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Stroke induces a state of neuroplasticity in the central nervous system, which can

lead to neurogenesis phenomena such as axonal growth and synapse formation, thus

a�ecting stroke outcomes. The brain has a limited ability to repair ischemic damage

and requires a favorable microenvironment. Acupuncture is considered a feasible

and e�ective neural regulation strategy to improve functional recovery following

stroke via the benign modulation of neuroplasticity. Therefore, we summarized

the current research progress on the key factors and signaling pathways a�ecting

neurogenesis, and we also briefly reviewed the research progress of acupuncture

to improve functional recovery after stroke by promoting neurogenesis. This study

aims to provide new therapeutic perspectives and strategies for the recovery of motor

function after stroke based on neurogenesis.
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1. Introduction

Despite considerable efforts over the last decades, stroke remains the leading cause of death
and disability worldwide, placing a severe economic burden on countries (1, 2). Functional
recovery following a stroke is exceptionally limited, leaving the affected individual with life-long
neurological deficits (3). This lack of functional recovery can at least in part be attributed to the
restriction of neurogenesis (4, 5).

Neuroplasticity is a native ability of the brain to adapt to individual developmental growth.
The historical view of the central nervous system (CNS) as a static organ has shifted in recent
years (6). We now realized that CNS remains plastic and has some regeneration capacity to
rebuild neural circuits after acute injuries, such as stroke (6, 7). Stroke induces a state of
neuroplasticity. This period of enhanced plasticity provides an opportunity for neurogenesis,
such as the sprouting of new axons, the formation of new synapses, and the remapping of
sensorimotor functions, which is associated with motor recovery (8). The reconstruction of
neural circuits is generated in the sensorimotor cortex, thalamus, brain stem, and spinal cord
(9, 10).

The compensatory repair capacity of the brain for ischemic injury is limited and a favorable
microenvironment is needed (11). After a stroke, the reconstruction of neural circuits is
restricted by the presence of many inhibitory factors that inhibit neurogenesis in the local
microenvironment, the lack of growth factors, as well as the formation of glial scars in the injured
area (12). An enrichedmicroenvironment exerts a significant influence on neurogenesis (13, 14).
As such, improving the microenvironment of the injured site, thus promoting neurogenesis and
the reconstruction of neural circuits, has been the focus of intense research.
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Acupuncture is a form of physical stimulation therapy that
originated in traditional Chinese medicine. Needles are inserted into
the skin or deep tissues at specific locations (acupoints) on the body,
and stimulation is enhanced by specific needling techniques or by
electricity to restore body balance, prevent, and treat disease (15).
Modern neuroanatomical evidence has demonstrated that there are
abundant nerve endings in the acupuncture meridian and acupoint
areas of the body, while the achievement of therapeutic effects of
acupuncture mainly depends on the nervous system (16, 17). A
growing number of clinical studies have shown that acupuncture can
effectively improve recovery from stroke (18, 19). The mechanism of
acupuncture effects may be related to neuroplasticity.

Here, we summarized our current understanding of the key
factors and signaling pathways that affect CNS neurogenesis.
Meanwhile, we briefly overviewed the research progress of
acupuncture in improvingmotor function after stroke by accelerating
neurogenesis. We hope to emphasize that neurogenesis could be
modulated by potential strategies to improve functional outcomes
after stroke and explore the feasibility of acupuncture in promoting
motor function recovery after stroke. The aim is to provide new
therapeutic opportunities for post-stroke motor rehabilitation based
on neurogenesis.

2. Enhancing factors of neurogenesis

Neurogenesis is the process through which neural stem cells
(NSCs), or more generally neural progenitor cells (NPCs), generate
new neurons (20). The adult CNS contains NSCs that can
continuously generate neurons, astrocytes, and oligodendrocytes
(21, 22). Under normal conditions, the NPCs are in a quiescent
state in the adult brain. After an ischemic injury, NPCs proliferate,
differentiate, and migrate to the ischemic region to replenish neurons
in the damaged area, release the anti-inflammatory cytokines to
limit the deleterious inflammatory environment, and form the new

Abbreviations: AAV, adeno-associated virus; ADSCs, adipose-derived stem

cells; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

receptor; BDNF, brain-derived neurotrophic factor; CaMKII, Ca2+/calmodulin-

dependent protein kinase II; CASP3, caspase-3; CNS, central nervous system;

CSPGs, chondroitin sulfate proteoglycans; DCC, colorectal cancer; DAG,

diacylglycerol; EA, electroacupuncture; Eph, erythropoietin-producing

hepatocellular; ERK, extracellular signal-regulated kinase; Shroom3, F-

actin-binding protein; GFRα, GDNF family receptor alpha; GDNF, glial cell

lineage-derived neurotrophic factor; GFAP, glial fibrillary acidic protein;

GV, Governor Vessel meridian; GAP43, growth-associated protein-43; IP3,

inositol triphosphate; IGF-1, insulin-like growth factor 1; mTOR, mammalian

target of rapamycin; MA, manual acupuncture; miRs, MicroRNAs; MAPK,

mitogen-activated protein kinase; MAG, myelin-associated glycoprotein;

NGF, nerve growth factor; NPCs, neural progenitor stem cells; NSCs,

neural stem cells; NeuN, neuronal nucleus; NT-3/4, neurotrophin-3/4;

NMDAR1, N-methyl-D-aspartate receptor 1; NgR, Nogo-A receptor; OMgp,

oligodendrocyte-myelin glycoprotein; p75NTR, p75 neurotrophin receptor;

Pir B, paired immunoglobulin-like receptor B; PIP2, phosphatidylinositol

4,5-bisphosphate; PI3K, phosphoinositide-3 kinase; PLC-γ, phospholipase

C-γ; POSH, plenty of Src homology 3 domains; PSD-95, postsynaptic

density protein 95; Akt, protein kinase B; Robo, Roundabout; Shc, Src

homologous and collagen; SVZ, subventricular zone; Trk, tyrosine kinase;

UNC5, uncoordinated-5.

neuronal connections to promote the recovery of nerve function
and resist ischemic injury (23–25). Neurogenesis in the brain of
adult mammals has been clearly demonstrated that mainly occurs
in the subventricular zone (SVZ) of the lateral ventricle and the
subgranular zone (SGZ) of the dentate gyrus in the hippocampus
(21, 22, 26). After the cerebral ischemic injury, multiple growth
factors and a variety of proteins are increasingly expressed to promote
the proliferation of NSCs or NPCs, and thus facilitate neurogenesis,
which includes the production of new neurons, glia, axons, myelin
sheaths, or synapses (6, 22, 27).

2.1. Growth factors

Growth factors, such as nerve growth factor (NGF), brain-derived
neurotrophic factor (BDNF), glial cell lineage-derived neurotrophic
factor (GDNF), neurotrophin-3/4 (NT-3/4), and insulin-like growth
factor 1 (IGF-1) play an important role in neuronal survival,
differentiation as well as axonal regeneration of damaged CNS
neurons (28–30). Their downstream signaling cascades, mainly
including phospholipase C-γ (PLC-γ), phosphatidylinositol 3-kinase
(PI3K), and mitogen-activated protein kinase (MAPK) pathways,
have also been involved in promoting neurogenesis after stroke
(31). The activation of MAPK/extracellular signal-regulated kinase
(ERK) pathway starts from RAS. The activated RAS protein recruits
downstream RAF proteins located in the cytoplasm and further
activates downstream MEK through its CR3 structural domain at
the C-terminus, which in turn activates MAPK and ERK. ERK
phosphorylates and activates the downstream transcription factor
CREB to regulate the expression of target genes that contribute to
neuronal differentiation and survival (32). PI3K plays an important
role in regulating cell survival, axon growth, and cytoskeleton
remodeling by recruiting protein kinase B (Akt) to activate
mammalian targets of rapamycin (mTOR), and phosphorylation
and inhibiting apoptosis-promoting proteins such as Bad and
GSK3β (33, 34). PLC-γ is activated to convert extracellular
stimuli into intracellular signals by hydrolyzing phosphatidylinositol
4,5-bisphosphate (PIP2) to generate second messengers inositol
triphosphate (IP3) and diacylglycerol (DAG). DAG activates PKC,
while IP3 induces calcium release from intracellular calcium depots
(35, 36) (Figure 1).

2.1.1. NGF
NGF is present in tissues mainly in the form of precursors and

promotes the survival and differentiation of neurons in the nervous
system (37). TrkA is a specific receptor for NGF (38). Activation
of TrkA leads to the phosphorylation of tyrosine residues in its
structural domain, which recruits signaling molecules and activates
multiple signaling pathways including PLC-γ, MAPK, and PI3K
(38, 39). Among them, phosphorylation of Y490 and Y785 is the
most common (40). Phosphorylated Y490 recruits Src homologous
and collagen (Shc) to activate MAPK and PI3K pathways, while
phosphorylated Y785 recruits the PLC-γ1 pathway (41, 42).

It has been demonstrated that NGF can protect sensory neurons
and promote neurogenesis in the damaged area after stroke (43). On
the one hand, NGF could increase the survival of NPCs through
the activation of TrkA, in turn, induces axonal outgrowth (the
elaboration of axonal filopodia and branches) and myelination (38,
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FIGURE 1

The enhancing factors of neurogenesis and their major downstream signaling pathways. After the cerebral ischemic injury, multiple growth factors (NGF,

BDNF, NT3/4, and GDNF), other growth proteins (GAP-43 and IGF-1), and miRNAs could promote neurogenesis. Their downstream signaling cascades,

mainly include PLC-γ/PKC, PI3K/Akt, MAPK/ERK, and Wnt/β-catenin pathways.

39). On the other hand, for the survival of newly generated neurons
after stroke, the NGF is also involved in angiogenesis after acute
stroke in rats (44). It demonstrates that NGF is involved in multiple
processes in neurogenesis after stroke.

2.1.2. BDNF
BDNF is the most abundant and most studied neurotrophic

factor (NTF) in the brain (29). BDNF can activate three signaling
proteins, MAPKs, PI3Ks, and PLC-γ, by interacting with
tropomyosin receptor TrkB (45). It has also been found that
BDNF promotes neurogenesis by activating the JAK/STAT pathway
in Schwann cells (46).

A study has shown that BDNF has a neuroprotective effect
on hippocampal neuronal damage caused by hypoxic and glucose-
deficient conditions (47). BDNF not only has an important role in
promoting neuronal survival but also promotes neurogenesis after

ischemic stroke (48). Therefore, modulation of BDNF expression is
promising for neurogenesis and protrusion generation in damaged
areas after stroke.

2.1.3. Neurotrophic factors
Multiple NTFs act together to promote axonal growth during

neurological maturation (49). Among them, NT3 and NT4 have
the most potential for neurogenesis after stroke (50). NT3 binds
mainly to TrkC receptors specifically and NT4 binds mainly to
TrkB specifically (51). NT3 is a neurotrophic factor that plays
an important role in preventing the death of damaged neurons,
enhancing neuronal survival and axonal regeneration, and inducing
the differentiation of endogenous oligodendrocyte precursor cells
into mature oligodendrocytes to restore myelin (52). Studies have
shown that NT3 can be transported from muscle to sensory ganglia
and spinal motor neurons in nerve, as well as to the CNS through
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the bloodstream (30, 49, 53, 54). NT3 can promote axonal growth
and synaptic plasticity in various locomotor pathways including
the corticospinal tract and proprioceptive pathways and can induce
axonal growth from the intact corticospinal tract across themidline to
the innervated side (30, 49). In addition, Ann et al. have demonstrated
that NTF synergistic neuronal responses after a combination of basic
fibroblast growth factor, NT3 and BDNF delivered to the somata of
retinal ganglion cells promoted greater survival and axon growth than
did the sum of the effects of each NTF alone (55).

Regarding NT4, it has been shown that stroke mice knocking
out the NT4 gene exhibit larger infarct foci, suggesting that NT4 can
counteract ischemic brain injury (56). Another study has also shown
that post-stroke neurological recovery from exercise is closely related
to NT4 (57).

2.1.4. GDNF
Among the many endogenous regulatory molecules, GDNF is

particularly notable as it is produced by glial cells and neurons and
is a member of the transforming growth factor β superfamily, which
plays an important role in neuronal differentiation during normal
development (58). GDNF family ligands bind to specific GDNF
family receptor alpha (GFRα), all these form receptor complexes
and signal through the RET receptor tyrosine kinase and activate
downstream PLC-γ, MAPK and PI3K/Akt signaling pathways (59,
60).

GDNF can promote the survival and recovery of several types
of mature neurons after CNS injury. The RET receptor induces
calcium (Ca2+) signaling and regulates neocortical NPCs migration
through the PLC-γ binding domain Tyr1015 (60). In one study, a
fusion protein, PEP-1-GDNF, was injected intravenously into rats
with stroke, and GDNF was found to significantly reduce infarct size,
promote proliferation and differentiation of hippocampal dentate
gyrus cells, and improve behavioral function (61). Beker et al.
(62) demonstrated that GDNF is effective in inducing long-term
neural recovery, peri-infarct brain remodeling, and contralateral
neuroplasticity. In addition, activation of GDNF pathways may
enhance hippocampal neurogenesis and thus promote neuronal
survival (63). Therefore, GDNF is an important target for regulating
neurogenesis after cerebral ischemia.

2.1.5. Other growth factors
Growth-associated protein-43 (GAP-43) is the main protein of

the axonal growth cone that promotes axonal sprouting during the
development and regeneration of the nervous system (64, 65). It
promotes the accumulation of F-actin in neural protrusions and
contributes to the formation of the cytoskeleton (66). It also promotes
the release of presynaptic membrane neurotransmitters, cytokinesis,
and circulation of synaptic vesicles, promotes synapse formation,
stimulates axon outgrowth and extension, inhibits axon necrosis
and growth cone retraction, promotes oligodendrocyte and astrocyte
differentiation, and thus promotes neurogenesis (64). The axonal
sprouting process is accompanied by high expression of GAP-43 after
ischemic stroke (67). GAP-43 in neurons is a substrate for caspase-3
(CASP3) (68), a protease involved not only in apoptosis but also in
fine-tuning the formation of new synaptic contacts (69). It was found
that GAP-43 and CASP3 are involved in the neurogenesis of lesions
after ischemic stroke (70).

Insulin-like growth factor-1 (IGF-1) is a growth factor primarily
produced by the liver in adults and plays a crucial role in
cell proliferation, maturation, and survival (71). In addition, it
has important effects on early CNS development and neuronal
plasticity (72). In the CNS, IGF-1 exerts its action by binding to
its receptor (IGF1R), a membrane-bound glycoprotein composed
of two alpha and two β subunits (73, 74). Once IGF-1 binds to
IGF1R, the tyrosine kinase structural domain on the β subunits
activates the PI3K/Akt1/mTOR and MAPK/ERK pathways to induce
their downstream effects (75, 76). Adeno-associated virus (AAV)-
mediated IGF-1 overexpression was found to promote long-term
functional recovery in mice with focal ischemia by promoting
neovascularization and neurogenesis (77). IGF-1 was also found to
regulate the survival and migration of bone marrow mesenchymal
stem cells in an ischemic environment and improve neurological
recovery after ischemic stroke (28). It suggests that IGF-1 may be a
safe and potentially effective treatment for a variety of CNS disorders
including ischemic stroke.

2.2. MicroRNAs

MicroRNAs (miRs) are a family of 20–25 non-coding RNAs
that play an important role in the pathogenesis of ischemic stroke
and are important factors in the regulation of axonal growth
in neurons (78). The main miRs that promote neurogenesis are
miR-133b/30b/132/124/146 (79–83), etc. These molecules can affect
a variety of biological processes related to post-stroke axonal
growth and synaptic function regulation by targeting hundreds of
proteins in a range of cellular and molecular targets and multiple
regulatory networks.

Different miRNAs regulate neurogenesis differently. For example,
miR-133b promotes neurogenesis by activating MAPK/ERK1/2 and
PI3K/Akt signaling pathways (79). The miR-146 family (miR-146a
and miR-146b) could promote the differentiation of NSCs into
neurons by regulating the Notch1 signaling pathway (83). MiR-30b
promotes axon outgrowth of retinal ganglion cells by inhibiting
Sema3A-mediated caspase-3 and p38MAPK signaling pathways (80).
In addition, miR-124 can activate the Wnt/ß-catenin pathway by
targeting DACT1 to promote NSCs proliferation and differentiation
to neurons (82). It has also been shown that miR-124 can reduce glial
scar formation in M2 microglia and promote neurogenesis in mice
after stroke through STAT3 signaling (84). Therefore, miRsmay serve
as innovative gene therapy candidates for neurogenesis (85).

3. Inhibiting factors of neurogenesis

The limited ability to neurogenesis after cerebral ischemia
is mainly due to ischemic injury-producing factors that inhibit
neurogenesis. The microenvironment within the nervous system is
critical for the survival and regeneration of damaged nerves. To
some extent, inhibitory factors are thought to possibly play a more
important role.

Locally to the injury, the formation of hard glial scarring by
glial cells prevents nascent axons from crossing (86). Most of
these inhibitory molecules induce the activation of RhoA/ROCK
pathway in neurons (87). RhoA/ROCK is one of the most widely
studied signaling pathways and is primarily responsible for regulating
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cytoskeleton organization, cell growth, cell migration, proliferation,
and development (87). Inhibition of this pathway can promote axon
growth and behavioral recovery in rats after stroke (87, 88).

3.1. Myelin proteins

There is a consensus that myelin is a major barrier to inhibiting
neurogenesis (87). The myelin sheath of PNS appears to be removed
faster andmore effectively than that of CNS,mainly due to differences
in the surrounding microenvironment (89, 90). The myelin sheath of
PNS is Schwann cell, which can produce more neurotrophic factors
and promote the growth of PNS axons (91). However, the myelin
sheath of CNS is oligodendrocyte, which produces more neural
growth inhibitory factors and is not conducive to the regeneration
of CNS axons (92) (Figure 2). Some factors that inhibit axonal
growth such as Nogo, myelin-associated glycoprotein (MAG), and
oligodendrocyte-myelin glycoprotein (OMgp) are mainly expressed
in CNS myelin (93).

3.1.1. Nogo-A
NOGO-protein family Nogo, especially Nogo-A plays a key role

in CNS neurogenesis. Nogo-A and its receptors are widely present
in the CNS of mammalian, and they are strongly associated with
axonal growth inhibition and neuronal damage caused by ischemic
brain injury (94, 95). It was found that spontaneous axonal plasticity
and functional recovery after stroke may be limited by Nogo-A (96).
Studies have shown that Nogo-A is expressed in several regions
of the nervous system to varying degrees after cerebral ischemic
injury, and it can inhibit the structural and functional recovery of
the corticospinal tract to a certain extent, while the recovery of
neurological function can be effectively promoted by antagonizing
Nogo-A (95, 97–99).

One of the mechanisms by which Nogo-A exerts these effects
is that Nogo-A binds to its receptor (NgR) complex. Nogo-66
stimulates the receptor complex composed of NgR1 and its related
proteins LINGO and p75 neurotrophin receptor (p75NTR) or TROY
to activate the downstream Rho A/ROCK actin disruptor cofilin (a
major effector of growth cone cytoskeleton disassembly) signaling
pathway, preventing actin cytoskeleton aggregation in the growth
cone, eventually leading to collapse of growth cones and inhibition of
axonal growth (100, 101). The study further confirmed that inhibition
of Nogo-A/NgR1 expression at the gene level or antagonism of its
function at the protein level could reduce Rho A/ROCK signaling
pathway activation and promote neurological recovery in post-stroke
animals (97, 102). The same receptor complex and downstream
mechanisms appear to be involved in the growth-inhibitory effects
of other myelin-associated proteins, such as MAG and OMgp (103).
NgR is mainly expressed in neuronal cytostomes and axons in the
cerebral cortex, hippocampus, and dorsal root ganglia, as well as
in activated microglia/macrophages in the CNS (101). There are
three isoforms of NgR, namely NgR1, NgR2, and NgR3, among
which NgR1 is the first receptor with high affinity to Nogo-66 in
the extracellular segment of Nogo-A (104). The results of existing
studies demonstrate that this receptor and its complex have a more
direct effect on axon growth (105, 106). Neurogenesis was effectively
promoted by inhibiting the expression of NgR1.TAT-NEP1–40, an

antagonist of NgR1, can protect neurons and promote the recovery
of neurological functions after stroke (107, 108).

Another mechanism by which Nogo-A exerts axonal growth
inhibition is through binding to paired immunoglobulin-like
receptor B (Pir B), which affects multiple protein functions involved
inmicrofilament depolymerization and restriction of axon growth via
downstream plenty of Src homology 3 domains (POSH) signaling
molecules (109, 110). It has been shown that POSH formed an
inhibitory complex by binding to F-actin-binding protein (Shroom3),
which activated the POSH/Shroom3/ROCK signaling pathway,
leading to a decrease inMyosin II expression and inhibition of axonal
growth (111, 112). The study confirmed that the knockdown of Pir
B caused more axon regeneration than the knockdown of NgR1,
suggesting that Pir B plays a more important role in myelin inhibition
(113). By antagonizing the action of Nogo-A and Pir B, it could
inhibit POSH expression and suppress the activity of downstream
molecules Shroom3/ROCK/Rho A, which effectively reverses the
inhibition of its axonal growth (111, 114, 115). These results suggest
that the Nogo-A/Pir B signaling pathway has an important role in
axonal growth inhibition due to cerebral ischemia injury.

3.1.2. MAG and OMgp
MAG is a member of the immunoglobulin superfamily. MAG is

present in the preaxial membrane and unmyelinated regions of the
CNS and PNS and is therefore well suited to interact with axonal
receptors. It is both a ligand for axonal receptors required for the
maintenance of myelinated axons and a receptor for axonal signals
that promote oligodendrocyte differentiation, maintenance, and
survival (116). Peripheral injection of a mouse monoclonal antibody
against MAG resulted in significant preferential motor reinnervation
in mice after transection of the femoral nerve, suggesting that
interference with the rejection function of MAG facilitates the
reinnervation of motor neurons to the correct pathway (117). It was
also found that MAG levels could be reduced after MCAO, therefore
mitigating axonal injury and improving neurological function in
adult mice after cerebral ischemia (118).

OMgp is expressed not only through oligodendrocytes but also
at high levels in various neurons. OMgp is the protein responsible
for myelin partial inhibition, inducing growth cone collapse and
inhibiting neurogenesis (119). Both MAG and OMgp interact with
NGR with approximately the same relatively high affinity (120).
There are relatively few studies on the effect of OMgp on axonal
growth after stroke compared to Nogo-A and MAG.

3.2. Glial scar

Glial scar formation and altered astrocyte function are important
pathological features of ischemic stroke. After a stroke, astrocytes
proliferate reactively and later form a physical barrier of glial scarring
with microglia, macrophages, and extracellular matrix (86). Glial
fibrillary acidic protein (GFAP) is a characteristic marker of astrocyte
activation and glial proliferation and constitutes a major component
of the glial scar (121). The study has found that GFAP-positive
reactive astrocytes significantly increased in the cortical infarct zone
after ischemic stroke, resulting in enhanced expression of chondroitin
sulfate proteoglycans (CSPGs) and formation of glial scar (86).
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FIGURE 2

Inhibiting factors of neurogenesis and their major downstream signaling pathways. After an ischemic stroke, various growth inhibitory molecules

(Nogo-A, MAG, OMgp, and CSPG) from myelin and reactive astrocytes interact with various receptors, such as PirB, NgR1/2, LINGO, p75NTR, PTPσ, and

TROY, to signal through a convergent downstream pathway within the axon, leading to collapse of growth cones and inhibition of axonal growth.

Glial scar is two-sided in nature.When an ischemic stroke occurs,
the dense glial scar can isolate the area of injury from the surrounding
tissues and impede the diffusion of large amounts of neurotoxic
substances released from the infarcted area to the peripheral areas,
thus effectively controlling further tissue infection, maintaining
extracellular ion and fluid homeostasis, preventing overwhelming
inflammatory and growth factor responses, and scavenging free
radicals (122). However, in late cerebral ischemia, astrocytes increase
in number, cytosolic hypertrophy, and protrusions increase and
lengthen, creating a physical barrier in space that not only
prevents reconnection between neurons but also works in concert
with myelin-associated inhibitory factors to impede regeneration
of injured axons, thus preventing recovery of CNS function in
the chronic phase of ischemic stroke (86, 123). Astrocytes are
able to upregulate several neuroinhibitory factors such as CSPGs,
tyrosine-protein kinase-B2, and Slit protein C, impeding neuronal
axon extension and synaptic regeneration, which is detrimental to
the re-establishment of neural network structure and recovery of
neurological function (123, 124).

It has been shown that CSPGs are the most important component
of the glial scar that hinders regeneration after CNS injury, and
their combination alone or with other extracellular matrix causes
axonal extension toward the site of injury to stop at the glial scar,
and that CSPGs reduce the plasticity of axonal growth (125). CSPG
acts as an axon growth inhibitor by binding to PTPσ receptors to
activate the downstream Rho A/ROCK pathway (12). Another study
found that after nerve injury, the regeneration of injured axons and
partial recovery of function was effectively promoted by eliminating

CSPGs in the brain and spinal cord (125, 126). The above information
suggests that reducing CSPGs has an important role in the recovery
of motor function after a stroke.

4. Axon guidance cues

Species with bilateral symmetry possess a midline axis, a feature
that becomes very important in vertebrates, especially humans (127).
Newborn neurons have to decide whether or not to cross the
midline or toward which direction they should send their axons
to Flanagan and Van Vactor (128). Ramon y Cajal, the “father of
neuroscience,” observed a very irregular structure at the distal end
of the axon, which he called the “growth cone.” The growth cone
is a very active structure composed mainly of cytoskeletal elements
with high dynamics (e.g., microtubules, actin, and microfilaments)
and numerous other proteins (129, 130). The growth cone is often
equipped with one or more receptors to enable an appropriate
response to axon guidance molecules that give developing neurons
navigation to connect with distant targets (131, 132). In recent
years, scientists have progressively confirmed the above theories and
finally identified the classical guiding cues that give directionality to
navigating axons: Netrins, Slits, Semaphorins (Sema), and Ephrins
as well as their cognate receptors: deleted in colorectal cancer
(DCC) and uncoordinated-5 (UNC5), Roundabout (Robo), Plexin
and Neuropilin, and erythropoietin-producing hepatocellular (Eph),
respectively (133, 134). Axon guidance molecules play a key role
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FIGURE 3

Axon guidance cues and their receptors. The growth cones at the axon tip are sensitive to repulsive and attractive guidance cues in their environment.

The complex integration of these repulsive and attractive signals directs axons to their proper targets.

in the development of the nervous system and can regulate the
regenerative capacity of neurons during neurological diseases.

The effects of Netrin on nerve axons are mainly manifested
by inducing the migration of growth cones, orienting the axons,
promoting the growth of growth cones, and prolonging the axons
(135). Four types of Netrins were found in animal spinal cords:
Netrin-1, Netrin-2, Netrin 3, and Netrin-4. Netrin-1 has both
repulsive and attractive receptors. The UNC-5 homolog is a repulsive
receptor that mediates the rejection of axons by Netrin-1 and
inhibits the growth and extension of sensory nerve fibers; DCC
is an attractive receptor that mediates the attraction of axons by
Netrin-1 and promotes the growth and extension of sensory nerve
fibers (135).

Slit directs the targeted growth of the growth cone through a
concentration gradient (136). It is more sensitive to the action of
peripheral protrusions of sensory neurons than to the action of
central protrusions (137). Robo is the primary receptor for Slits
and the Slit/Robo signaling pathway is one of the most important
regulatory pathways for axon guidance, which is formed by the
binding of Slit and Robo receptors (138). It mediates axonal rejection,
neurogenesis, and migration during the development of the CNS and
peripheral nervous system (138, 139).

Sema mediates axon guidance through chemical repulsion, and
its receptors are mainly Neuropilins and plexins (140). Sema3A binds
to its receptor Neuropilins-1, which not only reverses the direction of

axonal growth, but also prevents the formation of axonal terminals
and inhibits axonal extension (141).

The Eph receptor ligand is Ephrin. The Eph receptor and its
ligand Ephrin are collectively known as the Eph family proteins (142).
Ephrin- Eph signaling can regulate neuronal plasticity (143). Ephrin-
A5 and EphA5 regulate the projection and location of nerve fibers
(144). Ephrin-A5 was found to be induced in reactive astrocytes in
the peri-infarct cortex and is an inhibitor of axonal sprouting and
motor recovery in stroke patients (143).

Rho GTPases are known for their role in the regulation of
cell motility and cytoskeletal structure, with the most frequently
studied members being mainly RhoA, Rac1 and Cdc42 (145). Studies
have shown that activation of RhoA, Rac1, and Cdc42 can lead to
the formation of different actin-based structures—respectively stress
fibers, lamellipodia and filopodia (146). Different axon guidance cues
can regulate axon regeneration by modulating these three molecules
in response to changes in the microenvironment, as shown in
Figure 3.

5. Acupuncture for post-stroke
neurogenesis

Above summary of the factors affecting neurogenesis after stroke
clearly demonstrates the complex response of the organism in the
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process of neurogenesis after injury. Targeting only one single factor
for activation or inhibition thereby often results in an overkill
situation and causes side effects (147, 148). From the perspective
of treatment, there is an urgent need for stroke neuromodulation
therapy without side effects, especially ones that can improve
functional recovery by regulating the own regulatory mechanisms
and facilitating brain repair of the body. Although as a traditional
physical stimulation therapy, acupuncture is integral to modern
medical practice and is considered a feasible and effective neural
regulation strategy to improve functional recovery following stroke
via the benign modulation of neuroplasticity (18, 19, 149). The
research regarding the mechanism of effects of acupuncture on
neurogenesis or axonal growth is accumulating (Table 1).

5.1. Acupuncture for enhancing factors

Electroacupuncture (EA) can improve the symptoms of
neurological deficits and promote the recovery of motor function in
post-stroke rats. The mechanism may be related to the upregulation
of BDNF by EA at Neiguan (PC6) and Zusanli (ST36) to promote
neuronal growth, and the downregulation of Sema3A and NRP-
1 to reduce the inhibitory effect on axonal regeneration (150)
(Figures 4A, B). Studies have shown that EA at Baihui (GV20)
and Dazhui (GV14) significantly improved functional recovery
by enhancement of proliferation and differentiation of NSCs via

upregulating the BDNF and TrkB expression (151, 152). In addition,
EA may promote synaptic plasticity after stroke by protecting
and improving synaptic ultrastructure in the rat ischemic cerebral
cortex and increasing the expression of synaptophysin P38, GAP-43,
NGF and BDNF (153). Manual acupuncture (MA) at Taixi (KI3)
and Taichong (LR3) can promote functional recovery as well as
learning and memory abilities after ischemic stroke by enhancing
BDNF and SYN expression and synaptic structural reconstruction
in the ipsilateral hippocampus after I/R (154). EA on trigeminal
innervation points [GV20 and Yintang (GV24+)] is an effective
therapy for poststroke cognitive impairment and is associated with
neuroprotection and synaptic plasticity-mediated in relevant brain
regions in the MCAO rat model (155). EA reversed I/R injury-
induced BDNF, TrkB, N-methyl-D-aspartate receptor 1 (NMDAR1),
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor
(AMPAR), γ-aminobutyric acid type A receptor, Ca2+/calmodulin-
dependent protein kinase II (CaMKII), neuronal nucleus (NeuN)
and postsynaptic density protein 95 (PSD-95) expressed in the
prefrontal cortex and hippocampus.

It was also found that EA at GV20 and Shuigou (GV26) enhanced
the permeability of the blood-brain barrier in the prefrontal cortex
and induced the uptake of NGF by prefrontal neurons (156). Nape
cluster acupuncture has neuroprotective and restorative effects in
rats with post-ischemic stroke sequelae, and its mechanism may
involve effective upregulation of BDNF and NGF protein expression
(157). EA treatment at Quchi (LI11) and ST36 acupoints exerted
neuroprotective effects on I/R-injured rats through the proliferation
of GFAP/vimentin/nestin-positive reactive astrocytes and secretion
of potentially reactive astrocyte-derived BDNF and may also be
related to the activation of cortical PGC-1α/Irisin (FNDC5)/BDNF
pathway by electroacupuncture (158, 159). In addition, EA ST36
and LI11 could also increase the expression of PI3K, p-Akt, p-Bad,
Bcl-2, BDNF, and GDNF, which exerted neuroprotective effects by
activating the PI3K/Akt pathway (160, 161) (Figure 4A).

EA at Jinsuo (GV8) and Fengfu (GV16) caused proliferating
endogenous NSCs to migrate from the SVZ region to the
damaged area of the striatum in rats’ post-stroke, thereby
promoting neurogenesis in the brain striatum (162). EA promotes
the proliferation and differentiation of endogenous NSCs by
upregulating the Wnt/β-linked protein signaling pathway and the
secretion of neurotrophic factors, thereby ameliorating neurological
defects and producing a therapeutic effect on cerebral ischemia (163,
164) (Figure 4A).

EA at LI11 and ST36 can promote endogenous NSCs
differentiation via exosome-mediated miR-146b, thereby improving
neurological dysfunction after ischemic stroke (165). EA at GV20
enhances neurobehavioral functional recovery against ischemic
stroke via targeting of SOX2-mediated axonal regeneration by
miR-132 (166). EA at GV26 and GV20 could activate the HIF-
1α/VEGF/Notch 1 signal pathway to facilitate angiogenesis after
ischemic stroke via exosomal miR-210 (167).

5.2. Acupuncture for inhibiting factors

The protective effect of EA at GV14 and GV20 on hypertensive
I/R cerebral injury rats might be closely related to down-regulating
central nervous system myelin growth inhibit ion mediated factors
Nogo-A receptor NgR protein expression (168). EA stimulation
of acupoints of pericardium meridian can down-regulate the
expressions of cerebral Nogo-A and NgR1 mRNA in cerebral
ischemia rats, which is conducive to nerve repair after cerebral
ischemia (169). EA can downregulate the RhoA/ROCK pathway
to promote axonal regeneration (170). EA at LI11 and ST36
could significantly improve neurological deficit scores following
stroke via inhibited Nogo-A/NgR/RhoA/ROCK signaling (171)
(Figure 4C).

Taken together, acupuncture can promote neurogenesis after
stroke by enhancing axonal growth factors as well as decreasing
axonal growth inhibitory factors, thus promoting neurological
recovery. More and more in-depth studies are worthwhile to enrich
the multi-target mechanism of clinical acupuncture for post-stroke
motor dysfunction.

6. Summary and prospect

The difficulty of central neurogenesis after cerebral ischemia in
adults is the main cause of neurological dysfunction after stroke
and promoting neurogenesis after stroke has become a hot button
in cerebrovascular disease research in recent years. Promoting
axonal sprouting, synaptic remodeling, and suppressing the central
damage microenvironment will be an important pathway to improve
neurological impairment after ischemia, which is also a key issue in
stroke treatment.

Acupuncture can regulate post-ischemic neurogenesis at multiple
levels and targets and can promote the expression of post-ischemic
NSCs and other factors that are beneficial to neurogenesis. On
the other hand, acupuncture can reduce the local inhibitory
microenvironment in the injured center, providing a favorable
microenvironment for neurogenesis and repair. However, the specific
mechanisms of these factors are not yet fully understood, because
the mechanism of neurogenesis after cerebral ischemia is complex
and influenced by various factors, and most of the studies on the
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TABLE 1 Summary of the studies investigating acupuncture’s e�ects on functional recovery improvement after stroke via regulating neurogenesis factors.

Research
group

Model Acupoint Acupuncture
method

Stimulation parameter Treatment
course

Molecular and cellular
results

Behavioral test

Zhou (150) MCAO PC6, ST36 EA 2 Hz/30Hz, 5mA 30 min/day, 3, 7, 14, 28
days

BDNF↑, Sema3A↓, NRP-1↓ Bederson score

Kim et al. (151) MCAO GV20, GV14 EA 2Hz, 2V 20 min/day, 10 days
from 5 days after MCAO

NSCs↑, BDNF↑, VEGF↑, p-PI3K↑,
p-ERK↑

Morris Water Maze (MWM)

Kim et al. (152) MCAO GV20, GB7 EA 3Hz for 5 s, with 2 s intervals, at an
intensity of the muscle twitch threshold

5 min/2 days, 2 w from 3
days after MCAO

BDNF↑, TrkB↑ Garcia scale assessments

Yi et al. (153) MCAO GV20, GV14 EA Disperse-dense wave, 5–10 times/s,
intensity in the rat quiet tolerance
degree, about 3–5V

30 min/day, 2 or 5 weeks P38↑, GAP-43↑, NGF↑, BDNF↑ /

Xia et al. (154) I/R KI3, LR3 MA / 30 min/day, 14 days BDNF↑, SYN↑, PSD↑ NSS, MWM

Zheng et al. (155) I/R GV20, GV24+ EA 2Hz, 1mA, 100 µs 10 min/day, 14 days BDNF↑, TrkB↑, NMDAR1↑, AMPAR↑,
GABAAR↑, CaMKII↑, NeuN↑,
PSD-95↑

MWM, Novel Object Recognition Test,
Open Field Test

Zhao et al. (156) I/R GV20, GV26 EA 2/100Hz, 2mA 40 min/day, 6 days NGF↑ Zea Longa neurological score, MWM

Zhang et al. (157) MCAO nape cluster
acupoints

MA Twisting Angle is 60◦ 15 min/day, 15 days BDNF↑, NGF↑ Zea Longa neurological score

Tao et al. (158) I/R LI11, ST36 EA Dense disperse wave of 1 or 20-Hz 30 min/day, 3 days BDNF↑, GFAP↑,
vimentin↑, nestin↑, Cyclin D1↑,
CDK4↑, phpspho-Rb↑

Zea Longa neurological score, Catwalk
gait, Rotarod test

Gu et al. (159) I/R LI11, ST36 EA 2 Hz/15Hz, 2–4mA 20 min/day, 7 days BDNF↑, PGC-1α↑, FNDC5↑ Zea Longa neurological score, Balance
Beam score

Chen et al. (160) I/R LI11, ST36 EA Disperse wave of 1 and 20Hz 30min, once BDNF↑, GDNF↑, PI3K↑, p-Akt↑,
t-Akt↑, Bcl-2/Bax ratio↑

Zea Longa neurological score

Xue et al. (161) I/R LI11, ST36 EA Disperse wave of 4 and 20Hz 30 min/day, 3 days PI3K↑, p-Akt↑, p-Bad↑, Bcl-2↑, Bax↓,
cleaved caspase−3↓

Zea Longa neurological score

Yang et al. (162) MCAO GV16, GV8 EA 60Hz 1 s and 2Hz 3 s alternately at an
intensity of 10mA

20min, once BrdU+ cells↑, BrdU+/CRMP-4(+)↑,
BrdU+/MAP-2(+)↑

/

Tao et al. (163) MCAO LI11, ST36 EA 1 Hz/20Hz, at an intensity of the muscle
twitch threshold (the muscle twitch
threshold was about 0.01mA)

30 min/day, 7 days BDNF↑, Nestin↑, Notch1↑, NICD↑,
Hes1↑, GDNF↑, D1↑, Cdk4↑, p-Rb↑,
p21↓, p27↓

Zea Longa neurological score

Chen et al. (164) MCAO LI11, ST36 EA disperse-dense waves of 1 or 20Hz
frequencies

30 min/day, 3 days GFAP↑, Nestin↑, Wnt1↑, β-catenin↑,
GSK3↓

Zea Longa neurological score

Zhang et al. (165) MCAO LI11, ST36 EA 1/20Hz, 1mA 30 min/day, 21 days miR-146b↑, NeuroD1↑ mNSS

Zhao et al. (166) MCAO GV20 EA 1–2mA, dense-disperse frequency of
2/10Hz

30 min/day, 5 days miR-132↑, SOX2↓ The rotarod test, limb placement test,
body swing test, measurement of
forelimb placing
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mechanism of neurogenesis after stroke are focused on the enhancing
factors of neurogenesis (such as growth factors), fewer studies on
the effects of acupuncture on neurotransmitters, related inhibitory
proteins and axon guidance cues. In the future, studies investigating
the role of acupuncture on neurogenesis after stroke can particularly
focus on axonal inhibitory factors and the complete pathway, which
can better illustrate the mechanism of acupuncture initiation.

It appears that more researches have been done on EA than on
MA, probably related to the stronger stimulation of EA and the easier
control and fixation of stimulation parameters (172). Generally,
an important factor of the effectiveness of acupuncture in clinical
practice is the needling technique andMA is more commonly used in
the clinic. However, there is a lack of research on the effects of MA on
neuroplasticity. Future studies could attempt to compare the effects
of MA and EA on neurogenesis to provide greater clinical guidance
for acupuncture.

The acupoints used in each study varied. The most frequently
applied acupoints are GV20, GV14, and ST36 (Table 1), which are
located on Governor Vessel (GV) and stomach meridian. The GV
runs along the middle of the back and connects to the brain,
so points on GV are commonly used for brain disorders. The
stomach meridian is connected to the stomach organ and is often
considered to be the origin of energy, so points on this meridian are
often used for conditions in which the body is deprived of energy.
Although these three points are frequently used, few studies have
compared them with each other or with other acupoints to determine
which acupoint or combination of points produces the best effect
on neuroplasticity after cerebral ischemia. In addition, differences
in the frequency, intensity, and treatment course of EA might
produce a variety of effects on neuroplasticity. Althoughmany studies
have used dense/sparse wave stimulation (Table 1), the number of
studies comparing different stimulation parameters is relatively small.
Therefore, both optimal stimulation conditions and therapeutic time
windows for acupuncture need to be based on additional and more
solid mechanistic studies in order to be supported by reliable data
from preclinical studies.

Finally, most of the current acupuncture interventions have been
studied through animal experiments, and there is a lack of large
sample clinical studies, and further research is needed on how to
effectively apply them to clinical practice. Therefore, in the future, we
should carry out research on the interaction between various factors
by acupuncture treatment. Using neuroimaging and other technical
means, combine animal experiments with clinical practice to provide
a theoretical basis for clinical acupuncture treatment of stroke.

7. Conclusion

The global burden of stroke is increasing every year due
to population growth and aging trends. Stroke has become the
most significant risk factor for human health worldwide. We
reviewed studies on the mechanisms of neurogenesis after stroke,
analyzed the role of various common factors on neurogenesis, and
discussed the effects of acupuncture on neurogenesis and functional
recovery after stroke. Stroke-induced neuroplasticity is a promising
therapeutic target because it allows the brain in injured areas
to re-establish neural connections and heal the damage caused
by ischemia. Due to the complex interactions between various
factors affecting neurogenesis, interfering with one factor alone
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FIGURE 4

The e�ect of acupuncture on neurogenesis impact factors. (A) Shows enhancers for neurogenesis, (B) illustrates guidance cues, and (C) shows inhibitors.

According to the currently limited studies, acupuncture promotes neurogenesis and functional recovery after stroke by upregulating some of the

enhancing factors of neurogenesis and downregulating the inhibiting factors that a�ect neurogenesis. The green up arrow represents up-regulation, and

the red down arrow represents down-regulation.

often leads to an overkill situation. Therefore, there is still a
global need to develop better treatment options without side effects.
Acupuncture is an ancient physical stimulation therapy that has been
practiced in China for thousands of years and provides a benign
regulation of the body through the stimulation of body acupoints.
Acupuncture can promote functional recovery after stroke, and its
mechanism of action is based on the modulation of neuroplasticity.
However, there is still a lack of more comprehensive mechanistic
evidence to fully demonstrate the role of acupuncture in the
neurogenesis microenvironment.

In the future, based on neurogenesis mechanisms, the
experimental design can focus on screening optimal factors of
acupuncture treatment, particularly appropriate intervention time,
needling techniques, acupoints, and acupuncture sessions, so as to
provide more reliable mechanistic evidence for acupuncture strategy
in functional rehabilitation after stroke.
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