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Background: Cerebellar functional alterations are common in patients with mesial

temporal lobe epilepsy (MTLE), which contribute to cognitive decline. This study

aimed to deepen our knowledge of cerebellar functional alterations in patients

with MTLE.

Methods: In this study, participants were recruited from an ongoing prospective

cohort of 13 patients with left TLE (LTLE), 17 patients with right TLE (RTLE), and 30

healthy controls (HCs). Functional magnetic resonance imaging data were collected

during a Chinese verbal fluency task. Group independent component (IC) analysis

(group ICA) was applied to segment the cerebellum into six functionally separated

networks. Functional connectivity was compared among cerebellar networks,

cerebellar activation maps, and the centrality parameters of cerebellar regions.

For cerebellar functional profiles with significant di�erences, we calculated their

correlation with clinical features and neuropsychological scores.

Result: Compared to HCs and patients with LTLE, patients with RTLE had higher

cerebellar functional connectivity between the default mode network (DMN) and

the oculomotor network and lower cerebellar functional connectivity from the

frontoparietal network (FPN) to the dorsal attention network (DAN) (p < 0.05, false

discovery rate- (FDR-) corrected). Cerebellar degree centrality (DC) of the right lobule

III was significantly higher in patients with LTLE compared to HC and patients with

RTLE (p < 0.05, FDR-corrected). Higher cerebellar functional connectivity between

the DMN and the oculomotor network, as well as lower cerebellar degree centrality

of the right lobule III, was correlated with worse information test performance.

Conclusion: Cerebellar functional profiles were altered in MTLE and correlated with

long-term memory in patients.

KEYWORDS

temporal lobe epilepsy, cerebellum, fMRI, verbal fluency task, independent component

analysis (ICA), graph theory

1. Introduction

Cerebellar alterations are common in mesial temporal lobe epilepsy (MTLE), one of the

most prevalent forms of focal epilepsy in adults. The cerebellum is a potential target for seizure

control in patients with drug-resistant MTLE because it contributes to cognitive deficiency in

MTLE (1–4). Previous studies focused primarily on cerebellar structural abnormalities inMTLE.

Cerebellar volume decreased by 4–6.6% in patients with chronic MTLE (5), but not in those
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with newly diagnosed temporal lobe epilepsy (TLE) (6). Cerebellar

volume decreased more with longer disease duration (6–9), higher

seizure frequency (6, 10), and a higher total seizure burden (5, 6, 11).

Three independent studies reported cerebellar hyperfusion during

temporal lobe seizures (12–14). In addition, the cerebellar damage

in patients with epilepsy was similar to that in patients with cerebral

hypoxia (11). Therefore, cerebellar structural damage was considered

to be an acquired abnormality caused by hypoxia, seizure discharges,

and hyperfusion during uncontrolled seizures.

The cerebellum is essential for language and long-term memory

retrieval, except for motor control (15). Activation in the cerebellum

rose with increasing memory load (16, 17). Meanwhile, sequence

processing, one of the language functions of the cerebellum, affects

the word retrieval strategy during verbal fluency tasks (18–20).

Phonemic and semantic verbal fluency tasks are important scales

clinically applied for routine and presurgical evaluation of TLE

to predict prognosis and postsurgical language outcomes (21–

23). According to lesion studies, phonemic verbal fluency was

largely attributed to the left frontal cortex and anterior temporal

lobe, and semantic verbal fluency was correlated with the left

posterior temporal cortex (24). Phonemic verbal fluency requires

category switching, causes greater cognitive load, and is, therefore,

more dependent on cerebellar function (19, 20). Same as the

cerebrum, language function in the cerebellum is lateralized. In

right-handed participants, the right posterolateral cerebellum, which

is functionally connected to the left prefrontal cortex, supports

phonemic processing and linguistic prediction (25, 26). During a

phonemic verbal fluency task, the left cerebellum was activated in

left-handed participants (25).

Previous studies detected a deviation in cerebellar function in

patients with TLE using voxel- and seed-based approaches. During

the attentional network test, activation in the cerebellum was reduced

in patients with MTLE compared to healthy controls (HC) (27).

Impaired functional connectivity between the right dentate nuclei

and the left cerebral hemisphere was related to cognitive impairment

in MTLE (2, 3). Graph theory analyses provided additional

knowledge regarding the role of cerebellar regions in TLE. Centrality

statistics represent the importance of a given node in the entire

network. In MTLE, cerebellar nodes with higher functional centrality

were reported, indicating an attempted compensatory process (28).

While the abovementioned approaches unfold cerebellar function at

the regional level, the cerebellum is organized as a functional network

(29, 30). Group independent component (IC) analysis (group ICA)

provides an ideal and robust approach for separating the cerebellum

into functionally segregated networks. Phonemic verbal fluency tasks

effectively mobilized the cerebellum and provided an ideal tool for

studying cerebellar malfunction at the network level. In addition,

the clinical application of the Chinese version of the phonemic

verbal fluency tasks was delayed due to the linguistic difference

between Chinese and Indo-European languages. The involvement of

the cerebellum in Chinese verbal fluency remained unclear. Further

studies on cerebellar abnormalities of functional networks would

deepen our understanding of the pathogenesis of cognitive decline

in MTLE.

Based on the Chinese character version of a verbal fluency

task, a cross-sectional study aimed to investigate alterations in

functional connectivity between cerebellar networks parcellated

using group ICA. A comprehensive view of cerebellar functional

alterations in MTLE in China was provided using voxel- and seed-

based approaches.

2. Methods

2.1. Participants

A total of 30 consecutive participants with temporal lobe epilepsy

and hippocampal sclerosis (HS) were selected from an ongoing

prospective cohort (31, 32). All participants visited the outpatient

department of Xiangya Hospital between 9 November 2018 and

9 January 2021. A total of 30 HC matched for sex, age, and

educational level participated in this study. Sex, age, years of

education, age of onset, disease duration, number of antiseizure

medications (ASMs), and seizure frequency were extracted from

the database. 3DT1, T2WI, and T2WI fluid-attenuated inversion

recovery sequences were applied to all participants to identify HS

and potential lesions. The diagnosis of HS follows a robust protocol

(33): (1) Neuroimagers diagnose HS based on visible changes,

including decreased hippocampal volume, increased temporal

horn volume, gray–white matter boundary blurring, asymmetric

hippocampus, loss of internal structure, and increased T2 signals

(34); (2) Reduced hippocampal volume calculated with the online

automatic segmentation tool Hipposeg (35); and (3) A disagreement

between procedures one and two may be reconciled with a

blind rater.

Mesial temporal lobe epilepsy was diagnosed and lateralized

based on a comprehensive evaluation of semiology, clinical

history, electroencephalography, and magnetic resonance imaging

(MRI). All participants in our cohort are right-handed (31, 36).

Exclusion criteria included: (1) Those who had a psychiatric

or neurological disorder other than MTLE, (2) Those who had

a cerebral or cerebellar lesion other than HS, (3) Those who

were below 16 or over 65 years of age, (4) Those who were

unable to endure or comprehend the procedure, (5) Those

who had poor imaging quality, including excessive head motion

or poor task effect, and (6) Those who received phenytoin

treatment (37).

This study was approved by the Ethics Committee of the Xiangya

Hospital of Central South University. Written informed consent was

obtained from all participants.

2.2. Neuropsychological tests

All participants underwent (1) Montreal Cognitive Assessment

(MoCA) (38) to test the overall cognitive function, (2) the

Information subtest of the Chinese version of the Wechsler Adult

Intelligence Scale (WAIS) as an evaluation for long-term memory

(32), (3) Digit Span subsets of WAIS-RC (revised by China) for

working memory (39), (4) the Digit Symbol Substitution subset of

WAIS-RC to exam the processing speed (32), (5) the Block Design

subset of WAIS-RC for perceptual organization, and (6) Verbal

Fluency-Chinese Character, Verbal Fluency-Chinese Pinyin (31), and

the Boston Naming Test (40) to test the language function.
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2.3. MRI data acquisition and preprocessing

Magnetic resonance imaging data were collected at the MRI

center of the Xiangya Hospital using a Siemens MAGNETOM

Prisma 3.0T MR scanner and standard head coils. Structural images

were collected using magnetization-prepared rapid acquisition and

a gradient echo sequence (field of view, 233mm; repetition time,

1 s; echo time, 37ms; flip angle, 9◦; 320 × 320 matrix). When

participants performed a Chinese character verbal fluency task (31,

41), functional images were obtained with a gradient echo-planar T2-

weighted sequence (field of view, 225mm; repetition time, 1 s; echo

time, 37ms; flip angle, 52◦; 90 × 90 matrix) when conducting the

Chinese character version of a phonemic verbal fluency task (41).

The task was divided into five blocks, each containing a 30-s

rest module and a 30-s task module. In the rest module, a crosshair

fixation would be projected on a white background. Participants were

instructed to rest while looking at the screen. In each task module,

one Chinese character would be displayed on a white background.

Participants were instructed to covertly generate words beginning

with the given Chinese character.

Raw images were realigned, co-registered, segmented,

normalized, and spatially smoothed (6mm) with the default

preprocessing pipeline (31) of Statistical Parametric Mapping

12 (https://www.fil.ion.ucl.ac.uk/spm/). Next, image data were

processed using Toolbox CONN v.20.b (42) (http://www.nitrc.

org/projects/conn) for further denoising. Head motion, outlying

scan detection using an embedded functional outlier, the effect of

modules, and signals in the white matter and cerebrospinal fluid

were removed as confounders. A bandpass filter [0.009–0.10Hz] was

applied to remove the noise.

2.4. Group ICA and network connectivity
analysis

Toolbox CONN v.20.b was used for group ICA and subsequent

network connectivity analysis. According to a previous study, the

cerebellum was segmented into six ICs at the group level (43).

Then, group cerebellum ICs were reconstructed back to individual

ICs. For each participant, the average blood oxygen level-dependent

signal time series in each individual IC was extracted for network

connectivity analysis. A generalized linear model (GLM) based on

semi-partial correlation was applied to calculate individual-level

functional connectivity (42). Individual connectivity values were

processed using Fisher transformation (inverse hyperbolic tangent

functions) and then compared between HC, left TLE (LTLE), and

right TLE (RTLE) using analysis of covariance (ANCOVA) and

post hoc pairwise comparisons, with sex, age, years of education,

and MoCA as covariates of no interest. The significant threshold

for network connectivity was p < 0.05, false discovery rate-

(FDR-) corrected.

2.5. Voxel-based analysis

SPM 12 was used to perform a two-level voxel-based analysis of

cerebellar activation maps. At the individual level, a task-dependent

contrast map was calculated for each participant. At the second level,

contrast maps were compared between groups via ANCOVA and

post- hoc pairwise comparison, with sex, age, years of education,

and MoCA as covariates of no interest. Clusters were considered

significant at p < 0.05, FDR-corrected with an additional threshold

of 10-voxel minimum cluster size.

2.6. Seed-based analysis

The whole brain was parcellated into 210 cortical regions (44),

36 subcortical regions (44), and 26 cerebellar regions (45). For each

participant, a GLM based on a bivariate correlation was used to

construct a 272 × 272 weighted matrix, which was then transformed

into 36 binary matrices with connection density ranging from 5 to

40%, in steps of 1% (46). Under each density, betweenness centrality

(BC) and degree centrality (DC) for 26 cerebellar regions were

calculated. BC is the frequency that a given node is on the shortest

path between all node pairs. DC is the number of suprathreshold

connections linked to a particular node. Centralities were compared

among the three groups by (1) area under the curve (AUC) across all

densities and (2) a subsequent comparison at each density. AUC was

calculated using R studio.

The bilateral cerebellar lobule and vermis were defined as seeds in

a seed-to-voxel analysis. Functional connectivity between the three

regions and whole-brain voxels was computed with CONN v.20.b,

based on a GLM and semi-partial correlation. Seed-based functional

connectivity was compared among the three groups with ANCOVA

and post-hoc pairwise comparison, with sex, age, years of education,

and MoCA as covariates. Clusters were considered significant at

p < 0.05, FDR-corrected with an additional minimum cluster size

threshold of 10 voxels.

2.7. Statistical analysis

IBM SPSS Statistics 23 (https://www.ibm.com/products/spss-

statistics) was used for statistical analysis. The distribution of

qualitative variables was assessed using the Shapiro–Wilko test.

Variables without a normal distribution or homogeneity of

variance were compared between the groups with nonparametric

approaches and reported as median and interquartile ranges. Sex,

age, years of education, and MoCA were compared among the

three groups using the chi-square test or the Kruskal–Wallis H-

test. ANCOVA or Quade nonparametric ANCOVA and post- hoc

pairwise comparisons were used to compare neuropsychological

test scores among the three groups, with sex, age, years of

education, and MoCA controlled for confounders. Qualitative

and categorical variables were compared between the two patient

groups using the two-tailed two-sample t-test and Fisher’s exact

test, respectively.

For functional network connectivity and centrality

metrics with a significant group difference, we calculated

their partial correlation with age of onset, disease duration,

seizure frequency, disease burden = disease duration∗seizure

frequency, number of ASMs, and neuropsychological

scores, adjusting for sex, age, years of education,

and MoCA.

A p-value of < 0.05, FDR-corrected, was considered significant.
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3. Results

3.1. Demographic and clinical data

The three groups did not differ in age, sex, years of education,

and MoCA scores. HC outperformed both patient groups in verbal

fluency Pinyin (VFP) scores (p = 0.004 and 0.02, FDR-corrected for

HC vs. LTLE and HC vs. RTLE, respectively). Patients with LTLE also

had worse Boston Naming (BN) scores than HC and patients with

RTLE (p= 0.004 and 0.03, FDR-corrected for LTLE vs. HC and LTLE

vs. RTLE, respectively).

Patients with LTLE and RTLE did not differ in their clinical

features (see the details in Table 1).

3.2. Group-ICA and network connectivity
analysis

Cerebellar ICs are shown in Figure 1. Cerebellar IC 1 contained

bilateral crus I and II, the lobules III–VI, and the vermis III–V. IC

2 and IC 6 had relatively symmetric regions because they included

the left crus I and II and the right crus I and II, respectively. IC 6

also contained the left crus I, the bilateral lobules VII and VIII. IC 3

comprised the bilateral crus I and II, the lobules IX, and the vermis

IX–X. IC 4 encompassed bilateral crus I and II, and the lobules VI–

VIII. IC 5 consisted of the vermis IV–IX and the bilateral lobules VIII

and IX.

Independent component (IC) 1 had a cerebral parcellation, which

contained the visual region and frontoparietal network (FPN). IC

2 and IC 6 were connected to the left and right FPN, respectively.

IC 6 had a cerebral parcellation, which contained regions similar

to the default mode network (DMN). IC 3 had connectivity to the

DMN, and IC 4 was connected to the dorsal attention network

(DAN). IC 5 had a cerebral parcellation consisting of auditory and

sensorimotor regions.

Functional network connectivity from IC 3 to IC 5 (p = 0.04,

FDR-corrected), IC 5 to IC 3 (p = 0.04, FDR-corrected), and IC 6 to

IC4 (p = 0.04, FDR-corrected) differed significantly among the three

groups. Post-hoc comparisons showed that connectivity between IC

3 and IC 5 (Figures 2A, B) was enhanced and connectivity from IC 6

to IC 4 (Figure 2C) was impaired in patients with RTLE compared to

HC and patients with LTLE.

3.3. Voxel-based analysis

Cerebellar activation maps did not differ among the three groups.

3.4. Seed-based analysis

On the overall scale (Figure 3, boxplot), DC of the right lobule

III differed significantly among the three groups (p = 0.05, FDR-

corrected), as it was elevated in LTLE compared to HCs (p = 0.002,

FDR-corrected) and RLTE (p= 0.03, FDR-corrected). DC of the right

lobule III was higher in LTLE than in HC at all densities (p < 0.05,

FDR-corrected). When the connectivity density was <32%, LTLE

also had a higher DC in the right lobule III than RTLE (p < 0.05,

FDR-corrected; Figure 3, line chart). There was a trend (p < 0.05,

FDR uncorrected) for the group difference of DC of bilateral lobule

X, vermis X, and the BC of the right lobule III, the right lobule X, and

vermis X.

Regarding seed-based functional connectivity, we did not observe

any significant differences among the three groups.

3.5. Correlation analysis

In all participants, weaker connectivity from IC 3 to IC 5 (r =

−0.33, p = 0.02), from IC 5 to IC 3 (r = −0.29, p = 0.04), and from

higher DC of the right lobule III (r = 0.31, p = 0.02) was related to

higher scores on Information Tests (Figure 4).

3.6. Sensitivity analysis

One patient with RTLE (female, 29 years old) received topiramate

(25mg, bid). Considering that topiramate was associated with

language and cognitive network dysfunction (47, 48), we conducted

a sensitivity analysis excluding this patient. The exclusion of this

patient did not affect the overall results. In patients with RTLE,

functional connectivity between IC 3 and IC 5 and from IC 6 to IC

4 was altered compared to HCs and patients with LTLE. DC of the

right lobule III was increased in LTLE compared to HCs (p = 0.002,

FDR-corrected) and patients with RTLE (p= 0.03, FDR-corrected).

4. Discussion

Cerebellar abnormality is a common phenotype of MTLE. The

cerebellar abnormality contributed to cognitive impairment inMTLE

(2, 3, 49). In this study, we applied group ICA and graph theoretical

approaches to verbal fluency task-based functional MRI (fMRI) data.

We divided the cerebellum into six functionally separated ICs and

found disruption in functional connectivity between ICs in patients

with RTLE. In LTLE, cerebellar centrality of the right lobule III was

significantly increased compared to HC and patients with RTLE.

These functional alterations were correlated with a decline in long-

term memory in MTLE.

We separated the cerebellum into six functionally discrete

components to identify cerebellar networks. Our cerebellar ICs and

cerebral parcellations were similar to previously reported atlases. IC

3 and IC 6 contained cerebellar lobule IX, part of the DMN (50, 51),

and were connected to cerebral DMN as expected. In our parcellation,

IC 1 consists of the primary sensorimotor zone of the cerebellum, and

IC 5 is the oculomotor network of the cerebellum (52). Similar to ICs

generated with the MELODIC software (29) or the MICA toolbox

(43), IC 2 and IC 6 in this study encompassed roughly symmetrical

cerebellar regions (crus I and II) and were connected to the right and

left FPN, respectively (53). Meanwhile, we noted some differences

between our observations and those found in previous studies. In

contrast to previous reports in the resting-state data, we noted greater

activation in IC 6 than in IC 2 because the Chinese character fluency

task was left-hemisphere dominant for right-handed participants.

In addition, Alsady et al. observed a cerebellar IC connected to

the cerebral DAN and the sensorimotor network. In this study,

we separated the cerebellar oculomotor network IC 5, which was

connected to the cerebral sensorimotor network, while cerebral DAN
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TABLE 1 Participant demographic and clinical data.

HC LTLE RTLE Statistic q

N 30 13 17 - -

Age, y, median (IQR) 26.0 (18.0) 30.0 (10.0) 26.0 (10.0) 2.31a 0.60

Sex, Male/Female 14/16 6/7 8/9 0.00b 1.00

Education, median (IQR) 12.3 (3.6) 11.4 (3.6) 11.6 (3.4) 0.98a 0.78

MoCA, median (IQR) 27.4 (4.2) 26.7 (2.6) 24.0 (5.5) 9.00a 0.07

Information, mean (SD) 15.8 (6.5) 14.5 (6.4) 11.9 (5.3) 1.62c 0.49

DSF, median (IQR) 8.2 (1.6) 7.6 (1.1) 7.2 (1.3) 1.92d 0.49

DSB, median (IQR) 5.1 (1.8) 4.8 (0.7) 4.9 (1.8) 0.31d 0.82

DSST, median (IQR) 60.0 (24.0) 55.0 (18.0) 60.0 (16.0) 0.71d 0.68

Block design, mean (SD) 37.6 (8.4) 31.7 (6.1) 34.1 (10.5) 2.21c 0.46

VFC, median (IQR) 25.6 (14.7) 16.9 (7.0) 20.4 (5.4) 3.47d 0.18

VFP, median (IQR) 47.3 (18.1) 32.9 (11.7) 38.4 (10.7) 7.35d 0.03

BN, median (IQR) 27.0 (5.0) 21.0 (10.0) 25.0 (3.0) 5.81d 0.05

AOO, y, mean (SD) 20.0 (8.4) 16.2 (6.8) 0.37e 0.49

duration, y, mean (SD) 11.5 (8.8) 10.4 (8.4) 1.39e 0.82

Disease burden, mean (SD) 22.1 (18.4) 22.5 (20.7) −0.05e 1.00

Febrile convulsion 2 (15.4%) 7 (41.2%) -f 0.64

SGS history 1 (7%) 0 (0%) -f 0.49

Number of ASM -f 0.60

1 8 8

2 4 9

3 1 0

Seizure frequency -f 0.60

Every year 5 2

Every month 4 9

Every week 2 4

Every day 2 2

aH-value of the Kruskal–Wallis H-test.
b
χ
2 value of the chi-squared test.

cF-value of analysis of covariates.
dF-value of Quade nonparametric analysis of covariates.
et-value of the two-tailed two-sample t-test.
fFisher’s exact test.

AOO, age of onset; ASM, antiseizure medication; BN, Boston Naming Test; DSB, Digit Span-Backward; DSF, Digit Span-Forward; DSST, Digit Symbol Substitution Test; HC, healthy controls; IQR,

interquartile range; LTLE, left temporal lobe epilepsy; MoCA, Montreal Cognitive Assessment; RTLE, right temporal lobe epilepsy; SD, standard deviation; SGS, secondary generalized seizures; VFC,

verbal fluency character test; VFP, verbal fluency Pinyin test.

was connected to IC 4. Despite the minor discrepancy in group ICA,

this study supported other studies regarding cerebellar segregation

and cerebro-cerebellar connectivity.

During the task, functional connectivity between IC 3 and

IC 5 was enhanced and functional connectivity from IC 6 to IC

4 was impaired in patients with RTLE compared to HCs and

patients with LTLE. A mutual connection between IC 3 and IC

5 represented a bidirectional communication between DMN and

the sensorimotor system in the cerebellum. Connectivity between

the cerebral sensorimotor system and DMN was enhanced in

drug-resistant epilepsy (54), frontal lobe epilepsy (55), juvenile

myoclonic epilepsy (56), and generalized tonic–clonic seizures

(57), and it was thought to lead to epileptic susceptibility (56,

57). Connectivity between the DMN and sensory regions caused

lapses in certain ways (58). In addition, hypoconnectivity from

IC 6 to IC 4 indicated disconnection between the left FPN,

DMN, and DAN. In MTLE, connectivity between DAN and the

executive control network was decreased in patients with cognitive

impairment (59).

Degree centrality measures the number of suprathreshold

connections linked to a certain node. In this study, the right lobule

III in LTLE had significantly higher DC than that in RTLE and

HCs. The cerebellum became a functional hub for the whole-brain

network in MTLE. Garcia-Ramos et al. hypothesized that this is
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FIGURE 1

Cerebellar independent components and their cerebral parcellations. (A) ICA-based cerebellar parcellation. (B) Whole-brain back-reconstruction of

cerebellar ICs.

a compensatory reaction as the cerebellum was more integrated

into the cerebral network and tried to compensate for the impaired

cerebral function (28).

The Chinese version of the Information Test covered basic

questions on geography, literature, history, and general knowledge.

At the same educational level, the Information Test estimates long-

term semantic memory (32). In RTLE, hyperconnectivity between IC

3 and IC 5 contributed to worse performance on the Information

Test. In LTLE, higher compensatory DC of the right lobule III was

correlated with higher Information Test scores. Though semantic

memory was impaired at the same level for LTLE and RTLE

in alphabetic languages (60, 61), our previous studies involving

more participants reported worse Information Test scores in RTLE

compared to HC and LTLE (32, 62), indicating that the Information

Test might be a right-hemisphere dominant test in Chinese.

Our results indicated that cerebellar disruption and compensation

contributed to long-term memory in MTLE and were potential

intervention targets for cognitive deficiency in MTLE.

The etiology of cerebellar alterations in TLE remains a

controversial topic. Traditionally, cerebellar alterations were

considered to be secondary due to seizures or disruption of cerebral

networks. Studies focusing on anatomical damage of the cerebellum
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FIGURE 2

Network functional connectivity with a significant group di�erence among the three groups. *p < 0.05, FDR-corrected; **p < 0.005, FDR-corrected; ***p

< 0.001, FDR-corrected. (A) Network functional connectivity from IC 3 to IC 5; (B) Network functional connectivity from IC 5 to IC 3; and (C) Network

functional connectivity from IC 6 to IC 4. HC, healthy controls; IC, independent component; LTLE, left temporal lobe epilepsy; RTLE, right temporal lobe

epilepsy.

FIGURE 3

DC of the right cerebellum lobule III was di�erent across the three groups. Red ***, p < 0.001, FDR-corrected; Red - & *, p < 0.05, FDR-corrected; black -,

p < 0.05, uncorrected. The boxplot presents the group comparison of AUC, and the line chart shows the group comparison across all connectivity

densities. ANCOVA, analysis of covariates; AUC, area under the curve; DC, degree centrality; HC, healthy controls; IC, independent component; LTLE, left

temporal lobe epilepsy; RTLE, right temporal lobe epilepsy.

demonstrated a relationship between more severe cerebellar damage

and a higher disease burden. In addition, the volume alteration of the

vermis is correlated with the temporal lobe volume (63). However,

functional studies of the cerebellum failed to confirm a relationship

between disease burden and functional alterations (2, 3). Notably,

cerebellar functional abnormalities also did not correlate with the

clinical features in this study. Several points might explain the lack of

correlation. First, a composite destructive and compensatory process

might weaken the correlation between functional abnormalities and

clinical features. Second, the cerebellar function was susceptible
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FIGURE 4

Correlation analysis. HC, healthy controls; IC, independent component; LTLE, left temporal lobe epilepsy; RTLE, right temporal lobe epilepsy. (A)

Functional connectivity from IC 3 to IC5. (B) Functional connectivity from IC 5 to IC 3. (C) Degree centrality of right lobule III.

to ASM. The combinations and types of ASM could have biased

the results.

Etiological and functional differences between LTLE and RTLE

had been noted in previous studies. The language network (64)

and the episodic memory network (65) were contralaterally shifted

in LTLE but not in RTLE. Meanwhile, the fiber bundles of the

alertness network were impaired, specifically in RTLE (66). The

graph theoretical study also revealed different electrophysiological

reorganizations in LTLE and RTLE, as functional connectivity was

altered in the alpha band in LTLE and in the theta, beta, and gamma

bands in RTLE (67). A multivariate pattern classification model

constructed with cerebellar and cerebral structural connectivity

achieved 93% accuracy in differentiating LTLE from RTLE (68).

Consistent with our findings, Zanão et al. observed that the functional

connectivity of DMN was enhanced in RTLE, compared to that in

LTLE (69). Our result generalized previous findings to the cerebellum

and strengthened the idea that LTLE and RTLE might be different

epilepsy entities.

This study has limitations. First, ASM affects the results of

fMRI (70). Correlation analysis demonstrated that cerebellar function

was not biased by the number of ASMs. We also excluded

patients who received phenytoin treatment, and we performed a

sensitivity analysis excluding a patient who received topiramate.

However, different types and combinations of ASM would still

influence functional connectivity and correlation analysis. Second,

the cerebellar alterations were explored only in fMRI data. The

sample sizes of each patient group are also small. Nevertheless, we

obtained detailed clinical information and applied robust methods,

allowing us to detect cerebellar functional alterations under a

stringent threshold. Correlation analysis also excluded potential

clinical confounders that might bias the result. Future studies on the

combination of structural and functional images in a larger cohort

would provide further evidence of cerebellar involvement in MTLE.

5. Conclusion

We noted functional disruption and compensation in the

cerebellum of patients with MTLE. Functional connectivity between

cerebellar networks was modulated in RTLE, while the centrality of

the right lobule III was increased in LTLE. These alterations were

correlated with long-term memory in patients. Our results further

support the cerebellar involvement in cognitive decline in MTLE and

provided potential intervention targets for MTLE.
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