307 (68.5) 321 (71.7) 326 (72.8) 314 (70.1) 304 (67.9) 0.457

Previous stroke 80 (17.9) 70 (15.6) 57 (12.7) 71 (15.9) 70 (15.6) 0.333

Laboratory data

Albumin, mg/dL 4 (3.7–4.2) 4 (3.7–4.3) 4 (3.7–4.3) 4 (3.7–4.2) 4 (3.7–4.3) 0.268

Fasting glucose, mg/dL 113 (99–146) 112 (98–147.5) 116 (100–148) 114.5 (100–159) 118 (100–151) 0.547

Hemoglobin, g/dL 13.9 (12.5–14.9) 14.1 (12.7–15.4) 14.3 (12.8–15.3) 14.3 (12.8–15.4) 14.2 (12.9–15.4) 0.054

White blood cell count, x103/uL 8.4 (6.5–10.5) 8.1 (6.5–10.2) 7.9 (6.3–9.6) 8 (6.6–10) 8.2 (6.6–10.1) 0.262

Prothrombin time, sec 12.9 (12.5–13.6) 12.9 (12.4–13.6) 12.9 (12.4–13.5) 13 (12.5–13.5) 12.9 (12.4–13.5) 0.781

Cholesterol, mg/dL 186 (153–212) 184 (159.3–216.8) 184 (157.5–211) 181 (154–213) 184 (155–217) 0.816

Triglyceride, mg/dL 110 (79–153) 118 (79–161) 112 (74–173.5) 110 (77.8–152.3) 109 (75.8–162) 0.762

Continuous variables were presented as median (interquartile range, IQR), and categorical variables were expressed as counts and proportions (%). p-value= comparison of the variables among five

validation sets. EVT, endovascular thrombectomy; IVT, intravenous thrombolysis; LOS: length of stay; NIHSS, National Institutes of Health Stroke Scale.

predictors of LOS and developing reliable prediction methods are

warranted and essential to provide data for improved decision-

making related to disease management, care resource allocation, and

prediction of treatment cost-effectiveness, consequently contributing

positively to the individual or national healthcare management

budgeting (14).

Our report showed that prolonged hospital stays are associated

with worse outcomes for patients with AIS. In this study, an

ANN-based model was applied to predict the risk of prolonged

LOS based on the baseline characteristics of patients with AIS

at admission. The ANN model achieved effective validation with

an AUC of 0.788 and validation accuracy, sensitivity, specificity,

PPV, and NPV of 74.5, 74.9, 74.2, 75.2, and 73.9%, respectively.

These results indicate adequate discriminative power and effective

prediction of the risk of prolonged LOS after AIS. Sensitivity

analysis using our ANN prediction model also demonstrated

that among the baseline characteristics, the NIHSS score at

admission, comorbid Af, thrombolytic therapy type, HTN, DM,

and history of stroke were critical predictors of prolonged LOS.

These findings are consistent with a Poisson analysis-based report

demonstrating that IVT and Af are significantly associated with LOS

following AIS, regardless of stroke severity, age, comorbidities, or

complications (39).

4.2. Predictive factors associated with LOS
after stroke

Evidence exists that prolonged LOS is associated with poor

functional outcomes and unfavorable discharge disposition in

patients with AIS (17, 40). This is in concordance with current

evidence that patients with a prolonged LOS exhibited a 9.3-fold

higher risk of unfavorable AIS outcomes at discharge than their

non-prolonged LOS counterparts. Patients with a severe disability

after AIS usually need to be hospitalized for a more extended

period because they may require more treatments and rehabilitation

support (41–43). Although it is challenging to accurately predict LOS

because of the multifactorial nature of stroke, its prediction is of

paramount clinical relevance. It is generally understood that patients

with initial severe motor impairment, lower functional disability

levels, and a greater stroke volume might have greater LOSs and less

favorable outcomes (14, 41–44). However, these correlations are not

always precise because various cofactors, including patients’ medical

condition, stroke subtype, prehospital and in-hospital treatment, or

poststroke complications, often influence the final clinical outcomes

and LOS of patients with stroke (12, 13, 18, 40, 42, 45). In addition,

family support and socioeconomic status affect recovery and are

also the determinants of AIS-associated LOS (41, 43). Chang et al.
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TABLE 3 The performance of the current ANNmodel for predicting prolonged LOS of patients who received di�erent thrombolytic treatments.

Treatment AUC Accuracy Precision Sensitivity Specificity

Non-thrombolysis 0.805 0.733 0.768 0.690 0.778

IVT 0.776 0.720 0.686 0.855 0.573

EVT 0.696 0.588 0.540 0.943 0.267

Whole cohort 0.788 0.745 0.752 0.749 0.742

ANN, artificial neural network; AUC, area under the receiver operating characteristic curve; EVT, endovascular thrombectomy; IVT, intravenous thrombolysis; LOS, length of stay.

TABLE 4 Comparison of the performance of machine learning models for predicting prolonged hospital length of stay.

Model AUC Accuracy Sensitivity Specificity PPV NPV

Logistic regression 0.746 0.682 0.591 0.778 0.736 0.647

Support vector machine 0.573 0.575 0.633 0.514 0.598 0.572

Gradient boosted tree 0.772 0.709 0.676 0.743 0.735 0.690

Random forest 0.757 0.708 0.713 0.703 0.715 0.702

ANN 0.788 0.745 0.749 0.742 0.752 0.739

The highest value among the five models is shown in bold. ANN, artificial neural network; AUC, area under the curve.

(13) noted that stroke severity is generally associated with prolonged

LOS; however, this relationship is not absolute and linear. As

concluded by Bindawas et al. (46), “a short or intermediate LOS is

not necessarily associated with worse outcomes, assuming adequate

care is provided.”

Stroke severity is widely used for predicting prolonged LOS after

AIS (13, 18, 21, 40, 42, 47). The NIHSS is a 15-item neurological

examination scale with scores ranging from 0 to 42, with higher

scores indicating greater stroke severity (13, 27, 40). It has been

reported that for mild to moderate AIS with an NIHSS score of ≤15,

each 1-point increase in the NIHSS score increases LOS by ∼1 day,

whereas for severe stroke with NIHSS scores of >15, each 1-point

increase in NIHSS score causes a decrease in LOS by ∼1 day, which

is attributable to the high mortality rate (13). Further significance

of the NIHSS score for LOS lies in evidence from retrospective

AIS treatment studies, which suggested that stroke patients who

benefit most from thrombolytic therapy are those with an NIHSS

score of 4 to 25 on admission, whereas patients with an NIHSS

score of 5 or less are more likely to be discharged home (48, 49).

Patients with scores between 6 and 13 usually require inpatient

rehabilitation, potentially increasing the likelihood of prolonged LOS

(27, 49). In this study, our ANN model identified the NIHSS score

as the strongest predictor of prolonged LOS among all variables

studied. Its importance consistently ranked first in each iteration of

the 5-fold cross-validation.

Consistent with our findings, specific baseline characteristics

and preexisting medical conditions, including Af, HTN, DM, and

previous stroke, are significant predictors of prolonged LOS in

patients with AIS (12, 13, 22, 40, 45). Most of these factors

associated with prolonged LOS exhibit varying prognostic relevance,

thus providing some evidence-based rationale for their application

as input attributes for constructing reliable prediction models.

Furthermore, our improved understanding of these factors can

enable the correction of modifiable risk factors, facilitate the early

detection of high-risk patients, and inform disease progression,

monitoring, and treatments to improve AIS outcomes. For instance,

a prolonged LOS related to Af may be due to the need

for anticoagulation management or cardiac evaluation. Careful

monitoring of fluid and electrolyte status to prevent arrhythmic states

in patients with AIS, appropriate ECGmonitoring for early detection

of Af, and timely anticoagulation therapy may limit the length of

hospital stay (40, 50, 51). HTN and DM are modifiable risk factors

of prolonged LOS in our ANN model, suggesting that controlling

these factors through preventive medicine may not only reduce the

risk of ischemic stroke prevalence but also reduce LOS and improve

prognosis after a stroke (51). In addition, some laboratory data at the

time of admission, including patients’ fasting glucose and cholesterol

levels, despite their relatively modest importance in our ANN model

as predictors, play a role in the predictions. Providing appropriate

treatment protocols for patients with AIS to optimize these profiles

may further assist in reducing LOS, thereby mitigating the economic

cost of AIS to individuals and society.

IVT and EVT to restore perfusion to the ischemic areas of the

brain are the standard of care for patients with AIS (48), and hospital

LOS is primarily affected by therapy success (21, 52). In our cohort,

patients who received IVT or EVT treatment had significantly longer

LOS than those who received non-thrombolytic treatment. The

prolonged LOS and the effectiveness of treatment may be related to

initial stroke severity or varying indications for IVT or EVT in treated

patients (48). Consistent with the findings of Kasemsap et al. (39), in

our study, the thrombolytic therapy type was identified as an essential

predictor in our model. It is clinically relevant that our prediction

model not only provides personalized estimates of risk stratification

for prolonged LOS for patients receiving different therapies but also

provides information that enables vital shared decision-making by

patients, their families, and healthcare professionals based on the

patient’s condition and informed treatment preferences.

4.3. Comparison of contemporary prediction
models for AIS-associated prolonged LOS

Predicting LOS for patients with AIS is associated with some well-

documented challenges or limitations (13, 21–23, 41, 42). The 8-point

Stroke subtype, Oxford Community Stroke Project classification,
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Age, and prestroke modified Rankin (SOAR) score based on the

analysis of the data from three UK stroke registers (n = 12,355

patients with stroke) exhibited poor discrimination with an AUC of

0.61 for predicting LOS (23). The AUC was slightly higher in another

model based on the International Classification of Functioning,

Disability, and Health (ICF) generic set from China (50 medical

centers), with a barely acceptable AUC of 0.699 (42). Similarly,

Koton et al.’s prolonged LOS score based on stroke severity and

type, decreased level of consciousness on admission, history of

congestive heart failure, and prior Af achieved an AUC of only

0.680 in the validation cohort (22). Hung et al. (21) applied four

variables, namely, NIHSS score at admission, IVT, low WBC count

at admission, and age, to construct classification and regression

trees for LOS prediction, and the results revealed an acceptable

AUC of 0.701, with a prediction accuracy of 0.674. Other LOS

prediction models included the classification of AIS subtypes as

an attribute but did not yield greater discrimination power (53,

54). Considering that the accurate classification of stroke subtypes

usually requires a complete investigation and elucidation of stroke

etiology, we excluded the stroke subtype as a predictor in this

study, which was aimed at developing a prediction model that is

workable at the point of hospitalization. A recent study evaluated

30 potential predicting variables to predict LOS and found the

models only explained <25% of the LOS variance (41). The survey

by Kurtz et al. (55) enrolled 16,592 stroke patients admitted to

the ICU using premorbid conditions, multiple organ dysfunction

parameters, and acute neurological aspects as contributing variables

and compared seven different types of machine learning models

to predict prolonged LOS, which yielded an AUC of 0.73 by the

random forest model. Although the performance of each of the

aforementioned models depends on the definition of the prolonged

LOS threshold and the included population, most of the models

exhibited mild–moderate predictive power. This limited predictive

power may be related to the complex and multifactorial nature of

AIS-associated LOS, which affects the estimate accuracy in prediction

models and scoring systems. Thus, it is clinically significant that our

present ANN models achieved AUCs of 0.808 and 0.788, indicating

excellent discrimination power between patients with prolonged LOS

and non-prolonged LOS.

Adaptive computing methods in machine learning and artificial

intelligence that provide enhanced data interpretation capabilities

and expand the design of efficient diagnostic and predictive

tools continue to be broadly applied at the frontiers of disease

management, supporting clinical decision systems (25, 29, 31, 32, 56,

57). In the literature, only a few published studies have used ANN

to predict LOS in stroke patients, and neural network techniques

have generally yielded good predictive capabilities (58, 59). In

this study, we utilized ANN-based classifiers to develop prediction

models, which generated decision signals based on weighted sums

of evidence (29–31). As per available data, the relationship between

predictors and outcomes is complex and multidimensional; as a

machine learning tool, ANNs can analyze these complex correlations

to achieve the desired effectiveness (26, 27, 29–31). Our study

demonstrated the feasibility of using ANNs to predict LOS in patients

with AIS. ANNs identified factors associated with prolonged LOS for

establishing interventions and ensuring timely management. These

factors are clinically relevant, particularly in patients with identified

underlying medical conditions strongly associated with prolonged

LOS. As demonstrated in this study, ANN-based algorithms can

analyze large-scale and non-linear data for developing new integrated

methods, including different informatics features to predict LOS

in patients with AIS. This enables healthcare stakeholders to

use patient information obtained at admission to estimate the

risk of prolonged LOS, share clinical and cost decisions, provide

treatment options during hospitalization, and arrange referral

pathways after discharge. For patients at high risk of prolonged

LOS, hospital management can adjust strategies accordingly to

improve the allocation of health resources, and insurance providers

can develop reimbursement policies. This prediction model can

help governments improve resource allocation, project cost-

effectiveness, and contribute to individual and national health

insurance budgets.

4.4. Limitations

Our study has some limitations. First, this was a single-center

study with a moderate sample size (n = 2,240) and without

an external validation dataset. Therefore, further generalization

of the developed model requires a large multicenter cohort

with extensively varied characteristics that represent the disease

population to be conducted, which can also validate our results.

Second, this observational study may have been affected by

unmeasured confounding variables. Similar to most contemporary

models, this study did not consider the effects of differences related

to socioeconomic status and medical service heterogeneity on LOS

(41–43, 60), which may affect the model’s predictive power. However,

in Taiwan, the high coverage provided by the national health

insurance system (61) reduces the relative inconsistency of medical

care services, making our model more clinically applicable. Third,

our estimates were generated at the time of admission and did

not include poststroke complications or stroke subtypes that caused

prolonged LOS during hospitalization (12, 18, 40), limiting model

validity. Fourth, our study considered LOS in a single center during

the acute phase, excluding the days a patient with stroke may

have spent in rehabilitation or in a long-term care facility after

stabilization of stroke. This may limit the predictive accuracy of

the model.

5. Conclusion

Our study identified crucial predictive factors and developed

ANN models that accurately and effectively predicted prolonged

LOS in patients with AIS based on clinical parameters obtained

at admission. NIHSS, Af, thrombolytic therapies, HTN, DM,

and previous stroke history were the strongest predictors of

prolonged LOS after AIS. Prolonged LOS is associated with poor

functional outcomes at discharge in patients with AIS. This machine

learning-based model contributes to further understanding to

improve healthcare management and resource allocation in the

stroke unit related to LOS. Providing appropriate treatment to

optimize modifiable risk factors of prolonged LOS may assist in

reducing LOS, thereby mitigating the economic cost of AIS to

individuals and society. The models reported in this study are

clinically applicable and workable and can be used to inform

decision-making and formulate individualized stroke inpatient

care plans.
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