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Gene panel analysis of 119 index
patients with suspected periodic
paralysis in Japan
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Akiko Yoshimura, Tomonori Nakamura, Yu Hiramatsu,

Yusuke Sakiyama and Hiroshi Takashima*

Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima

University, Kagoshima, Japan

Introduction: Genetic factors are recognized as the major reason for patients with

periodic paralysis. The goal of this study was to determine the genetic causes of

periodic paralysis in Japan.

Methods: We obtained a Japanese nationwide case series of 119 index patients

(108 men and 11 women) clinically suspected of periodic paralysis, and a gene panel

analysis, targeting CACNA1S, SCN4A, and KCNJ2 genes, was conducted.

Results: From 34 cases, 25 pathogenic/likely pathogenic/unknown significance

variants were detected in CACNA1S (nine cases), SCN4A (19 cases), or KCNJ2 (six

cases), generating a molecular diagnostic rate of 28.6%. In total, seven variants have

yet been found linked to periodic paralysis previously. The diagnostic yield of patients

with hypokalemic and hyperkalemic periodic paralyzes was 26.2 (17/65) and 32.7%

(17/52), respectively. A considerably higher yield was procured frompatients with than

without positive family history (18/25 vs. 16/94), onset age ≤20 years (24/57 vs. 9/59),

or recurrent paralytic attacks (31/94 vs. 3/25).

Discussion: The lowmolecular diagnostic rate and specific genetic proportion of the

present study highlight the etiological complexity of patients with periodic paralysis

in Japan.
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1. Introduction

Periodic paralysis (PP) is a rare skeletal muscle channelopathy induced by abnormal

excitability of the sarcolemma, leading to episodes of flaccid paralysis in the extremities of

patients. Symptoms commonly appear in the first or second decade, usually upon awakening in

the middle of the night or early morning, and last for hours (occasionally days) before gradually

disappearing. The calculated minimum point prevalence rates of PP have been reported at

0.38–0.69/100,000 in the UK and the Netherlands (1, 2).

Clinically, patients with PP with decreased serum potassium level (<3.5 mmol/L) during the

paralytic attacks are subtyped as hypokalemic periodic paralysis (hypoPP), genetically linked

to the mutations in CACNA1S (encoding α1-subunit of the skeletal muscle L-type calcium

channel Cav1.1; hypoPP1) or SCN4A (encoding α1-subunit of voltage-gated sodium channel

Nav1.4; hypoPP2) (3, 4). However, naming of the subtype of patients with PP with normal-

range or high serum potassium levels is controversial, and in the present study, we refer to

multiple recent publications and group these patients with serum potassium level ≥3.5 mmol/L

as hyperkalemic periodic paralysis (hyperPP) (1, 2, 5, 6). SCN4A is the causative gene of hyperPP

as well (7), and it is also responsible for SCN4A-related non-dystrophic myotonia, characterized

by a heterogeneous phenotypic spectrum of myotonia (8, 9). Furthermore, mutations in the

KCNJ2 gene (encoding inward-rectifier potassium channel Kir2.1), which have been linked

to Andersen-Tawil syndrome (ATS), could also result in a PP phenotype, although typically

accompanied by ventricular arrhythmias and dysmorphism (10).

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1078195
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1078195&domain=pdf&date_stamp=2023-01-26
mailto:thiroshi@m3.kufm.kagoshima-u.ac.jp
https://doi.org/10.3389/fneur.2023.1078195
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2023.1078195/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yuan et al. 10.3389/fneur.2023.1078195

To date, large-group genetic studies concerning both hypoPP

and hyperPP are inadequate, and only a few studies have covered

all three abovementioned genes, CACNA1S, SCN4A, and KCNJ2. The

genetic diagnostic rate of overall patients with PP remains unclear,

which is estimated to be 64.1% in the USA or 56.6% in China

(11, 12). In this study, among 119 index patients with PP, referring

to broad diagnostic criteria, we present a low molecular diagnostic

rate in Japan and reassess multiple clinical features associated with

the diagnostic yield.

2. Materials and methods

2.1. Sample collection

This is a monocentric retrospective study that included a

nationwide case series of 148 patients clinically suspected of PP in

Japan (ranging from January 1999 to January 2022). All patients

were examined by their attending doctors from the departments

of neurology/pediatrics of local hospitals and then referred to

our laboratory for genetic testing. The included criteria are

acute-onset flaccid paralysis that resolves spontaneously or with

potassium treatment within hours or days, without disturbance

of consciousness and respiratory muscle involvement. Patients

with hyperthyroidism, renal diseases (primary aldosteronism or

IgA nephropathy), or gastrointestinal disorders were exempted.

Ultimately, we collected 119 consecutive unrelated index patients in

this project. Therein, 25 cases with more than one affected individual

in their pedigrees were grouped as familial PP (FPP); 94 cases without

any positive family history were grouped as sporadic PP (SPP).

Within the FPP, 21 pedigrees were considered as autosomal dominant

inheritance, encompassing more than one affected individual from

≥2 generations, while the inheritance pattern was not clear in the

other four pedigrees. The inclusion and exclusion flowchart are

illustrated in Figure 1A.

This research was authorized by the institutional review board of

KagoshimaUniversity (Application ID: 490). All patients/parents and

their available family members provided informed consent for their

participation in this study.

2.2. Genomic DNA isolation and Sanger
sequencing

Blood samples were collected from patients and any of their

available family members. Genomic DNA was extracted from

peripheral blood lymphocytes using DNA extraction kits following

the corresponding manufacturer’s protocols. For DNA samples

collected before 2013, Sanger sequencing was conducted on the

voltage–sensor coding exons of CACNA1S and SCN4A, as well as the

coding region of the KCNJ2 gene, according to the initially published

procedures (13).

2.3. Gene panel sequencing on Illumina
MiSeq

All samples, whether previously sequenced by Sanger sequencing

or obtained after 2013, were subjected to NGS-based gene panel

sequencing. Primers were designed using the Primer 3 program,

covering all coding exons and exon–intron junctions of CACNA1S

(NM_000069.3), SCN4A (NM_000334.4), KCNJ2 (NM_000891.3),

and CLCN1 (NM_000083.3). After multiplex polymerase chain

reaction (PCR) (Qiagen Multiplex PCR Kit; Qiagen GmbH, Hilden,

Germany), amplicons were pooled together and sequenced on

the Illumina MiSeq platform (Figure 1A). Low coverage amplicons

(reading depth <10) and suspected variants were subsequently

substantiated by Sanger sequencing.

2.4. Variant annotation and interpretation

Sequencing data alignment to human reference genomeGRCh37,

variant processing/annotation, and analysis were conducted via CLC

Genomics Workbench (Qiagen, Hilden, Germany), Ensembl-VEP,

and in-house R scripts. All variants were contrasted against

two population databases, including the East Asian population

in Genome Aggregation Database (gnomAD_EAS v2.1.1; https://

gnomad.broadinstitute.org) and the Japanese Multi Omics Reference

Panel (jMorp; https://jmorp.megabank.tohoku.ac.jp/202102/), as well

as the Human Gene Mutation Database (HGMD 2022.2, Qiagen).

In total, five in silico prediction scores were enrolled using dbNSFP

(v4.0), consisting of SIFT, PolyPhen2, PROVEAN, FATHMM, and

Condel (14). All suspected variants were interpreted using a modified

American College of Medical Genetics and Genomics/Association

for Molecular Pathology (ACMG/AMP) classification and ClinGen

Expert Panel consensus approaches (15, 16) (Supplementary Table 1).

Only pathogenic (P), likely pathogenic (LP), and variant of unknown

significance (VUS) variants are described here.

2.5. Statistical analysis

To contrast the frequencies for categorical variables, a two-tailed

Fisher’s exact test was conducted using a GraphPad online tool

(https://www.graphpad.com/quickcalcs/contingency1/). A p-value of

<0.05 was deemed substantial. The odds ratio and significance values

of the variants in jMorp (ToMMo 38KJPN) were calculated using

MedCalc (https://www.medcalc.org/calc/odds_ratio.php).

3. Results

3.1. Clinical analyses

Among 119 index cases with suspected PP, male and female

patients accounted for 108 and 11, respectively. Based on the serum

potassium levels during attacks, these patients were classified as

hypoPP (65 cases) and hyperPP (52 cases), and two cases lacked

serum potassium records. Approximately half of these patients had

their first paralytic attack at the age ≤20 years (57 cases), while the

other half had their onset age >20 years (59 cases). No onset record

was available from three patients. There were 94 cases with two or

more paralytic attacks and 25 cases with only one attack before the

genetic screening. Clinical data of all patients are summarized in

Supplementary Table 2.
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FIGURE 1

Patient selection flowchart, gene panel sequencing workflow, and findings. (A) Inclusion and exclusion criteria of patients clinically suspected with

periodic paralysis (PP), and 119 index patients, consisting of 94 and 25 cases with sporadic (SPP) and familial PP (FPP), respectively, are selected for the

following analysis. (B) Gene panel sequencing with Illumina MiSeq demonstrates a molecular diagnostic rate of 28.6%, and the genetic proportions are

presented. (C) Genetic proportions of hypoPP (n = 65) and hyperPP (n = 52) patients.

3.2. Genetic findings

P/LP/VUS variants in the CACNA1S (nine cases), SCN4A (19

cases), or KCNJ2 (six cases) genes were discovered in 34 cases,

generating a detection rate of 28.6%. All these variants are listed

in Table 1 along with their classification basis. Within 19 cases

carrying SCN4A variants, respectively, five and 14 cases had hypoPP

and hyperPP phenotypes. The diagnosed patients’ detailed genetic

proportions were 7.6 (hypoPP1), 4.2 (hypoPP2), 11.8 (hyperPP), and

5.0% (ATS) (Figure 1B). No P/LP/VUS variants were found in the

CLCN1 gene.

The molecular diagnostic percentage of patients with hypoPP

and hyperPP was 26.2 (17/65) and 32.7% (17/52), respectively

(Figure 1C). The percentage between male and female patients

was 29/108 and 5/11 (p > 0.05) (Figure 2A). Patients with FPP

(18/25) were found easier to receive a genetic diagnosis than

patients with SPP (16/94) (p < 0.0001) (Figure 2B). Pedigree

sequencing of other affected/unaffected family members was

available from seven pedigrees with FPP, and co-segregation

of variants was verified from all but the pedigree carrying

p.V1149L variant (LP) in SCN4A. Within this pedigree, the

same variant was detected from the asymptomatic mother of

the proband as well, suggesting a lower penetrance in female

(Supplementary Table 2).

A higher diagnostic rate was observed in patients with onset

age ≤20 years than that of later onset (>20 years), at 24/57 vs.

9/59 (p < 0.01) (Figure 2C). Otherwise, the positive rate of patients

with recurrent paralytic attacks (31/94) was detected as higher than

those who experienced only a single attack (3/25) (p < 0.05)

(Figure 2D).

3.3. CACNA1S variants

Within nine patients with hypoPP, we found five initially

reported variants within the CACNA1S gene, comprising p.R528H

(five cases; P), p.R528G (one case; P), p.R900S (one case; P),

p.R1239H (one case; P), and p.R1242S (one case; LP). All of

these variants are located in voltage–sensor domains of the CaV1.1

protein (Figure 3A).

3.4. SCN4A variants

From five patients with hypoPP, five distinct SCN4A variants

were detected, including p.R672G (P), p.T704M (P), p.R1135H (P),

p.R1451H (novel; P), and p.T1646N (VUS). Therein, p.T1646N

could also be discovered from gnomAD_EAS (allele frequency =

0.0001) and jMorp databases (allele frequency = 0.0005; odds ratio

= 8.37, p= 0.0362).

SCN4A variants were found in 14 patients clinically suspected

with hyperPP as well, including p.A37T (three cases; novel; VUS),

p.R222W (two cases; P), p.F264S (one case; novel; VUS), p.E452K

(one case; VUS), p.R672H (one case; P), p.T704M (two cases; P),

p.K880del (one case; LP), p.V1149L (one case; LP), and p.M1592V

(one case; P) (Figure 3B). Within the four VUS variants, p.A37T and

p.K880del were found on the population databases, with frequencies

of 0.0003 and 0.0007 on gnomAD_EAS, and 0.0002 (odds ratio

= 52.02, p < 0.0001) and 0.002 (odds ratio = 2.13, p = 0.45)

on jMorp, respectively. Therein, a recent functional analysis of

p.K880del revealed a weak functional effect on Nav1.4, increasing
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TABLE 1 All variants detected from 34 Japanese patients with PP.

Gene Nucleotide Amino acid gnomAD_EAS jMorp Modified ACMG/AMP guideline Class

CACNA1S 1582C > G R528G 0 0 PS3+ PS4+ PM1+ PM2+ PM5(S)+ PP3+ PP4 P

CACNA1S 1583G > A R528H 0 0 PS3+ PS4+ PM1+ PM2+ PM5(S)+ PP3+ PP4 P

CACNA1S 2700G > C R900S 0 0 PS3+ PS4+ PM1+ PM2+ PM5+ PP3+ PP4 P

CACNA1S 3716G > A R1239H 0 0 PS3+ PS4+ PM1+ PM2+ PM5+ PP3+ PP4 P

CACNA1S 3726G > T R1242S 0 0 PS4(P)+ PM1+ PM2+ PM5+ PP3+ PP4 LP

SCN4A 109G > A A37T† 0.0003346 0.000245 PS4(M)+ PP3+ PP4 VUS

SCN4A 664C > T R222W 0 0 PS3+ PS4+ PM1+ PM2+ PM5+ PP3+ PP4 P

SCN4A 791T > C F264S† 0 0 PS4(P)+ PM2+ PP3+ PP4 VUS

SCN4A 1354G > A E452K 0 0 PS4(P)+ PM2+ PP3+ PP4 VUS

SCN4A 1762A > G I588V 0 0 PS3+ PS4(P)+ PM2+ PP3+ PP4 LP

SCN4A 2015G > A R672H 0 0 PS3+ PS4+ PM1+ PM2+ PM5(S)+ PP1+ PP3+ PP4 P

SCN4A 2014C > G R672G 0 0 PS3+ PS4+ PM1+ PM2+ PM5(S)+ PP1+ PP3+ PP4 P

SCN4A 2111C > T T704M 0 0 PS3+ PS4+ PM2+ PP3+ PP4 P

SCN4A 2638_2640del K880del 0.000729 0.001976 PS3+ PS4(P)+ PM4+ PP4 LP

SCN4A 3404G > A R1135H 0 0 PS3+ PS4+ PM1+ PM2+ PM5+ PP3+ PP4 P

SCN4A 3445G > T V1149L 0 0 PS4(M)+ PM2+ PP3+ PP4 LP

SCN4A 4352G > A R1451H† 0 0 PS4(P)+ PM1+ PM2+ PM5(S)+ PP1+ PP3+ PP4 P

SCN4A 4774A > G M1592V 0 0 PS3+ PS4+ PM2+ PP3+ PP4 P

SCN4A 4937C > A T1646N† 0.0001111 0.000504 PS4(P)+ PP3+ PP4 VUS

KCNJ2 199C > T R67W 0 0 PS3+ PS4+ PM2+ PM5+ PP3+ PP4 P

KCNJ2 334G > T D112Y† 0 0 PS4(P)+ PM2+ PP3+ PP4 VUS

KCNJ2 637C > T R213∗
†

0 0 PS4(P)+ PM2+ PM4+ PP3+ PP4 LP

KCNJ2 839A > G Y280C† 0 0 PS4(P)+ PM2+ PP3+ PP4 VUS

KCNJ2 934C > T R312C 0 0 PS4+ PM2+ PM5+ PP3+ PP4 P

KCNJ2 935G > A R312H 0 0 PS3+ PS4(M)+ PM2+ PM5+ PP3+ PP4 P

†Novel variant; ∗Stop codon; PS, strong pathogenic; PM, moderate pathogenic; PP, supporting pathogenic; P, pathogenic; LP, likely pathogenic; VUS, variant with unknown significance.

the excitability of the sarcolemma, which could represent a potential

pathogenic factor (17).

3.5. KCNJ2 variants

In total, six different KCNJ2 variants were found in six patients

with either hypoPP (three cases) or hyperPP (three cases) phenotype.

The variants were p.R67W (P), p.D112Y (novel; VUS), p.R213∗

(novel; LP), p.R280C (novel; VUS), p.R312C (P), and p.R312H (P)

(Figure 3C). There was no discernible skeletal deformity in any of

these patients. In four cases, electrocardiogram (ECG) data were

available, and none of them revealed ventricular arrhythmias.

4. Discussion

In this study, based on our relaxed enrollment criteria, we

collected 119 unrelated index patients with clinically suspected PP,

and the genetic diagnosis was only procured from 28.6% of them.

However, even using the more stringent criteria involving recurrent

paralytic attacks, the diagnostic rate was 33.0% (31/94). Both rates

were significantly lower than previous studies conducted in the USA

and China (11, 12). In terms of hypoPP, the diagnostic rate was 26.2%,

which was also much lower than in several western countries (64.3–

89.2%) (12, 18–20), but higher than in a Taiwan study (12.5%) (21)

(Table 2). In contrast, 18 out of 25 (72.0%) patients with FPP received

a molecular diagnosis, showing a much higher yield than patients

with SPP (17.0%; p < 0.0001). Otherwise, patients with early onset

(≤20 years) were found to be more amenable to molecular diagnosis

than that of late-onset cases (24/57 vs. 9/59).

Taken together, the aforementioned differences between present

and previous studies may be contributed by but not limited to a

high proportion of late-onset PP (59/116) and SPP (94/119) in our

case series. This is comparable to the Taiwan study with by far the

lowest diagnostic rate, where 93.8% (60/64) of their cases were SPP

(21). Furthermore, we also noted that the diagnostic rates of PP were

concurrently lower in Asia than that of studies in Europe or the USA,

and thus, a racial difference should be taken into account as well.

When compared to multiple large-group studies that covered all

CACNA1S, SCN4A, and KCNJ2 genes, the genetic proportion of our

diagnosed patients had the following characteristics: (1) hypoPP1
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FIGURE 2

Clinical and molecular diagnostic rate analyses for patients with PP. Molecular diagnostic rates are observed higher in female patients [(A) p > 0.05],

patients with positive family history [(B) p < 0.0001], with onset age ≤20 years [(C) p < 0.01], or patients who experienced recurrent paralytic attacks [(D) p

< 0.05].

was more common than hypoPP2 (9:5), which was comparable

to a recent Japanese study (4:3) (5), but not as noticeable as the

difference observed in western countries; (2) hyperPP (41.2%) was

more common than either hypoPP phenotype alone (Figure 3D).

Our case series included 108 men and 11 women, for a gender

ratio of about 10:1. This gender disparity could be explained by

females’ lower penetrance, which is consistent with previous findings

(18, 22, 23). Though without substantial variation, female patients

(45.5%) were more likely than male patients (26.9%) to receive a

molecular diagnosis.

All five CACNA1S gene variants were found at arginines of

S4 voltage sensors in domains II (p.R528H/G), III (p.R900S), and

IV (p.R1239H, p.R1242S) of Cav1.1. Functional assessments have

been conducted for all these variants except p.R1242S. Reduced

amplitude of inward Ca2+ currents was observed from all of the four

variants, and an abnormal gating pore leak current was detected from

p.R528H/G and p.R1239H (24–26). These changes would result in

susceptibility to recurrent episodes of depolarization-induced loss of

excitability and weakness in HypoPP (27).

Unlike CACNA1S, SCN4A variants associated with both hyperPP

and hypoPP2 were found throughout the protein Nav1.4. It is

of note that multiple SCN4A variants, previously reported from

patients with hypoPP (p.R222W and p.R672H) or non-dystrophic

myotonia (p.E452K) (19, 28, 29), developed hyperPP phenotype in

our patients. These findings, together with the p.T704M variant,

which is associated with both hyperPP and hypoPP2 phenotypes in

the present study, highlight the phenotypic heterogeneity of sodium

channelopathies. Mutations associated with hyperPP produce the

gain-of-function changes for Nav1.4, commonly exhibiting defects

of fast and/or slow inactivation, and occasionally showing an

enhancement of activation (27). In contrast, multiple mechanisms

have been elucidated from hypoPP2 mutations, consisting of loss-

of-function changes of Nav1.4, such as enhanced inactivation and

decoupling of voltage-sensor displacement to channel opening (29,

30), as well as the gating pore “leakage” current (31). Reduced

Nav1.4 currents may also contribute to the reduced excitability of

the muscle membrane, leading to paralysis. Among novel SCN4A

variants (p.A37T, p.F264S, p.R1451H, and p.T1646N), p.A37T and

p.T1646N locate at cytoplasmic N or C terminus of Nav1.4, the

domains where multiple variants have been reported, and a p.F1705I

variant was found causing fast inactivation defects (32).

Despite PP, ventricular arrhythmias, and dysmorphism being

identified as the triad of ATS, patients frequently lack one or

more features of the classic triad. As demonstrated in our patients,

among all six patients carrying KCNJ2 variants, none of them

showed any noticeable dysmorphic features or electrocardiographic

abnormalities. This PP-only phenotype complicates the clinical

diagnosis of ATS and emphasizes the importance of genetic screening

for the KCNJ2 gene in patients with isolated PP. Our outcomes also

indicate that the frequency of ATS with PP-only phenotype may

be underestimated, referring to a previous report in Japan (2/57)

(33). Mutations of KCNJ2 locate throughout the Kir2.1 protein, and

cellular analyses revealed the loss-of-function and mostly with a

dominant-negative effect on lowering the inward rectifier current,

which subsequently depolarizes resting membrane potential and

leads to paralysis (10, 34).
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FIGURE 3

Schematic diagrams of proteins and variants detected in this study and literature review. (A) Cav1.1 protein and five variants locate at its voltage–sensor

domains (light red color). (B) Nav1.4 and 14 variants scatter throughout the protein. (C) Kir2.1 and location of six variants. Red dot and label: hyperPP

phenotype; blue dot and label: hypoPP phenotype; underline: novel variants. (D) Literature review of genetic proportions from large-group studies of

multiple countries, covering all CACNA1S, SCN4A, and KCNJ2 genes.

On the other hand, SPP is predominant in our case series

(94:25), and the etiology requires further research. Recently, within a

molecularly undiagnosed Japanese SPP cohort, disease susceptibility

was confirmed for nine single-nucleotide variants (SNVs), discovered

in genome-wide association studies from SPP and/or thyrotoxic

PP in Asian populations (35–40). All of these SNVs are found on

chromosome 17 downstream of the KCNJ2 gene, with strong linkage

disequilibrium, implying a genetic basis for the undiagnosed SPP.

In this study, we adopted a relatively broad inclusion criterion

and obtained a low diagnostic rate (28.6%) from a case series

of patients with PP. As indicated in our subsequent statistical

analyses, the diagnostic yield could be improved using a more
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TABLE 2 Literature review of large-group studies for patients with PP.

Reference HypoPP1 HypoPP2 HyperPP ATS Total Rate M:F

Sternberg et al. (20) (France; pedigree) 40/58 5/58 / / 45/58 77.6% /

Miller et al. (12) (USA; pedigree) 31/56 5/56 30/47 0 66/103 64.1% 1.6:1

Matthews et al. (19) (USA; case) 65/83 9/83 / / 74/83 89.2% /

Sung et al. (21) (Taiwan; pedigree) 3/64 5/64 / / 3/64 12.5% 63:1

Horga et al. (1) (UK; pedigree) 47 12 48 24 131 / 2.3:1

Stunnenberg et al. (2) (Netherlands; pedigree) 26 9 7 6 48 / /

Luo et al. (11) (China; pedigree) 4 9 7 10 30/53 56.6% 7.8:1

Sasaki et al. (5) (Japan; pedigree) 16 12 11 / 39 / /

Brugnoni et al. (18) (Italy etc. case) 38/59 12/59 / / 50/59 84.8% 2.5:1

Current study 9/65 5/65 14/52 6 34/119 28.6% 9.8:1

ATS, Andersen-Tawil syndrome; M, male; F, female; /, not available.

stringent enrollment criterion, such as positive family history, early-

onset, and recurrent paralysis. However, since disease-associated

variants were also identified from sporadic, atypical, or first-

onset cases, we decided to involve all of them in this study. We

could not exclude the possibility that the part of our patients

was actually not PP, particularly those patients with hyperPP.

Another limitation of this study is that the pathogenicity of the

VUS variants has not been functionally verified, whereas the

possible existence of benign variants would make the diagnostic rate

even lower.

In summary, we evaluate the low molecular diagnostic rate and

specific genetic proportion of a large Japanese case series of patients

suspected of PP. Our outcomes outline the racial diversity and

etiological complexity of patients with PP in Japan. Future research

should attempt to explore other possible causes of undiagnosed

PP, the pathogenicity of detected variants in known PP disease-

causing genes, particularly VUS variants, and the pathogenesis of

SPP-associated SNVs.
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