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Purpose: We aimed to verify the prognostic value of the glycocalyx as a marker

of blood–brain barrier damage in patients with acute ischemic stroke undergoing

endovascular therapy.

Methods: We recruited patients with large vessel occlusion who were undergoing

recanalization and tested their glycocalyx at multiple time points. On the basis

of the 90-day follow-up data, the patients were divided into a survivor group

and a nonsurvivor group. In addition, neurological function was tracked, and

patients were divided into a neurological deterioration group and a group without

neurological deterioration. Associations between outcomes and dynamic changes in

the glycocalyx were determined using a linear mixed model, and significant factors

were used as covariates.

Results: Nonsurvivors and patients with neurological deterioration had significantly

higher syndecan-1 concentrations than survivors and patients without neurological

deterioration, and syndecan-1 tended to decline after endovascular therapy (p< 0.05).

The increased level of syndecan-1 at 36h after endovascular treatment was positively

correlated with the National Institute of Health Stroke Scale score for neurological

deterioration (r = 0.702, p = 0.005). However, there was no significant di�erence in

the level of hyaluronic acid or heparan sulfate in the plasma of patients with di�erent

clinical outcomes.

Conclusion: Pre-reperfusion syndecan-1 levels in patients with large vessel occlusion

stroke are associated with 90-day mortality and the re-degradation of syndecan-1 is

positively associated with neurological deterioration.

KEYWORDS

large vessel occlusion, endovascular therapy, ischemia/reperfusion injury, glycocalyx,

outcomes

1. Introduction

Despite advances in reperfusion strategies, ischemic stroke remains a significant cause

of death and disability; these effects are, to a certain degree, due to dysfunction caused by

symptomatic intracranial hemorrhage and malignant cerebral edema (1). In the past, it was

believed that under ischemic stroke conditions, the destruction of the blood–brain barrier (BBB)

tight junction integrity directly led to angioedema, hemorrhagic transformation, and increased

mortality (2). With further research, however, investigators found that it was the glycocalyx
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rather than the tight junctions that caused vessel leakage, as the tight

junctions remained intact while BBB leakage was observed (3, 4).

The glycocalyx, which covers the luminal surface of endothelial

cells, is composed of glycoproteins containing acidic oligosaccharides

and terminal sialic acid, proteoglycan, and glycosaminoglycan side

chains, primarily hyaluronic acid (HA), syndecan-1 (SDC-1), and

heparan sulfate (HS) (5). The glycocalyx forms a protective surface

layer for blood vessels, but this coating is vulnerable to damage,

for example, from diabetes (6), sepsis (7), and ischemia/reperfusion

injury (8, 9). Degradation of the glycocalyx can affect the integrity of

the BBB (10). Elevated blood levels of glycocalyx components may be

a sign of glycocalyx degradation (11). Recent studies have identified

glycocalyx components as biomarkers of ischemic stroke (12–14),

and they are associated with neurological deterioration (ND) as well

as increased mortality (11). In this study, we sought to determine the

dynamic change in the glycocalyx after the recanalization of blood

vessels through longitudinal monitoring and to unravel the potential

correlation of the glycocalyx with clinical outcomes.

2. Methods

2.1. Study design and population

A total of 101 adult patients with large vessel occlusion (LVO)

were consecutively admitted to the First Affiliated Hospital of Jinan

University within 24 h after stroke onset from November 2019

to January 2021. Among these patients, 21 were excluded due to

blood sample hemolysis and loss of follow-up. Eighty patients were

FIGURE 1

Changes in glycocalyx components in the plasma of patients enrolled in the study. The evaluation index and multiple time points (pre-operation (referred

to as “Pre” in the figure), 0 h, 12h, 36h, 3 days, and 7 days after the operation) during the investigation are shown in (A) (• for evaluation, ◦ for no

evaluation) and the glycocalyx concentrations in the plasma are shown from (B–D). Di�erences between groups were compared using a linear mixed

model. NIHSS, National Institute of Health Stroke Scale; mRS, modified Rankin Scale; HA, hyaluronic acid; SDC-1, syndecan-1; HS, heparan sulfate.

included in the final analysis. The study was approved by the Medical

Ethics Committee of the First Affiliated Hospital of Jinan University

(No. KY-2020-104).

Patients whomet the following criteria were enrolled in the study:

diagnosis of acute ischemic stroke, absence of large vessels on brain

computed tomography angiography, receipt of endovascular therapy

[modified thrombolysis in cerebral infarction score 2b/3 (15)], and

willingness to provide informed consent. The exclusion criteria were

as follows: diagnosis of hemorrhagic stroke, major trauma, acute

infectious disease, autoimmune disease, severe hypoproteinemia,

cardiogenic shock, or cancer. The main outcome of the study was

90-day mortality, which was assessed by a modified Rankin Scale

(mRS) from a telephone follow-up, and the secondary outcome was

neurological deterioration (ND) within 7 days after endovascular

treatment. The patients were divided into an ND group and a non-

ND (nND) group according to whether neurologic deterioration

occurred within 7 days after endovascular treatment. In addition,

patients were divided into the non-survivor group (mRS = 6)

and the survivor group (mRS < 6) according to the 90-day

mRS score.

2.2. Clinical variables

During hospitalization, patients were subjected to repeated blood

sampling and clinical evaluation before surgery and at 0 h, 12 h,

36h, 3 days, and 7 days after endovascular therapy, and they

were followed up at 90 days after onset (Figure 1A) and after

obtaining the consent. Baseline demographic and clinical data were
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obtained in patient records, including age, sex, vascular risk factors

(hypertension, hyperlipidemia, and diabetes mellitus), smoking,

alcohol, and time from onset to recanalization. The modified

thrombolysis in cerebral infarction (mTICI) score, scored by two

professional physicians, was used to grade angiographic outcomes

after endovascular thrombectomy. Additionally, stroke severity was

scored on the National Institutes of Health Stroke Scale (NIHSS).

ND was characterized as an increase of ≥4 points in the NIHSS

score, ≥1 point in the consciousness score (1a−1c), ≥1 point in

the motor score (5a−5b), or any new neurological deficits (that

cannot be measured by the NIHSS score) within 7 days (16).

Survivors were defined as those who were alive at the 90-day follow-

up after stroke onset, and the mRS scores were obtained by a

telephone follow-up.

2.3. Measurement of the glycocalyx

Blood samples were repeatedly drawn in tubes containing

ethylenediaminetetraacetic acid at the multiple time points

mentioned above. All samples were centrifuged for 10min

at 3,000 rpm, and afterward, plasma samples were stored at

−80◦C until further experiments. The concentrations of HA

(Cloud-clone Co., Wuhan, China), SDC-1 (Cusabio Biotech

Co., Wuhan, China), and HS (Cusabio Biotech Co., Wuhan,

China) were quantified by enzyme-linked immunosorbent

assay kits.

2.4. Data analysis

Categorical variables were compared using the chi-square test

and are presented as percentages. Continuous variables were

compared using the t-test or the Wilcoxon rank-sum test as

appropriate. Significant factors were used as covariates for further

analysis. Significant correlations were tested by Spearman’s rank

correlation coefficient. Differences between groups were evaluated

using a linear mixed model (17). All patients were taken as subjects,

and each time point measured was taken as the repeated index. The

repeat covariance type was selected as AR (1), while HA, SDC-1, and

HS were used as the dependent variables, and the repeat times and

groups were used as fixed effect factors to compare the main effects,

with confidence intervals adjusted for the Bonferroni correction.

The significance threshold was set to 0.05. Statistical analyses were

performed using SPSS Statistics Version 27.0 (IBM Corporation;

Armonk, NY, USA).

3. Results

3.1. Clinical characteristics of the
participants

Old age and history of coronary heart disease were more

common in non-survivors than survivors (age: p = 0.015; history of

coronary heart disease: p= 0.017). Patients who received intravenous

thrombolysis treatment tended to have lower mortality than those

TABLE 1 Clinical Baseline Characteristics in survivors and death.

All
(n = 80)

Survivors
(n = 68)

Nonsurvivors
(n = 12)

p-value

Clinical items

Age (years) 67.91 66.40± 13.33 76.50± 10.54 0.015∗

Sex (male; n %) 48 (60) 43 (89.58) 5 (10.42) 0.160

Time of reperfusion (h) 8.26 (5–10.75) 8.43± 5.18 7.33± 4.08 0.491

Basal NIHSS 16 (12-20) 15.65± 5.24 18.50± 6.76 0.101

Intravenous thrombolysis (n %) 32 (40) 31 (96.88) 1 (3.12) 0.035∗

Medical history

Hypertension (n %) 52 (65) 43 (82.69) 9 (17.31) 0.646

Diabetes mellitus (n %) 26 (32.5) 20 (76.92) 6 (23.08) 0.160

Hyperlipide (n %) 27 (33.8) 23 (85.2) 4 (14.8) 1.000

Coronary artery disease (n %) 14 (17.5) 9 (64.29) 5 (35.71) 0.017∗

Atrial fibrillation (n %) 39(47.5) 31 (79.49) 8 (20.51) 0.301

WBC, 10∧9/L 10.21± 4.01 10.11± 3.46 10.76± 6.49 0.742

Neu, 10∧9/L 8.18± 4.02 8.08± 3.63 8.75± 5.94 0.597

TC, mmol/L 4.48± 1.22 4.55± 1.20 4.01± 1.30 0.217

TG, mmol/L 1.36± 1.55 1.39± 1.65 1.22± 0.39 0.764

HDL, mmol/L 0.97± 0.22 0.98± 0.22 0.92± 0.27 0.468

LDL, mmol/L 2.74± 0.90 2.80± 0.87 2.34± 1.04 0.149

CRP, mg/L 30.87± 38.57 31.74± 39.08 25.94± 36.71 0.634

Categorical variables were compared using the chi-square test, and continuous variables were compared using the t-test or Wilcoxon rank-sum test as appropriate. Numbers are the mean (SD),

median (IQR), or frequency (percentage). ∗p < 0.05. SD, standard deviation; IQR, interquartile range; NIHSS, National Institute of Health Stroke Scale; WBC, white blood cell; Neu, neutrophil; TC,

total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low- density lipoprotein; CRP, C-reactive protein.
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TABLE 2 Clinical Baseline Characteristics in ND and nND.

All nND
(n = 63)

ND
(n = 17)

p-value

Clinical items

Age (years) 67.91 66.54± 13.65 73.00± 11.34 0.077

Sex (male; n %) 48 (60) 43 (89.6) 5 (10.4) 0.004∗

Time of reperfusion (h) 8.26 (5–10.75) 8.71± 5.31 6.62± 3.41 0.129

Basal NIHSS 16 (12–20) 15.61± 5.11 17.76± 6.84 0.158

Intravenous thrombolysis (n %) 32 (40) 28 (87.5) 4 (12.5) 0.118

Medical history

Hypertension (n %) 52 (65) 38 (73.1) 14 (26.9) 0.091

Diabetes mellitus (n %) 26 (32.5) 18 (69.2) 8 (30.8) 0.149

Hyperlipide (n %) 27 (33.8) 24 (88.9) 3 (11.1) 0.114

Coronary artery disease (n %) 14 (17.5) 8 (57.1) 6 (42.9) 0.030∗

Atrial fibrillation (n %) 39(47.5) 27 (69.2) 12 (30.8) 0.042∗

WBC, 10∧9/L 10.21± 4.01 10.02± 3.53 10.90± 5.51 0.427

Neu, 10∧9/L 8.18± 4.02 7.97± 3.69 8.95± 5.13 0.375

TC, mmol/L 4.48± 1.22 4.57± 1.23 4.05± 1.08 0.157

TG, mmol/L 1.36± 1.55 1.42± 1.70 1.12± 0.33 0.530

HDL, mmol/L 0.97± 0.22 0.97± 0.22 0.98± 0.25 0.816

LDL, mmol/L 2.74± 0.90 2.83± 0.89 2.35± 0.87 0.091

CRP, mg/L 30.87± 38.57 30.70± 38.47 31.48± 40.10 0.941

Categorical variables were compared using the chi-square test and continuous variables were compared using the t-test orWilcoxon rank-sum test as appropriate. Numbers are the mean (SD), median

(IQR), or frequency (percentage). ∗p < 0.05. ND, neurological deterioration; nND, non-neurological deterioration; SD, standard deviation; IQR, interquartile range; NIHSS, National Institute of

Health Stroke Scale; WBC, white blood cell; Neu, neutrophil; TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low- density lipoprotein; CRP, C-reactive protein.

who did not receive this treatment (p = 0.035, Table 1). In addition,

female sex and coronary artery disease were more common in

patients with ND (sex: p= 0.004; coronary artery disease: p= 0.030),

and patients with atrial fibrillation were more prone to ND as well (p

= 0.0042, Table 2).

3.2. Dynamic changes in the glycocalyx in
patients with LVO

After cerebral arterial occlusion, the concentrations of HA,

SDC-1, and HS in the plasma were 132.29 ± 16.06, 100.39 ±

44.67, and 1,1066.70 ± 767.82 ng/ml, respectively. HA (Figure 1B)

and HS concentrations (Figure 1D) continued to rise immediately

after recanalization (0 h) and then fluctuated. In contrast, the SDC-

1 level dropped rapidly after reperfusion and peaked again 36 h later

(Figure 1C).

3.3. Concentrations of glycocalyx
components and ND

Patients who developed ND showed higher SDC-1 levels than

patients without ND (Figure 2B, n = 17, p = 0.004). Compared

with preoperative levels, patients’ postoperative SDC-1 levels were

significantly decreased (0 h: p = 0.00003, 12 h: p = 0.002, and 36

h: p = 0.045). The plasma HA level of patients with ND gradually

increased, while that of the patients without ND fluctuated but did

not significantly change within 7 days after onset, but the difference

between groups was not statistically significant (Figure 2A, p >

0.05). Changes in HS among ND and nND patients were almost

synchronized (Figure 2C, p > 0.05).

After endovascular therapy, the neurological function of the

evaluated patients overall was significantly improved (shown in

Figure 2D). However, the NIHSS score increased again in the ND

group from 36 h to 3 days after endovascular therapy (Figure 2E). We

found that plasma SDC-1 levels were also increased in these patients.

Subsequently, we detected that 1NIHSS at 36 h after reperfusion

(the increase in the NIHSS score since admission) was positively

correlated with 1SDC-1 (the increase in SDC-1 since admission) at

the same time point in patients in the ND group (n= 17, r= 0.702, p

= 0.005) (shown in Figure 2F).

3.4. Glycocalyx concentration and outcomes

Our data showed a significant association among SDC-1

concentration, time, and 90-day survival, as detected by linear

mixed models (Figure 3). Data analysis revealed a significantly

higher preoperative concentration of SDC-1 in nonsurvivors

(n= 12) than in survivors (n= 68) (p < 0.001). Immediately

after endovascular treatment, plasma SDC-1 levels in nonsurvivors

decreased significantly (p < 0.001), whereas plasma SDC-1 levels

in survivors showed little fluctuation (Figure 3B). Similarly, there
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FIGURE 2

The glycocalyx components of di�erent evolution and the relationship between glycocalyx and neurological function. The di�erence in glycocalyx levels

between the ND group and the nND group is shown from (A–C). Neurologic changes in all patients included in the study are presented in (D). The

di�erences in NIHSS scores between ND and nND groups are shown in (E). The relationship between the change of NIHSS score and the change of

SDC-1 level (based on the level at admission) at 36h after stroke onset is shown in (F). A linear mixed model was used to compare component

concentrations between groups. *p < 0.05 vs. nND and #p < 0.05 vs. pre-operation in (B) respectively. *represents p < 0.05 vs. pre-operation,
#represents p < 0.05 vs. 0 h after the operation, ¶represents p < 0.05 vs. 12h after the operation, §represents p < 0.05 vs. 36 h after the operation in (D, E).

Significant correlations were tested by Spearman’s rank correlation coe�cient. Pre, pre-operation; 0 h, 0 h after the operation; 12h, 12h after the

operation; 36h, 36h after the operation; 3 days, 3 days after the operation; 7 days, 7 days after the operation; ND, neurological deterioration; nND,

non-neurological deterioration; NIHSS, National Institute of Health Stroke Scale; HA, hyaluronic acid; SDC-1, syndecan-1; HS, heparan sulfate.

FIGURE 3

The glycocalyx components at di�erent outcomes. The di�erence in glycocalyx levels between the nonsurvivor group and the survivor group is shown

from (A–C). *represents p < 0.05 vs. survivor; #represents p < 0.05 vs. Pre. A linear mixed model was used to compare component concentrations

between groups. Pre, pre-operation; 0 h, 0 h after the operation; 12h, 12h after the operation; 36h, 36h after the operation; 3 days, 3 days after the

operation; 7 days, 7 days after the operation; HA, hyaluronic acid; SDC-1, syndecan-1; HS, heparan sulfate.

was no significant change in HA in the plasma of the survivors

within 7 days of onset, whereas the plasma concentration of

HA in the non-survivors gradually increased (Figure 3A). The

changes in plasma HS were almost identical between the two

groups. The difference between HA and HS was not statistically

significant (Figure 3C).

4. Discussion

Although endovascular therapy can successfully rescue ischemic

brain tissue, stroke remains the second leading cause of death

worldwide. Brain edema and hemorrhage transformation are the

main complications that affect rehabilitation after reperfusion
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therapy (1), but there is no effective prediction method at present.

The destruction of the BBB is one of the main pathological

mechanisms of cerebral edema and hemorrhagic transformation and

has received a lot of attention. In recent years, considerable efforts

have been devoted to exploring the relationship between biomarkers

and stroke. The glycocalyx is the main component that maintains

the function of the BBB, and the levels of glycocalyx molecules

are elevated in the plasma of patients with stroke. In this study,

we investigated the dynamic change of the glycocalyx in patients

who have received endovascular therapy for LVO and analyzed the

relationship between glycocalyx and clinical prognosis.

Studies have shown that women’s general health status,

cerebrovascular anatomy, and function have important effects on

ischemic stroke, making the prognosis for acute ischemic stroke

worse in women than in men (18, 19). The differences between

men’s and women’s results in the present study are consistent with

recent major studies on prognostic risk factors for acute ischemic

stroke. In addition, coronary artery disease and atherosclerosis make

the polysaccharide envelope on the vessel wall thinner, making it

less resistant to ischemic and hypoxic damage (20). Conversely, the

glycocalyx in patients with atrial fibrillation tends to be relatively

intact and their symptoms are milder when the glycocalyx is impaired

by some other factor.

Previous studies have shown that increasing levels of glycocalyx

components can be detected in the plasma of patients after stroke

onset. Nevertheless, no significant changes in SDC-1 were observed,

while HA and HS increased significantly after onset (12, 14). To our

knowledge, this is the first study to describe the dynamic changes

in the plasma concentrations of glycocalyx components in patients

with LVO and to analyze glycocalyx shedding in blood samples

collected before endovascular treatment. We found that SDC-1

increased significantly in the early stage of stroke and decreased

rapidly after reperfusion therapy, and the peak concentrations of HA

and HS appeared later, suggesting that SDC-1 is more sensitive to

ischemia/reperfusion injury.

Ischemia-induced glycocalyx injury occurs early and is a

strong trigger for BBB dysfunction. We found that the plasma

concentration of SDC-1 was elevated in patients with ND and

increased synchronously with the degree of deterioration. SDC-

1 significantly correlated with BBB leakage. Degradation of the

glycocalyx results in the shedding of SDC-1 and phosphorylation

of its cytoplasmic domain (4). Phosphorylation of SDC-1 can

recruit cortical proteins, thereby promoting efficient actin-dependent

endocytosis and increasing the permeability of the BBB (21).

Furthermore, the shedding of SDC-1, the molecule that serves as

the last safeguard of the BBB, increases the interaction of blood

components with endothelial cells, allowing macromolecules to

pass through the barrier (5). Damage to the BBB destabilizes the

internal environment of the central nervous system, thus preventing

the maintenance of normal neurological function. We found that

fluctuations in plasma SDC-1 concentration were more pronounced

in patients with LVO than in patients with mild neurological deficits

(12), consistent with animal experiments (11).

Our data showed a biphasic peak of SDC-1 concentration,

synchronizing with the biphasic pattern of the BBB condition

(22). Notably, the second stage of the post-reperfusion change

in BBB permeability occurs 18 to 96 h after reperfusion and is

characterized by leukocyte infiltration (22). Inflammation plays

an important role in the development of ischemia/reperfusion

injury (23–25). In SDC-1 gene-deficient rats, the interaction

between leukocytes and endothelial cells is enhanced. SDC-1

promotes the recruitment of neutrophils by combining with

chemokines released in the degradation process to increase

the inflammatory response, leading to endothelial dysfunction

and damage to the BBB (26). A recent study showed that

glucocorticoid administration reduced the inflammatory

response caused by ischemia/reperfusion injury, decreased the

permeability of the BBB, and improved mortality and neurological

function in a cardiac arrest/cardiopulmonary resuscitation rat

model (11).

These results suggested that severe ischemic and hypoxia after

LVO leads to the shedding of the glycocalyx, which weakens

the BBB physical barrier and exacerbates the BBB damage

through inflammatory reaction, thus increasing the occurrence

of symptomatic intracranial hemorrhage and brain edema. These

prior reports are consistent with our findings that patients with

a greater degree of ND or death consistently exhibited higher

levels of SDC-1. SDC-1 is also an extremely early predictor

of survival before endovascular therapy and may therefore be

useful as both an early biomarker of clinical outcome and a

therapeutic target to increase survival. Overall, our study showed

an association between endothelial shedding and ND, as well as

adverse outcomes.

5. Limitations

Our study has many limitations. The first and most important

limitation of our study is the small sample size, a result of the

challenging clinical environment. Second, the duration of the study

was only 7 days and no observation data were obtained over a longer

period. There is no further information as to when the levels of

HA, SDC-1, and HS in the plasma of patients with stroke dropped

to the same levels found in healthy individuals. Third, we do not

have data on the concentrations of the glycocalyx components in

patients before the onset of stroke; therefore, we could not conduct a

comparison of ischemia/reperfusion damage or determine when the

damage stopped.

6. Conclusion

In this study, we show the fluctuation of glycocalyx components

in the plasma of patients with stroke after endovascular treatment

and identify the association between plasma SDC-1 levels and

deterioration of neurological function. Furthermore, we show

that the pre-reperfusion level of SDC-1 can help predict 90-day

mortality. Despite the limited number of subjects, the results of our

investigation are still encouraging for further research.
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