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Aims: This study adopted the Glutamate Chemical Exchange Saturation Transfer

(GluCEST) imaging technique to quantitatively analyze cranial glutamate and

discussed the e�ectiveness of GluCEST values in identifying the pathogenesis of

encephalopathy after CO poisoning.

Methods: The routine MRI and functional MRI scans of two cohorts of subjects (CO

group, n = 29; Control group, n = 21) were performed. Between-group comparisons

were conducted for GluCEST% in regions of interest (ROI), including the basal ganglia,

the thalamus, the frontal lobe, the occipital lobe, the genu of corpus callosum,

the cingulate gyrus, and the cuneus. Moreover, an age-stratified subgroup analysis

was devised, and a correlational analysis was performed for GluCEST% in each ROI,

including the time in coma, SimpleMini-Mental State Examination Scale (MMSE) score,

Hamilton Anxiety Scale score, and blood COHb%.

Results: As compared to the healthy control, the CO group led to significantly

increasing GluCEST% in the basal ganglia, the occipital lobe, the genu of the corpus

callosum, the cingulate gyrus, and the cuneus (p < 0.05). In the subgroup analysis

for age, adult patients had higher GluCEST% in the basal ganglia, the thalamus, the

occipital lobe, the cingulate gyrus, and the cuneus compared to healthy adults (p

< 0.05). In addition, the correlational analysis of CO-poisoned patients revealed a

statistical association between the GluCEST% and the MMSE in the thalamus and the

genu of the corpus callosum.

Conclusion: The GluCEST technique is superior to routine MRI in that it can

identify the cerebral biochemical changes sooner after acute CO poisoning, which is

significant for our understanding of the role of neurotransmitters in the pathological

basis of this disease. Brain injury caused by CO poisoning may be di�erent in adults

and children.

KEYWORDS

carbonmonoxide poisoning, chemical exchange saturation transfer, CO poisoning, GluCEST,

glutamate

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1065490
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1065490&domain=pdf&date_stamp=2023-02-02
mailto:hwenb@126.com
https://doi.org/10.3389/fneur.2023.1065490
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2023.1065490/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zheng et al. 10.3389/fneur.2023.1065490

1. Introduction

Carbon monoxide (CO), which is tasteless, colorless, and

odorless, is absorbed into the human body across the lining of the

lungs (1). It is themain cause of death related to poisoning inmultiple

countries, and more importantly, it may lead to fetal poisoning

in over half of the global population (2). People surviving CO

poisoning still display long-term neurocognitive sequelae associated

with cerebral injury and may present with symptoms including

memory decline, cognitive impairment, depression, anxiety, and/or

vestibular and motor dysfunctions (3). Given the affinity to CO

is 250 times higher than oxygen (4), hemoglobin (Hb) in blood

circulation can bind with CO to form carbonylhemoglobin (COHb).

In that way, the Hb fails to carry more oxygen and the degradation

of oxygenated hemoglobin will be blocked, leading to severe tissue

hypoxia. The decreasing oxygen levels and mitochondrial oxidative

phosphorylation will cause ischemic and hypoxic cerebral injuries

that finally result in cognitive impairment (5). Ischemic brain

injury might be a result of excitotoxicity, acidosis, ion imbalance,

depolarization, oxidative stress, nitrosative stress, inflammation,

and cell apoptosis (6). Excess CO activates the platelets and

amplifies the inflammatory effects by triggering neutrophil activation,

adhesion, and degranulation. These inflammatory effects are ongoing

long after the initial CO poisoning and may dominate the

clinical expression (7, 8). Adenosine triphosphate is the direct

energy source of the organism. When its content decreases,

intracellular protease and lipase will be activated accordingly

to induce mitochondrial membrane depolarization, cell death,

and release of neurotransmitters (especially, glutamate) (6, 9).

Glutamate is a core player in excitatory neurotransmission. In the

cases of impaired homeostasis, it will induce the production of

neurotoxins or excitotoxins and activate the pathways of neuron

death (10). In the presence of acute ischemic or toxic injury and

chronic neurodegeneration, the glutamate receptor will be activated

excessively, which is the key to the generation of excitotoxicity and

incidence of cell death (11). Previous studies have reported that the

most common manifestations of MR after CO poisoning are high

signals in the bilateral globus pallidus and the white matter region

of the brain (12, 13). Conventional MRI could show the involvement

of globus pallidus with CO exposure as it is at risk for damage due to

the hypotension-hypoxia processes because of poor collateral blood

flow or from CO binding to heme iron in the globus pallidus, where

the highest concentration of iron in the brain is located (1). The

abnormal finding detected on MR imaging in the white matter is

more responsible for the chronic symptoms than the graymatter (14).

The centrum semiovale and periventricular white matter are the most

common regions of white matter to be affected after CO poisoning

(15, 16). The white matter damage can be observed in various other

regions rather than the centrum semiovale and the periventricular

white matter, such as the temporal lobe, the occipital lobe, the parietal

lobe, and the corpus callosum (12, 17–19).

Chemical exchange saturation transfer (CEST) is a novel MRI

technique. It uses frequency-selective radiofrequency pulses to ensure

magnetization saturation from some exchangeable protons in solutes

and characterize the microenvironment of the tested solution by

metabolite concentrations, temperature, and pH values by calculating

the proportional change in water signals in the bulk water pool

(20–22). Comparatively, CEST is superior to magnetic resonance

spectroscopy with higher specificity and spatial resolution (23).

Given the advantages, CEST is widely adopted in the examination

of multiple molecules, such as glucose with GlucoCEST (24),

adenosine triphosphatase in polypeptides, tissuemobile proteins with

amide proton transfer (25), and glutamate with GluCEST (26, 27).

The asymmetric magnetization transfer ratio (MTRasym) can be

calculated to represent the signal intensity on CEST, majorly by the

difference in the values of the bilateral resonance frequency of the

solvent water protons (1MTRasym). It is reported that GluCEST has

high signal intensity at 1MTRasym (3 ppm) (23) and 1MTRasym.

Therefore, quantitative calculation of the changes in glutamate

concentration can be performed. Currently, there were some studies

on magnetic resonance imaging (MRI) for cerebral metabolites after

acute CO poisoning (28, 29), while less is devoted to the cranial

glutamate changes (30, 31). Glutamate chemical exchange saturation

transfer (GluCEST) imaging is a non-invasive quantitative technique

and its application values in patients with acute CO poisoning are not

yet reported.

Glutamate is a type of excitatory neurotransmitter most abundant

in the brain and involved in a variety of physiological functions

in the nervous system (32, 33). It is known that glutamate is

important in cerebral injury after CO poisoning. In an animal

experiment, for instance, increases in glutamate release and hydroxyl

free radical production were observed during and after the hypoxia

is induced by CO absorption in rats, which were believed to

be the cause of ischemic cerebral injuries (30). Other studies

revealed that glutamate could aggravate cellular dysfunction and

cell apoptosis by activating the N-methyl-D-aspartate receptor

(NMDAR) (6), and the NMDAR antagonist could alleviate the CO-

induced neurodegeneration (34). We assumed that GluCEST may be

effective as a precise diagnostic approach for encephalopathy during

the acute phase after CO poisoning.

As a non-invasive and quantitative imaging technique, GluCEST

was previously applied to multiple diseases of the nervous system

(35–37). Currently, there is no report on its application in

encephalopathy after CO exposure. Herein, we used a 3.0-Tesla

MR scanner to assess the value of the GluCEST technique in

diagnosing cerebral injuries after CO poisoning and in understanding

the pathogenesis.

2. Methods

2.1. Subjects

Overall, there are 29 patients with acute CO poisoning included

and categorized into the CO group. These patients were treated

for acute CO poisoning in our hospital at different time points

from December 2020 to March 2021. There were 12 men and 17

women, aged between 6 and 48 years (average, 19.4 ± 12.5 years).

The inclusion criteria (38) included (1) a history of exposure to

high concentrations of CO; (2) symptoms and signs of acute central

nervous system injuries; (3) timely blood COHb content conforming

to the national diagnostic criteria. For MRI, the time interval to be

exposed to high concentrations of COwas required to be smaller than

3 days. Hyperbaric oxygen and correction for electrolyte disturbance

treatment were performed upon admission. Adult patients with

CO poisoning were treated with hormone therapy for 3 days

after admission to prevent immune inflammatory responses. The

patients received 1 h hyperbaric oxygen therapy (0.2 MPa) 1–2 h
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TABLE 1 Participant clinical characteristics.

Patient Control

Gender (male/female) 12/17 9/12

Age (years) 19.4± 12.5 20.7± 7.4

MMSE (point) 16 (7.5)∗ 25.82 (4.18)∗

Coma time (minute) 36 (30) –

COHb (%) 33.1 (17.25) –

HAMA (point) 2 (1.75) 2 (1)

MMSE, Simple Mini-Mental State Examination Scale; HAMA, Hamilton Anxiety Scale; ∗P <

0.05, which were obtained by a two-sample t-test for age, MMSE, and the chi-square test for

gender difference.

after admission and then received hyperbaric oxygen therapy (0.2

MPa) once a day, 1H each time. The duration was generally 7

days. After treatment, the patient still showed clinical symptoms

and cognitive decline. Although the clinical symptoms recovered, the

patient did not meet the criteria for recovery. In the meantime, each

patient was subjected to a Mini-Mental State Examination (MMSE),

and the period in coma and COHb concentration were recorded

(Supplementary Table 1). At 1month follow-up, onsite and telephone

interviews were conducted and the Hamilton Anxiety Scale (HAMA)

score was obtained (Supplementary Table 1). Healthy volunteers

matched for gender, age, and educational level were recruited from

our hospital as the control group (control group, n = 21), including

9 men and 12 women aged between 8 and 30 years (average, 20.7

± 7.4 years). In this population, there was no history of cerebral

injury, psychiatric disorder, alcohol abuse/substance dependence,

or diseases of the nervous system (including stroke, seizure, and

somatic disease). Table 1 shows the detailed demographic and clinical

information. All patients gave written informed consent. The project

was approved by the Ethics Committee of The Second Affiliated

Hospital of Shantou University Medical College.

2.2. MRI imaging

The structural MRI and CEST MRI data were collected using a

3.0 TeslaMRI scanner (Sigma; GEHealthcare, Milwaukee,WI, USA),

using an 8-channel phased-array head coil. The sponge padding

was used to limit head motion. The T2-weighted images (T2WI)

[repetition time (TR) = 4,600ms, echo time (TE) = 120ms, 20

slices, and acquisition time: 1min 35 s], the T2WI fluid-attenuated

inversion recovery images (TR= 8,600ms, TE= 155ms, inv. time=

2,100ms, 20 slices, and acquisition time: 1min 53 s), and diffusion-

weighted images (TR = 5,200ms; TE = minimum; b = 1,000,

20 slices, and acquisition time: 42 s) were obtained to acquire the

information of the brains of all subjects.

The CEST scan was based on anMT-prepared gradient echoMRI

sequence with the following settings: TR = 50ms, TE = 3.1ms, field

of view= 240× 240 mm2, matrix= 128× 128, 1 slice, slice thickness

= 5mm, and bandwidth = 15.63 kHz. The MT saturation pulse was

a Fermi pulse with a 20ms width and a B1 of 1.95 µT (39). The

CEST imaging was performed on the brain slice shown in Figure 1.

The regions of interest (ROI) consisted of seven bilateral standard

regions in all patients with acute CO poisoning and healthy controls

which are basal ganglia, thalamus, the genu of the corpus callosum,

the frontal lobe, the occipital lobe, the cuneus, and the cingulate gyrus

(Figure 1). Except for the basal ganglia region and the thalamus, the

ROI was placed in the gray matter region, and for other brain regions,

the ROI was placed in the white matter region of the genu of the

corpus callosum, the frontal lobe, the occipital lobe, the cuneus, and

the cingulate gyrus. The images were interpreted independently by

two experienced radiologists who were blinded to the neurological

manifestations and the results of the analyses.

2.3. Data processing

All CEST image processing was performed using software

routines written in Matlab 7 (Mathworks, Natick, MA, USA). The

acquired images were corrected for B0 inhomogeneity using a

water saturation shift referencingmap. The corresponding correction

algorithm referred to a previous detailed discussion (40). Then,

the GluCEST contrast map was generated using the following

equation (41).

GluCEST =
S(−3ppm)− S(+3ppm)

S0
(1)

where S (−3 ppm) and S (+3 ppm) are the images obtained at−3

ppm and +3 ppm, respectively. The Z-spectra were obtained from

the normalized CEST images. The MTRasym maps were computed

using the equation (41).

MTRasym =
Ssat(−1ω)− Ssat(+1ω)

S0
(2)

2.4. Statistical analysis

Data processing and analyses were completed with SPSS 20.0

(SPSS 20.0, IBM, Armonk, NY). Comparative results, MMES score,

time in coma, COHb concentration, and postoperative HAMA score

were represented by mean (interquartile range). Age (continuous

variable) was displayed in mean ± standard deviation. The

categorical variables are shown in integers. The normal distribution

of continuous parameters was determined by the Shapiro–Wilk test,

followed by the Kruskal–Wallis H-test for data comparison.

The average GluCEST% in the bilateral ROI in the two groups

was measured by GluCEST, and the data that did not conform to

normal distribution were tested by the Mann–Whitney U-test. A

comparison of the age and educational levels were completed by

the two-sample t-test and that for gender using the chi-square test.

A Spearman correlational analysis was performed to calculate the

association of GluCEST% with the time in coma, MMSE score,

COHb concentration, and postoperative HAMA score. A p < 0.05

demonstrates a statistically significant difference.

3. Results

3.1. Clinical data

The reason for CO poisoning in coma patients was the long

bathing time in an enclosed bathroom using the gas stove. There

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2023.1065490
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zheng et al. 10.3389/fneur.2023.1065490

FIGURE 1

ROIs for T2WI and GluCEST: basal ganglia (pink), thalamus (light blue), the genu of the corpus callosum (purple), frontal lobe (red), occipital lobe (green),

cuneus (yellow), cingulate gyrus (orange). Except for the basal ganglia region and the thalamus, the ROI was placed in the gray matter region, and for

other brain regions, the ROI was placed in the white matter region.

were no statistically significant differences between the patients

and the healthy volunteers in terms of gender (χ2 = 0.011 and

P = 0.917) and age (P = 0.65, two-sample t-test). The MMSE

score was lower in patients with CO poisoning (P < 0.001, two-

sample t-test). In the acute phase, patients presented with symptoms,

including coma, headache, dizziness, fatigue, and memory decline

after a lucid interval. Upon follow-up 1 month after the discharge,

the HAMA scores between the two groups were not remarkably

different. There was no evident sequela, except for one who still

had dizziness and memory decline. The demographic and clinical

information of the subjects of the study are shown in Table 1. There

were no statistical differences between the subgroups of age regarding

COHb concentration, the time in coma, and the HAMA score upon

follow-up.

3.2. MRI manifestations

In routine MRI, abnormal images were shown only in two

adult patients, majorly bilateral globus pallidus on T2WI (Figure 2)

and signal enhancement on T2flair and DWI. One of them also

showed abnormal images in the white matter of the right occipital

lobe. No abnormality was observed in the other patients. Higher

GluCEST imaging parameters were generally observed in patients

with CO poisoning vs. healthy volunteers (Figure 2). In terms of

the GluCEST% in each ROI, it was higher in patients in the basal

ganglia (Z = 3.253), the occipital lobe (Z = 4.142), the genu of the

corpus callosum (Z = 2.323), the cingulate gyrus (Z = 1.96), and the

cuneus (Z = 2.849) as compared to the healthy controls (P<0.05,

Tables 2, 3). In the subgroup analysis for age, higher GluCEST%

was observed in the basal ganglia (Z = 3.956), the thalamus (Z =

2.11), the occipital lobe (Z = 3.429), the cingulate gyrus (Z = 2.506),

and the cuneus (Z = 3.165) in adult patients, when compared to

the healthy adult volunteers (P < 0.05, Tables 2, 3). In children,

higher GluCEST% was also observed in multiple ROIs in patients,

while the differences among those in healthy children were not

statistically significant. Further correlational analysis revealed that

the increasing GluCEST% in the thalamus and the genu of the corpus

callosum in patients with CO poisoning was remarkably associated

with the MMSE score (Figure 3). There was no statistical association

between the GluCEST% in each ROI and the time in coma, COHb

concentration, and postoperative HAMA score.

3.3. Discussion

CEST is a relatively new contrast mechanism of MRI. It uses

the specific MR frequency (chemical shift) at the molecular level

and the standard MRI technique to generate images of good spatial

resolution. Some CEST techniques, such as GluCEST, can indirectly

examine molecules by combining the specificity and the spatial

resolution of MRI (42, 43). GluCEST is effective in measuring the

glutamate content in the brain, which is generally higher than the

concentration of other metabolites in the brain (42). In the current

study, changes in cranial glutamate levels were examined in the acute

phase after CO poisoning to study the potential effect on cranial

neurotransmitters, which was not previously reported.

In a previous animal experiment, hypoxia was induced in rats

by CO inhalation, and instantly, the release of glutamate and the

production of hydroxyl free radicals increased in the cerebral cortex

and the hippocampus, which were considered to be the cause

of ischemic brain injury after CO poisoning (30). Other studies

revealed that glutamate could aggravate cellular dysfunction and

cell apoptosis by activating NMDAR (6). Here, we found that

patients with CO poisoning had remarkably increasing GluCEST%

in the basal ganglia, the occipital lobe, the corpus callosum, the

cingulate gyrus, and the cuneus, indicative of more cranial excitatory

neurotransmitters and a tendency of accumulation in the above
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FIGURE 2

(A, C) Abnormal T2WI images of two female patients (Patient A, 24-year-old and Patient C, 47-year-old), mainly manifested in the bilateral globus pallidus.

(B, D) Higher signals on GluCEST images present in the globus pallidus and the cerebral white matter region. (E, F) T2WI and GluCEST images of a healthy

adult (female, 24-year-old).

brain regions. Autopsy findings suggested that the major pathological

changes after CO poisoning were the necrosis of globus pallidus

and demyelination in the cerebral white matter area (44–46), which

were mainly attributed to cerebral ischemia and edema. Given the

hyperactivity and sufficient blood supply of neurons in the gray

matter regions, such as the deep brain nucleus, the gray matter
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TABLE 2 GluCEST in each region of interest.

Basal ganglia Thalamus Frontal lobe Occipital lobe Genu of the corpus
callosum

Cingulate gyrus Cuneus

CO poisoning 0.0352 (0.0263) 0.0242 (0.0173) 0.0294 (0.0111) 0.0444 (0.0115) 0.0295 (0.0121) 0.0331 (0.0377) 0.0338 (0.0372)

Adult CO poisoning 0.0361 (0.0557) 0.0215 (0.0349) 0.0298 (0.0167) 0.0436 (0.0139) 0.0251 (0.0322) 0.0331 (0.0227) 0.0294 (0.0261)

Children CO poisoning 0.0352 (0.0248) 0.0248 (0.017) 0.0289 (0.0095) 0.0443 (0.0132) 0.0303 (0.0081) 0.0341 (0.0759) 0.037 (0.0383)

Control 0.0200 (0.0179) 0.0173 (0.0123) 0.0276 (0.0127) 0.0244 (0.0134) 0.0224 (0.0108) 0.0235 (0.0299) 0.0171 (0.0212)

Adult control 0.0159 (0.005) 0.0159 (0.0043) 0.0231 (0.0129) 0.0188 (0.0095) 0.0193 (0.0081) 0.0209 (0.0176) 0.0171 (0.0077)

Child control 0.0433 (0.0478) 0.0272 (0.021) 0.0284 (0.0187) 0.0287 (0.0219) 0.0287 (0.0213) 0.0433 (0.0945) 0.0387 (0.0474)

GluCEST value of each group and ROI was expressed in median (interquartile range).

TABLE 3 Two-sample Mann–Whitney U-test in each group.

Basal ganglia Thalamus Frontal lobe Occipital lobe Genu of the corpus
callosum

Cingulate gyrus Cuneus

CO poisoning vs. healthy

control

3.253∗∗ 1.939 1.596 4.142∗∗ 2.323∗ 1.96∗ 2.849∗∗

Adult patient vs. adult control 3.956∗∗ 2.11∗ 1.846 3.429∗∗ 1.714 2.506∗ 3.165∗∗

Child patient vs. child control 0.000 0.36 0.206 1.594 0.36 0.206 0.257

Mann–Whitney U-test was performed for comparisons between the CO and healthy control groups and between the subgroups. ∗P < 0.05, ∗∗P < 0.01.
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is more susceptible to poisoning-induced brain ischemia than the

white matter. In the subacute phase, DWI manifestations are a

hypointense signal and a high ADC value in the globus pallidus

and a hyperintense signal and a low ADC value in the cerebral

white matter (47). This suggests that the injury in cerebral white

matter is a result of both ischemic globus pallidus and progressive

demyelination changes (48). In the present study, only two patients

exhibited abnormal images in MRI and no abnormality was noted

in the other patients. It is tempting to assume that the GluCEST

technique can show early changes in cranial neurotransmitters after

hypoxia induced by CO exposure, and the changes can involve the

deep brain nucleus and white matter simultaneously. It is reported

that the bilateral basal ganglia, especially the globus pallidus, is

the most susceptible region to CO poisoning (45). Controversially,

some researchers report that the changes in the striatum after

CO poisoning were independent of glutamate receptor activation

induced by the increasing extracellular glutamate content (49).

Tambasco et al. (10) revealed that CO poisoning leads to impaired

glutamate homeostasis and significantly affects neurons by producing

neurotoxins or excitotoxins and activating the pathways of neuronal

death. In this context, the specific mechanism of the action of

glutamate elevation in the basal ganglia requires further research.

Herein, we also found that the GluCEST% was abnormally increased

in the bilateral occipital lobe areas, except for the common bilateral

basal ganglia. The occipital lobe is the visual center and when an

injury occurs, visual impairment will be developed. A previous study

found that COHb >30% could result in visually evoked abnormal

potentials and that CO poisoning came with a series of clinical

symptoms, including ocular discomfort, blurred vision, and visual

field defects, which are not entirely consistent with the findings in

ophthalmic examinations (50). This is in line with our findings. In

the injured areas of the cerebral white matter, the semioval center

and the white matter next to the lateral ventricle are the most

susceptible, and the corpus callosum can also be affected. Research

revealed that corpus callosum could present with generalized atrophy

after CO poisoning (18), which was once reported to be associated

with neuropsychological presentations in other diseases (51). Our

results showed that the GluCEST% in the genu of the corpus

callosum was statistically different between the patients and healthy

volunteers. In addition, the GluCEST% in the thalamus and the

genu of the corpus callosum were negatively associated with the

MMSE score, which was weak. This infers that the changes in

glutamate levels in the genu of corpus callosum may indicate the

disease condition in patients to some extent. The thalamus is key

to cognitive tasks, consciousness, and awakening. Impairment of the

thalamus and the connections may cause damage to a wide range

of neurological functions, which might be clinically translated into

significant cognitive, physical, and psychic disorders (52). We also

noted that there was no correlation with the MMSE score in the other

ROIs. The possible explanationmight be that theMMSE scoremainly

targets the directional and verbal functions. There is a certain rate of

false negative score when applied for moderate to critical cognitive

disorders, and it is readily affected by the speech and educational

levels of the patients.

The age range of patients included in this study was large

and ranged from childhood to middle age. However, there are

no unified reports on the changes in craniocerebral metabolites at

different stages of craniocerebral development, especially glutamate.

Although the patients included in this study have a large age

span, in addition to the measurement analysis of all patients with

CO poisoning, adults and children are also divided into different

subgroups for analysis, and different results are obtained. In the

subgroup analysis for age, GluCEST% in both the adult and child

patients increased when compared to the corresponding healthy

control. Notably, there was no statistical significance in the difference

in children. We reasoned that the varying collateral circulation

compensation mechanism between adults and children (53) may

be used to explain the less damage to the basal ganglia region

in the early acute phase after CO exposure in children. Some

previous literature suggested that patients with CO poisoning could

be divided into mild, moderate, and severe according to the blood

COHb value, symptoms, and coma state (54, 55). However, this

classification was not well-suited to the patients we included in the

study. First of all, according to clinical symptoms, the conditions of

our patients were relatively consistent, whose state of consciousness

was manifested as mild to moderate coma, and they recovered after

rescue without obvious complications. Previous literature state that

the degree of poisoning in patients can be determined according

to the standard of blood COHb concentration. However, clinical

symptoms of acute CO poisoning and their severity do not always

correlate with the concentrations of CO-Hb on admission (8, 56–

58). The COHb level in the clinical diagnosis of CO poisoning is not

significant (58). Herein, we also found that there was no statistical

correlation between the GluCEST% and COHb concentration after

CO poisoning.

At follow-up, patients made a good recovery of mental status

according to postoperative HAMA scores. There was no evidence

of significant sequela, and the time in coma was independent

of the GluCEST values. This indicates that timely treatment was

achieved in patients after coma was induced by CO poisoning and

the early increase in GluCEST values might not cause irreversible

damage to the brain. There are two possible explanations. First,

the time in coma lacks subject assessment. Here the value was

obtained mainly by the bath time, which is changeable and objective

possibly affecting the data correlations. Second, patients included

in this study had different degrees of CO exposure and are not

only from the most critically affected populations. Only in the

cases of severe CO exposure, the patients might be more likely to

develop higher GluCEST values and severe clinical symptoms. More

significant associations might be present, while further validation is

in demand.

4. Limitations

The strength of this study is that it evaluates the value of

the GluCEST technique as a new method in the diagnosis and

understanding of the pathogenesis of brain injury after CO poisoning.

However, there are still some limitations in this study. First, due to

the obvious seasonal recruitment of patients with CO poisoning in

our area, the number of cases collected in this study is relatively

small, which may affect the experimental results. In the future, we

will increase the sample size to consolidate our experimental results.

Second, the grouping used in this study was based on age. According

to the clinical symptoms of the patients and the different periods

of CO poisoning and prognosis, patients with CO poisoning can

also be divided into other subgroups. Finally, the participants in this

study included subjects with a large age span. Such samples are vastly
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FIGURE 3

The negative association of the GluCEST% in the thalamus and the genu of the corpus callosum with the MMSE scores of patients with CO poisoning.

different in terms of brain development and life trajectories and could

affect the results. In the future, we will increase the sample size to

further explore the ability of the GluCEST technique as a newmethod

of diagnosis and evaluation of the prognosis of CO poisoning in

different subgroup analyses.

5. Conclusion

The GluCEST technique can provide a view of the glutamate

concentration in the early phase after CO poisoning. It is superior

to routine MRI as it can identify cerebral biochemical changes

earlier in the acute phase after CO exposure, which is significant

for our understanding of the role of neurotransmitters in the

pathological basis of this disease. Cerebral injuries after CO

poisoningmight vary among adults and children. The early glutamate

concentrations of the thalamus and the corpus callosum may be

of importance in the assessment of the degree of cerebral injury

after CO poisoning. The GluCEST imaging technique provides

a new way to understand the pathophysiological mechanisms of

CO poisoning.
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