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Introduction: Alzheimer’s disease (AD) is a type of neurodegenerative disease that

has no e�ective treatment in its late stage, making the early prediction of AD critical.

There have been an increase in the number of studies indicating that miRNAs play

an important role in neurodegenerative diseases including Alzheimer’s disease via

epigenetic modifications including DNA methylation. Therefore, miRNAs may serve

as excellent biomarkers in early AD prediction.

Methods: Considering that the non-coding RNAs’ activity may be linked to their

corresponding DNA loci in the 3D genome, we collected the existing AD-related

miRNAs combined with 3D genomic data in this study. We investigated threemachine

learning models in this work under leave-one-out cross-validation (LOOCV): support

vector classification (SVC), support vector regression (SVR), and knearest neighbors

(KNNs).

Results: The prediction results of di�erent models demonstrated the e�ectiveness of

incorporating 3D genome information into the AD prediction models.

Discussion: With the assistance of the 3D genome, we were able to train more

accurate models by selecting fewer but more discriminatory miRNAs, as witnessed

by several ML models. These interesting findings indicate that the 3D genome has

great potential to play an important role in future AD research.
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1. Introduction

1.1. Alzheimer’s disease

Alzheimer’s disease, one of the most common causes of dementia, is a progressive,

persistent, and irreversible neurodegenerative disease affecting the normal functioning of the

cerebral cortex and hippocampus (1). The causes of AD may consist of both genetic and

epigenetic (environmentally acquired) factors. Risk gene germline mutations can only explain

the pathogenesis of a small proportion of patients with AD. There are several hypotheses

regarding the pathogenesis of AD, the more recognized ones being the Aβ amyloid (2), the

Tau protein (3), the cholinergic depletion (4), the inflammaging (5), the oxidative stress (6), the

mitochondrial damage (7), and the disrupted glycolipid metabolism (8). In addition, there are

also some causal associations between these hypotheses.

Since patients with early AD (preclinical stage) often do not demonstrate significant disease

symptoms, some patients may undergo a preclinical stage of up to 25 years (9). Several studies

have analyzed the preventive effects of early screening for AD through meta-analysis and have

shown that early intervention in the preclinical stage of AD can effectively slow down cognitive

decline in subjects (10–12). Early screening for AD, therefore, is important as it can providemore

information on the treatment options for patients with AD and psychological support for both

the patients and their family members.
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Due to that, the pathogenesis of AD may involve multiple

pathogenic pathways acting together. As mentioned in previous

studies, traditional pathophysiological biomarkers, in general, are

ineffective in terms of specificity and sensitivity when combined,

leaving the clinical choice of early AD biomarkers lacking (13). In

recent years, several studies have reported that microRNAs (miRNAs)

are closely associated with AD, but advanced prediction models

and novel biological insights that can benefit the prediction are still

insufficient. Therefore, in this study, we focus on miRNA and aim to

explore their clinical biomarker potential in early AD detection from

the perspective of the 3D genome (14, 15).

1.2. MicroRNA and AD

MicroRNAs are small non-coding RNAs (sncRNAs) consisting

of 19–23 nucleotides (nt), and they are essential epigenetic and

post-transcriptional regulators that cooperate with messenger RNA

(mRNA). miRNAs are highly mobile and permeable, ubiquitous

in the human brain and central nervous system, and the smallest

eukaryotic nucleic acid (16–18). miRNAs are translocated and

released into extracellular fluids, such as plasma/serum, cerebrospinal

fluid, saliva, urine, tears, semen, and ovarian follicular fluid, and

such secretable hormone-like miRNAs are known as extracellular

miRNAs or circulating miRNAs (19). Extracellular miRNAs can be

delivered to target cells via extracellular fluid circulation and regulate

the corresponding cellular activities (20, 21); moreover, extracellular

miRNAs are highly stable and can avoid degradation under stressful

conditions such as storage at room temperature for up to 24 h

and multiple freeze–thaw cycles (22). These properties indicate the

potential and capability of utilizing miRNAs as biomarkers. In fact,

some applications of miRNAs have already been explored, such as

using them as biomarkers in neurological diseases like Parkinson’s

disease, Huntington’s disease, amyotrophic lateral sclerosis, bipolar

disorder, and schizophrenia (23, 24).

Studies have successfully revealed significant correlations

between miRNA dysregulation and AD, such as miR-9, miR-34a,

miR-125b, miR-146a, and miR-155 (25). Some have analyzed the

metabolic pathways of Aβ and tau proteins and identified exosome

miRNAs closely related to AD, including miR-193b, miR-342-3p,

and miR-451a (26). Moreover, by analyzing the oxidative stress (OS)

pathogenesis, researchers have found multiple affected miRNAs,

such as miR-200c, miR-26b, miR-107, and miR-210 (27). These

findings suggest the key role of miRNAs in AD pathogenesis. How

to systematically discover more AD-related miRNAs suitable for AD

early screening becomes the next challenge.

1.3. miRNA and 3D genome

As early as the 19th century, several studies observed that

chromosomes in the nucleus exhibit a chromatin form and were

kept in distinct and relatively fixed regions during interphase,

leading to the concept of the “Chromosome Territory (CT)”. In

CT, chromosome positions are relatively constant and differentially

distributed between cells in which homologous chromosomes tend to

separate from each other. In fact, only until the recent development

of the chromosome conformation capture (3C) method (28) and

its high-throughput method Hi-C (high-throughput chromosome

conformation capture) (29), the concept of the 3D genome was

systematically introduced.

Our previous studies on disease typing prediction discovered that

adding chromatin 3D genome information into deep neural network

models could significantly improve prediction accuracy (30, 31). This

phenomenon is due to the fact that the 3D genome positions of

disease-related DNAs and RNAs in the nucleus play an important role

(e.g., the radius distance from chromatin to the center of the nucleus),

which also suggests that the broader role of the 3D chromatin

conformation in cell function and the mechanistic linkage between

them are worth further investigation.

Although extracellular miRNAs are free-floating, the foremost

step for their function is the repressive effect in the transcriptional

phase. It has been hypothesized that the out-of-nucleus translocation

of miRNAs in neurons can occur through the co-delivery of the AGO

proteins and target mRNAs containing localization signals (32). In

principle, the proximity of miRNAs to target DNA in the chromatin

3D spatial conformation is more efficient in utilizing cellular energy

for physiological functions. Therefore, we believe that the 3D genome

will play a critical role in boosting such interactions.

To summarize, we analyzed a causal chain of the “chromatin

3D conformation-driven cellular functional block” phenomenon:

DNA co-localization → RNA co-expression → protein–protein

interaction. These co-expressed RNAs will preferentially aggregate

in the nucleus and be transported from specific nuclear pores into

the cytoplasm. This allows for the efficient enrichment of small

molecules in the cytoplasmic space. Such an approach increases the

frequency of miRNA contact with target genes and accomplishes

the regulation of genes with lower energy consumption, which is

very much in line with the evolutionary rules. We suggest that the

topologically associating domain (TAD)-like nuclear regions in the

cell influence the cellular state and drive certain cellular behaviors;

such blocks, which have a three-dimensional conformation and

jointly regulate certain cellular functions, are “functional blocks”.

Specifically, we believe that when a “functional block” is abnormally

activated/inhibited, it will change the cellular state. When the DNA,

the starting “puzzle”, is mutated or transcriptionally repressed,

RNA transcription in the same “functional block” will also be

abnormal, leading to abnormal protein expression and causing

cellular dysfunction. We hypothesize that miRNAs that play essential

disease-mediation functions also have certain spatially distributed

properties. In this study, therefore, we optimize the miRNA-based

AD prediction model by incorporating 3D genome information

and further explore and discuss the value of applying 3D genomic

information in AD early screening.

2. Methods

2.1. Dataset

The GSE120584 dataset adopted in this study was downloaded

from the public database Gene Expression Omnibus (GEO). RNA

data were extracted from the serum tissues of 1,309 Japanese

individuals, containing 1,021 patients with AD and 288 normal

controls (NCs). In this dataset, each miRNA signal value was

standardized with the ratio of the average signal of the three internal

control miRNA signals. The sample labels are indicated by 0 or 1, with

1 indicating patients with AD and 0 indicating normal control.
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FIGURE 1

Workflow of miRNA panel selections and their AD score prediction e�ectiveness evaluated by di�erent ML prediction models under the leave-one-out

cross-validation framework.

2.2. miRNA profiling

To quantify miRNA expression, we downloaded the RAW files

of GSE120584 and generated the RNA expression matrix from them.

We then converted the miRNA naming format to the latest miRBase

V22 version by the miEAA 2.0 platform (33) and subsequently

performed manual curation and validation. We mapped all miRNA

tags to the human reference genome GRCh 37/hg19 using the R

package (bioMart) which belongs to different compartments in the

3D genome. Due to the specificity of the miRNA biogenesis pathway,

precursor miRNAs do not show one-to-one correspondence with

mature miRNAs; thus, these miRNAs cannot be annotated uniquely

and were excluded to ensure the miRNA uniqueness. After the

annotation, transcripts with expression scores < 5 in <1,000 samples

were removed. Annotated miRNA quantification data were then

adopted for Spearman correlation coefficient calculations and 3D

clustering analysis. In the end, we obtained 1,605 valid miRNAs and

214 miRNAs with 3D information.

2.3. Acquisition of 3D coordinates of miRNAs

We constructed 3D genome models using a molecular dynamic

approach based on the hESC cell line Hi-C data (34, 35), which

generated 300 feasible conformational structures and selected the

best-matched model as the 3D genome model for subsequent

analyses. Then, by using the transcriptional start site (TSS) position of

the miRNAs as an index, we matched miRNAs to the 3D coordinates

in the intranuclear space.

2.4. Prediction model and feature selection

Model construction was done by the python library sklearn, and

DBSCAN was used for the density-based clustering method (eps

= 3). All models were trained by leave-one-out cross-validation.

The Spearman correlation coefficient is implemented with scipy in

python. While evaluating the models, we set label = 0.5 as the

cutoff, 0–0.5 is considered negative results, and 0.5–1 is considered

positive results. The whole workflow of miRNA selection and model

fitting has been shown in Figure 1.

3. Results

3.1. Clustering analysis of miRNAs on
3D positional

To subsequently combine the 3D distribution of miRNAs for

feature selection, we performed density clustering DBSCAN of

miRNAs with 3D information encoding, i.e., <x, y, z> coordinates,

and obtained nine clusters with multiple miRNAs and 32 standalone

clusters with single miRNAs. The clustering result is shown in

Figure 2, and as it demonstrates, each miRNA cluster occupies a

salient spatial territory.

3.2. Machine learning prediction model
optimization

All samples were first divided into two groups according to

disease type (0 or 1). We investigated three machine learning

models under leave-one-out cross-validation (LOOCV): support

vector classification (SVC), support vector regression (SVR), and k-

nearest neighbors (KNNs). Both linear and RBF kernels were chosen

for SVR.

First, we used all the annotated 1,605 miRNAs as features to

perform predictions for AD; Table 1 demonstrates the effectiveness

of each model using the all miRNAs feature panel. Subsequently, we

performed a Spearman correlation coefficient (SCC)-based selection

of the feature miRNAs and selected the top 400 miRNAs with the

highest SCC score (p < 0.05). The results showed that prediction

accuracies from all models increased to some extent (Table 1).

To better investigate the ability of 3D genome information

in contributing to the prediction models, we obtained the spatial

coordinates of 214miRNAs in the hESC nucleus bymapping the gene

starting position on chromosomes. We proportionally selected the
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FIGURE 2

Distribution of di�erent clusters of miRNAs in 3D genome space after

DBSCAN clustering.

miRNAs with the highest Spearman correlation within each cluster as

representatives of the clusters, yielding 100 miRNAs, and used them

to train the model. Note that many informative miRNAs that could

not be uniquely mapped to 3D genome space were discarded. The

features obtained by such screening could still improve the prediction

accuracies of the models, with the SVC model showing the most

significant improvement.

In order to better compare the results under different features,

we plotted the Precision–Recall curves (Figure 3) and ROC curves

(Figure 4) for all models. We also plotted the violin plot (Figure 5)

for the prediction results of different models, which demonstrated

the effectiveness of incorporating 3D genome information into the

AD prediction models.

3.3. E�ects of epigenetic functions of
miRNAs on AD

Indeed, the pathogenesis of AD is coherently linked to

epigenetic phenomena, such as DNA methylation or non-coding

RNA interference (36), while miRNAs play a role in the latter

(37). During the feature selection, we further analyzed the miRNAs

contributing to the prediction models. We found that miR-128

is one of the most contributing miRNAs; miR-128 was reported

to downregulate PPAR-γ expression in mouse cortical neurons

(MCNs) and Neuro2a (N2a) cells, which affects downstream NF-κB

activity and, thus, triggers Aβ-mediated cytotoxicity (38). Similarly,

we found another contributing miRNA miR-128, which was also

reported to cause dysfunctional synaptic transmission between

mossy cells (MCs) and somatostatin (SST) cells by inhibiting

the normal function of the STIM2 gene (39). Furthermore, miR-

210 in our predictor panel has even been found to play a role

in the production of ROS in the brain with altered cholinergic
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FIGURE 3

Precision–Recall curves of di�erent ML models built using di�erent miRNAs as prediction feature panels.

neuronal states (40, 41). These findings provide essential reference

information for the study of the pathogenesis of AD, and

more relationships between differentially expressed miRNAs and

corresponding targets in patients with AD are expected to be

discovered in the future.

4. Conclusion and discussion

In this study, we analyzed the feature selection and machine

learning prediction model optimization effects of using miRNA

expression in AD prediction by incorporating 3D genome

information. With the assistance of the 3D genome, we were

able to train more accurate models by selecting fewer but more

discriminatory miRNAs, as witnessed by all ML models, including

SVC, SVR, and KNN. These interesting findings also indicate that

the 3D genome has great potential to play an important role in future

AD research.

MicroRNA is a typical epigenetic modulator undertaking

multiple epigenetic mechanisms (42). Crosstalk between miRNAs

and epigenetic regulation is important for neural development

(37, 43). The enzymes of epigenetic modification processes can

be regulated by miRNAs (44). Abnormal epigenetic regulation

leads to abnormal miRNA expression, which further leads

to the pathogenic mechanism of several malignancies (45).

Specifically, manipulation of levels of mir-137, a miRNA associated

with neuropsychiatric disorders in mice induces neurological

abnormalities such as synaptic overgrowth, memory deficits, and

repetitive behaviors (46).

Recent studies have further demonstrated that miRNAs can

influence epigenetic phenomena by regulating the expression

of DNA methylesterase. Several studies have found that the

downregulation of miR-29 family (including miR-29a, miR-29b, and

miR-29c) expression suppresses the expression of retinoblastoma-

like protein 2 (Rbl2), which causes DNA methylation deficiency

by inhibiting the activity of DNMT3a and DNMT3b (47, 48). It

has also been shown that miR-17 and miR-20a in mammalian

cells can induce heterochromatin formation in promoter regions

with overlapping transcriptional functions and complementary to

miRNA seed regions, further revealing a new mechanism of miRNA-

regulated chromatin remodeling and gene transcription (49). These

results suggest that there is a potentially complicated but strong

connection between miRNA and 3D genome and worth in-depth

exploration, and the analyses of neurodegenerative diseases such
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FIGURE 4

ROC curves of di�erent ML models built using di�erent miRNAs as prediction feature panels.

FIGURE 5

Violin plots of the predicted AD value distributions using di�erent ML models.
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as AD from the novel perspective of 3D genome can be of

great interest.
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