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Targeted temperature management (TTM) is standard of care for neonatal hypoxic

ischemic encephalopathy (HIE). Prevention of fever, not excluding cooling core

body temperature to 33◦C, is standard of care for brain injury post cardiac arrest.

Although TTM is beneficial, HIE and cardiac arrest still carry significant risk of death

and severe disability. Mammalian hibernation is a gold standard of neuroprotective

metabolic suppression, that if better understood might make TTM more accessible,

improve e�cacy of TTM and identify adjunctive therapies to protect and regenerate

neurons after hypoxic ischemia brain injury. Hibernating species tolerate cerebral

ischemia/reperfusion better than humans and better than other models of cerebral

ischemia tolerance. Such tolerance limits risk of transitions into and out of hibernation

torpor and suggests that a barrier to translate hibernation torpor may be human

vulnerability to these transitions. At the same time, understanding how hibernating

mammals protect their brains is an opportunity to identify adjunctive therapies for

TTM. Here we summarize what is known about the hemodynamics of hibernation

and how the hibernating brain resists injury to identify opportunities to translate these

mechanisms for neurocritical care.

KEYWORDS

torpor, TTM, therapeutic hypothermia, ground squirrel, cerebral ischemia,

ischemia/reperfusion, NIRS, neurocritical care

1. Introduction

Cooling core body temperature (Tc) and hence brain temperature, termed targeted

temperature management (TTM), remains standard of care for neonatal hypoxic-ischemic

encephalopathy (HIE). For out of hospital cardiac arrest (OHCA) current guidelines recommend

prevention of fever, not excluding cooling to 33◦C. A focus on fever management vs. cooling

stems from a challenge to demonstrate efficacy in large clinical trials (1). The struggle to

demonstrate broad clinical efficacy of lowering Tc may be due to potential complications

associated with shivering, disturbed hemodynamics, dysrhythmias and electrolyte disorders,

particularly during the process of rewarming (2–4). Based on the magnitude of neuroprotection,

metabolic suppression, lowered brain temperature and immune suppression, hibernation is a

gold standard of neuroprotective adaptations (5–8).

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1009718
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1009718&domain=pdf&date_stamp=2023-01-27
mailto:kdrew@alaska.edu
https://doi.org/10.3389/fneur.2023.1009718
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2023.1009718/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Drew et al. 10.3389/fneur.2023.1009718

1.1. Hibernation highlights the benefit of
suppressing metabolism with a secondary
fall in body temperature

Hibernation is an animal adaptation of energy conservation

where a decrease in energy consumption precedes a fall in body

temperature. For small (e.g., 0.3–1 kg) mammalian hibernators,

evidence suggests that suppression of thermogenesis is sufficient to

account for the initial fall in metabolic rate. A consequent decline

in core body temperature suppresses metabolic rate further through

thermodynamic influence on metabolic processes (9) as animals

enter torpor, which we refer to here as hibernation torpor. The

focus on suppressing thermogenesis to lower metabolic rate and

produce a subsequent decrease in Tc distinguishes hibernation torpor

from current TTM protocols to lower Tc or to prevent fever. If the

physiology and neuroscience of hibernation was better understood,

it could guide improved therapeutic strategies for TTM. Toward that

end, research has revealed circuits to mimic fasting induced torpor

in mice (10, 11). We have also found a necessary and sufficient role

of central nervous system active, A1 adenosine receptor agonists

to block thermogenesis and induce hibernation in ground squirrels

(12). This mechanism, described as thermoregulatory inversion (13),

can be mimicked in rats (14–16) and has inspired a new class

of thermolytics designed to suppress thermogenesis within CNS

thermoregulatory circuits (15). One example is a formulation of a

centrally acting adenosine receptor agonist and a peripherally acting

adenosine receptor antagonist (14, 17). This formulation is designed

to target CNS A1 adenosine receptors to mimic natural hibernation

with systemic drug administration (12, 16).

1.2. Hibernation illustrates integration of
autonomic, thermoregulatory and metabolic
processes

While new insights refine methods to suppress metabolism

and lower body temperature, hibernation can also teach us about

the integration of autonomic, thermoregulatory and metabolic

processes needed to ensure that oxygen/nutrient supplies match the

dramatic changes in metabolic load demonstrated in hibernation.

Like with TTM, rewarming from hibernation may pose the greatest

physiological challenge. One challenge is to match blood flow to

metabolic load where metabolic rate increases from <2 percent

of basal metabolic rate (BMR) during hibernation torpor to 300

percent of basal metabolic rate during the process of rewarming.

Cellular adaptations underlying resistance to ischemia/reperfusion

injurymay have evolved as a necessary adaptation of heterothermy, to

protect against ischemia/reperfusion injury during rewarming (5, 18–

22). Indeed, the arctic ground squirrel (AGS) is known to resist

ischemia/reperfusion injury in brain and other tissues (6, 23–25).

Similarly, tightly regulated, and poorly understood, hemodynamics

that guard against a mismatch between blood supply and demand

may also have evolved to protect against ischemia/reperfusion

injury during rewarming. Here we review what is known about

hemodynamics and neuroprotection in hibernation and arousal

from hibernation torpor and discuss what this can teach us about

hemodynamic risk that will need to be mitigated for successful

FIGURE 1

Body temperature in relation to life cycle and season of the

hibernating arctic ground squirrel (AGS). The hibernation season, also

referred to as hibernation, is marked by repeated bouts of prolonged

torpor, termed here as hibernation torpor. Hibernation torpor is

interrupted by spontaneous interbout arousals (IBA) noted by rapid

increases in body temperature. Spontaneous IBAs are observed in all

species of hibernators when core body temperature falls below 30◦C

(26). During arousal from hibernation, the nadir of mammalian

metabolism is over-ridden by the high energetic costs of warming

core body temperature from near 0◦C to ∼35◦C in 2–3h. During

repeated recovery from hibernation oxygen consumption surges 300

fold from about 0.01 mLO2g
−1h−1 to about 3 mLO2g

−1h−1 (27).

Arousal from torpor may be spontaneous or induced by external

stimuli such as gentle handling. Once initiated, evidence suggests

induced arousals proceed in the same way as natural arousals with the

exception that induced arousals are faster and may be more

energetically demanding [Adapted from Drew et al. (28)].

translation of synthetic torpor as a means to optimize the benefit of

lowered Tc in humans.

2. Hemodynamics of hibernation

Hibernation torpor in AGS occurs during the winter season

and consists of prolonged bouts of torpor lasting up to 3 weeks.

These torpor bouts are interrupted by 12–24 h of interbout euthermia

(Figure 1). Depending on ambient temperature during hibernation

torpor body temperature may decrease to near or below 0◦C, while

the rate of oxygen consumption falls to 2% of BMR (29, 30).

Hibernating hamsters show similar phenomena, but to slightly less

extremes (31).

2.1. Heart rate declines with whole animal
metabolic rate

Entrance into hibernation torpor is driven by metabolic

suppression. Heart rate (HR) declines in synch with the decrease in

metabolic rate to such a degree that HR is considered a proxy of

metabolic rate (32). A defining hallmark of hibernation torpor is a

hysteresis between oxygen consumption orHR and body temperature

(33, 34) illustrating how a decrease in body temperature is secondary

to a decrease in metabolic rate. Enhanced parasympathetic tone
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FIGURE 2

After entrance into hibernation torpor in Syrian hamsters, systolic

blood pressure (SBP) increases to a new plateau at about 50% of

euthermic systolic blood pressure (SBP). By contrast, heart rate (HR)

remains at a steady minimum throughout the torpor bout. SBP and HR

were measured in unanesthetized animals by telemetry with the

catheter of a pressure transmitter inserted into the abdominal aorta

[Horwitz et al. (33)].

to the heart during entrance into hibernation torpor is evident

from skipped heart beats (35, 36) which are reversed with atropine

in hamsters (35). Onset of arousal is marked by withdrawal of

parasympathetic and by an increase in sympathetic nervous system

stimulation (35, 37). We know from these observations that the

autonomic nervous system plays a fundamental role in regulating

circulatory and thermoregulatory aspects of hibernation torpor (38),

and potentially metabolic suppression.

2.2. Blood pressure closely tracks metabolic
load

As HR decreases during entrance into hibernation torpor so does

blood pressure. A detailed study in hibernating hamsters illustrates

that during entrance into hibernation torpor, systolic blood pressure

(SBP) declines, presumably secondary to HR. However, while HR

remains low and stable at <10% of euthermic HR throughout

hibernation torpor, SBP increases to a new plateau at about 50% of

euthermic SBP (Figure 2).

During the early phase of arousal, blood pressure (BP) increases

faster than HR, and during the late phase of arousal, HR increases

significantly while BP stays at the highest level (Figure 3). BP shows

a hysteresis relative to Tc that, except for a pronounced overshoot

at the peak of arousal, resembles the hysteresis seen for HR and

metabolic rate (33). Hysteresis between HR, metabolic rate and Tc

illustrate how attenuated thermogenesis with a subsequent decrease

in metabolic rate and HR during entrance precedes the decrease in

Tc. The relationship between these variables differs during arousal

where an unknown endogenous cue stimulates thermogenesis with

a subsequent increase in metabolic rate and HR (9) and an eventual

increase in Tc. During the early entrance phase the drop in BP

follows the drop in HR in a fairly linear manner. As such, BP

(perfusion pressure) closely tracks metabolic load or demand for

oxygen. By tracking metabolic load, the animal can safely lower

BP and hence oxygen supply while still matching the demand

for oxygen.

FIGURE 3

Open loops in hysteresis plots shown for SBP, HR and baroreceptor

sensitivity (BRS) illustrate that cardiovascular control operates in

fundamentally di�erent ways during entrance and arousal. Importantly,

the hysteresis between HR and SBP (A) illustrates that BP increases

prior to HR during arousal and declines at the same rate as HR during

entrance. During arousal, SBP (B) and HR (C) both increase to near

maximal levels before BRS begins to increase [Horwitz et al. (33)].

2.3. Hibernation emphasizes the benefit of
regulating blood pressure to meet metabolic
load

Hibernation supports the idea that perfusion pressure must be

optimized during TTM to meet metabolic load. During onset of

hibernation torpor, BP decreases at the same rate as HR to match

oxygen supply with oxygen demand. By contrast, at the onset of

arousal, a steep increase in BP precedes an increase in HR. After

BP reaches a maximum, HR continues to increase. The temporal

relationship between HR and BP suggests that oxygen supply is

increased in preparation for the increase in oxygen demand during

rewarming and subsequent warm body temperature. This preemptive

increase in oxygen supply is expected to contribute to successful

rewarming. In humans, it may be beneficial to increase perfusion

pressure before rewarming. In hibernation, the dramatic and rapid

increase in BP that occurs before an increase in metabolic rate

(inferred by an increase in HR), and before an increase in Tc (33)
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FIGURE 4

A gradual increase in HR is the first sign of arousal although a rapid

increase in systolic blood pressure (SBP) precedes the subsequent,

rapid rise in HR. Maximal SBP during arousal overshoots SBP measured

during euthermia. Minimal baroreceptor sensitivity (BRS) at the onset

of arousal may allow for the rapid rise in SBP and HR that are needed

to support the metabolic demands of heart and brain as animals

rewarm from hibernation torpor seen as a change in core body

temperature (Tc) [Horwitz et al. (33)].

suggests that establishing adequate perfusion pressure before raising

Tc may prevent brain injury during and after rewarming. This

specific temporal relationship should guide rewarming procedures in

development of synthetic torpor and potentially in current clinical

application of TTM. Changes in baroreceptor sensitivity (BRS)

during entrance and arousal demonstrates a functioning autonomic

nervous system that modifies the BP setpoint as needed to optimize

energy conservation without compromising brain and other vital

tissue perfusion.

2.4. Dynamic modulation of baroreceptor
sensitivity and vasoconstriction during
hibernation optimizes perfusion pressure

Typically, as blood pressure declines, the baroreflex produces an

increase in HR. Baroreceptor sensitivity (BRS) quantifies how much

control the baroreflex has on the HR. Remarkably, BRS remains

high during initial entrance into hibernation torpor, although HR

continues to decrease despite a pronounced decrease in SBP. This

temporal relationship suggests that BRS sensitivity is important

during entrance into hibernation torpor. Moreover, it shows that the

baroreflex is dynamically and effectively altering HR to ensure that

BP tracks a declining set point during torpor entrance. More research

is needed to define mechanisms that regulate the declining set point

to understand how regulation could be optimized during TTM.

BRS reaches a minimum at Tc of about 20◦C and remains low

throughout torpor and early arousal (Figure 4). Although a gradual

increase in HR is the first sign of arousal, a rapid increase in

SBP precedes the subsequent, rapid rise in HR and overshoots SBP

measured during euthermia.Minimal BRS at the onset of arousal may

allow for the rapid rise in BP and HR that are needed to support

the metabolic demands of heart and brain as animals rewarm from

hibernation torpor.

FIGURE 5

Use of a novel miniaturized near infrared spectroscopy (NIRS) device

for quantifying Hb and HbO2 in small animals shows that HbO2

decreases during arousal from hibernation in hind leg (A) and brain (B)

tissue. Hibernating AGS fit with sensors on the head and leg were

placed in a metabolic cage at 0min. Handling-induced arousal

produced tissue hypoxia in both tissues. Rate of O2 consumption

increased from 0.06 mLg−1h−1 at 0min to a maximum of 3.1

mLg−1h−1 between 131 and 231min. Data shown are mean ± SEM (A,

B) and median with Q2 and Q3 defined by box and range shown as

whiskers (C) (n = 8; 4M, 4F AGS, 10–11 months old).

BP dynamics can also be explained in part by an increase

in vasoconstriction and peripheral resistance throughout the

hibernation season and during onset of arousal (33, 39, 40).

Vasoconstriction is another feature of hibernation torpor that

contributes to hemodynamics and distinguishes torpor from

hypothermia. Increased vasoconstriction in ground squirrels (39, 41),

hamsters and during fasting-induced torpor in mice (35, 41–43)

decreases conductive heat loss. Peripheral resistance increases further

at initiation of arousal, where touching an animal to induce arousal
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FIGURE 6

Oxygen concentration in AGS brain tissue does not decrease during

arousal, despite a decrease in oxyhemoglobin. Data shown are

representative graphs from a single AGS collected during an induced

arousal from hibernation torpor at an ambient temperature of 2◦C.

First and second dashed line from left shows the time when arousal

and euthermia started. (A) Changes in brain temperature during

arousal. (B) Changes in PtO2 without temperature correction (P O2,

meas). (C) Changes in calculated PtO2 with temperature correction (P

O2, Cal). (D) Changes in the rate of oxygen consumption (VO2)

measured by open flow respirometry [Ma and Wu (51) with

permission].

produces an immediate sympathetic surge to increase HR, metabolic

rate, and vasoconstriction in the hindlimbs (40, 44). Peripheral

vasoconstriction directs blood flow to the heart and brain. The

classic pattern of rewarming in hibernating mammals begins with

the thoracic area and brain and ends with the hindlimbs (44) with

blood flow not returning fully to the hind limbs for as long as 48 h

(45). Peripheral vasoconstriction combined with heat generated from

brown fat creates pronounced heterogeneity of warming (38, 46).

2.5. Adaptations in hibernating species can
guide the management of rewarming from
TTM

What do these hemodynamic qualities mean for the brain

and brain blood flow? During hibernation torpor cerebral blood

flow, measured by quantitative autoradiography in 13 lined ground

squirrels, falls from euthermic levels of 62 ± 18mL 100 g−1 min−1

to an ischemic-like level of 7 ± 4mL 100 g−1min−1 (47). By

contrast, during arousal from hibernation torpor cerebral blood flow

velocity peaks at 3.8 times the normal euthermic, resting levels

(40, 44). Mathematical modeling of metabolic rate and parameters

derived from ECG in hibernating 13 lined ground squirrel support

the hypothesis that ground squirrels rewarm as quickly as is

physiologically possible and that arousal from hibernation torpor

is limited by capabilities of the cardiovascular system (48). Given

human physiology, this rate of rewarming would not be possible in

humans, however, it highlights adaptations in hibernating species

that if better understood could guide the management of rewarming

from TTM when Tc is lowered to 33◦C.

3. Neuroprotection in hibernating
species

Unique to hibernating species is an unprecedented resistance to

cerebral ischemic/reperfusion injury, most likely necessary to tolerate

interbout arousals illustrated in Figure 1. The innate neuroprotective

phenotype of hibernating species must be appreciated to translate

synthetic torpor to humans. While the essential biochemical or

physiological processes filled by arousal episodes remain unknown,

the significant energy reserves consumed by arousal (27, 49, 50)

implies that they are needed for survival and thus hibernating

mammals have evolved mechanisms to tolerate reperfusion of the

heart and brain during times of peak oxidative metabolism. Arousal

episodes challenge homeostasis in several ways and may be the

most physiologically challenging aspect of heterothermy that if better

understood could hold clues for TTM.

3.1. Despite optimized regulation of blood
pressure, the brain of hibernating species
resists ischemia reperfusion injury

The energy demanding process of interbout arousals puts animals

at risk for ischemia/reperfusion if blood flow is not matched precisely

with rising metabolic load as metabolic rate increases from two

percent of BMR to over 300 percent of BMR within a few hours (27).

For torpid hibernators housed near their thermoneutral zone (an

ambient temperature of 0 to 2◦C for an AGS), about 70% of energy

reserves required for the entire hibernation season are consumed

during arousal and subsequent episodes of euthermia (49, 50). During

this period of high metabolic load in AGS, blood oxygen saturation

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2023.1009718
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Drew et al. 10.3389/fneur.2023.1009718

FIGURE 7

Western blots show higher expression of the 17kD neuroglobin monomer in cortex of AGS compared to cerebral ischemia sensitive rat and in cortex of

euthermic AGS in winter compared to euthermic AGS in summer; 100 µg of protein was resolved on 10% SDS-PAGE and membranes were incubated

with anti-Ngb (Ngb PolyAntibody (FL-151), 1:200, Santa Cruz Biotechnology, sc-30144) overnight followed by incubation with HRP-conjugated

secondary antibody (Gt anti-rabbit IgG, 1:5,000, Santa Cruz Biotechnology). Optical density was normalized to actin. Rats were male, 3–4 months. AGS

were male and female, adult (>1 year of age). *P < 0.0003, t-test, n = 6 AGS vs rat; *p < 0.0045, t-test, n = 4 summer vs. winter euthermic AGS [adapted

from Bhowmick (52)].

(sO2) measured with a rectal, pulse-oximeter probe decreases to a

minimum of 57% suggesting limited arterial blood oxygenation (22).

Measure of brain tissue oxygenation using near infrared spectroscopy

(NIRS) shows an increase in deoxyhemoglobin and a decrease in

oxyhemoglobin in brain and hindleg during arousal (Figure 5). By

contrast, direct measures of focal brain tissue oxygenation using an

oxygen electrode implanted in striatum during arousal in AGS failed

to show a significant decline in brain tissue O2 concentration (PtO2)

(51) (Figure 6). One explanation why PtO2 may be preserved while

oxyhemoglobin concentrations decline is the presence of an oxygen

carrier or storage molecule such as neuroglobin.

3.2. An oxygen carrying molecule such as
neuroglobin may add additional protection
from a mismatch between perfusion
pressure and metabolic load in hibernating
species

Neuroglobin is a heme containing protein expressed in neurons.

Preliminary data show that neuroglobin in brains of AGS is

significantly higher than in rat brain (Figure 7). Neuroglobin is

a member of the vertebrate globin family. Neuroglobin is best

known for detoxifying NO and other reactive nitrogen species

such as peroxinitrite (53). Neuroglobin may also serve as a storage

and carrier molecule for O2. While binding affinity and other

properties have failed to support such a role (54) the potential

contribution of temperature during hibernation torpor and arousal

on neuroglobin/O2 binding has not been studied. Low tissue

temperature during torpor could load neuroglobin with O2. This O2

could then be released during rewarming upon arousal to maintain

brain PtO2 despite falling tissue levels of oxyhemoglobin. How to

improve O2 delivery to the penumbra in stroke is an active area

of research with potential to enhance therapeutic efficacy of TTM

(55, 56). Enhancing O2 delivery and titrating blood pressure to

achieve perfusion/oxygenation targets show promise as a means

to improve outcome after global cerebral ischemia (55, 57), but

perfusion/oxygenation targets have yet to be optimized and routinely

monitored during TTM (58) or during preclinical models of

synthetic torpor.

3.3. Further neuroprotective measures
protect the brain from potential mismatch
between perfusion pressure and metabolic
load

While the extent of or protection from cerebral hypoxia during

arousal remains an area for further study, hemodynamic and

neuroprotective measures appear to be optimized to minimize

risk of ischemia/reperfusion injury when, during rewarming from

hibernation torpor, cerebral blood flow returns from ischemic-like

levels with an overshoot of SBP. The homeostatic challenges of

interbout arousal may explain why ground squirrels have evolved to

resist injury from ischemia reperfusion noted for several species and

tissues (19–21, 23, 25, 59). Data suggests that temperature takes on an

increasingly important protective role as tissue temperature declines

(8, 22, 25). Thus, resistance to acute challenge as brain tissue warms

during arousal is an important component of regulated transition

out of hibernation torpor. Harnessing similar neuroprotective

mechanisms for neurocritical care could synergize with therapeutic

benefits of lowered brain temperature.

Even when not hibernating, AGS survive cardiac arrest with

complete cessation of blood flow to the brain without evidence of

neuropathology (6). AGS brain slices also tolerate prolonged periods

of oxygen-glucose deprivation (OGD) in vitro (60) with no significant
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FIGURE 8

AGS brain tolerates OGD better than rat regardless of hibernation state or season. Cell death was measured from LDH released into the perfusion fluid in

acute hippocampal slices from rat and euthermic AGS during the summer season (seAGS), during hibernation torpor (hAGS) and during early arousal (4 h

ibeAGS) and late arousal (20 h ibeAGS), 4 and 20h after initial handling to induce arousal. (A) LDH in perfusates increased in rat hippocampal slices

exposed to OGD (rat, OGD), but not in rat slices exposed to artificial cerebral spinal fluid (aCSF) (rat, aCSF), nor in slices harvested from summer

euthermic AGS and exposed to aCSF (seAGS, aCSF). A small amount of cell death is noted in slices collected from seAGS and exposed to OGD (seAGS,

OGD). *p < 0.05 rat aCSF vs. rat OGD, +p < 0.05 rat OGD vs. seAGS OGD, #p < 0.05 seAGS aCSF vs. seAGS OGD. (B) As a positive control TritonX

increased LDH release in seAGS slices (*p < 0.05 0.1% TritonX vs. aCSF). (C) AGS hippocampal slices are most vulnerable to OGD when collected from

AGS 20h into an interbout arousal (20 h ibeAGS). Insert shows the sum of LDH in perfusates collected 15–210min from onset of OGD. *p < 0.05 seAGS

vs. 20 h ibeAGS, +p < 0.05 4h ibeAGS vs. 20 h ibeAGS, #p < 0.05 hAGS vs. 20 h ibeAGS, t-test with Bonferroni correction. (D) Exposure of slices from the

same groups of animals as in (C) to aCSF has no e�ect on LDH release. Gray bar indicates 30min treatment period. Data shown are means ± SEM, n = 4

slices in B, 25–30 slices per treatment in (A, C, D). The novel microperfusion method, an improvement over previous use of propidium iodide as an

indicator of cell death, replicated results obtained with propidium iodide [Bhowmick et al. (20)].

increase in neuronal cell death. Profound tolerance to cerebral

ischemia, i.e., disruption in blood flow to the brain, is observed when

AGS are not hibernating and when brain temperature is maintained

near 37◦C. Indeed, when the influence of temperature is excluded,

cerebral ischemia tolerance in the euthermic state is so significant that

it masks additional protection that may be afforded by hibernation

torpor (20, 60, 61).

Figure 8 illustrates results from in vitro studies in acute

AGS hippocampal slices. Using a novel microperfusion technique,

we found that the innate neuroprotection of AGS persists at

temperatures near 37◦C regardless of hibernation season or state

(20). These results replicate prior results (61). Data suggests that

slices may be slightly vulnerable to OGD when harvested from

animals after the peak in metabolic load, during the final stage

of an interbout arousal. However, even at this vulnerable period

AGS hippocampal slices resist injury significantly better than slices

from Sprague Dawley rat. Resistance to OGD injury persists

despite a loss of ATP (20, 61), delayed, but eventual depolarization

(5), and release of glutamate and acidosis (19, 20). Downstream

to these events AGS tend to buffer intracellular calcium better

than rat (62) and mitigate oxidative and nitrosative stress; in

particular AGS brain resists peroxynitrite-mediated injury (19). A

working hypothesis that warrants further study is that the high

expression of neuroglobin in AGS brain aides in resistance to

peroxynitrite-mediated injury.

3.4. Neuroprotective adaptations may be
complimented by regenerative processes
stimulated by mild ischemia/reperfusion

Other data suggests that enhanced capacity for neural progenitor

survival and proliferation contributes to neuroprotection in AGS.

Oxygen glucose deprivation or hypoxia alone, promote proliferation

of AGS neural progenitor cells isolated from AGS hippocampus

(63). In an elegant study of these cells, Singhal et al. (18), found

that a natural AGS variant of the mitochondrial protein ATP5G1

contributes to resistance tometabolic stress. Specifically, Leu 32 in the

AGS ATP5G1 protein enhances respiratory capacity and preserves

mitochondrial morphology when cells are exposed to hypoxic

challenge. Singhal’s study also identified mesencephalic astrocyte-

derived neurotrophic factor and calmodulin as cytoprotective

proteins in AGS neural progenitor cells (18).
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Observations in vivo complement evidence in vitro that

arousal from hibernation promotes regenerative processes. Seasonal

hibernators do not suffer cognitive deficits after interbout arousal.

Although some forms of learning acquired prior to the onset of the

hibernation season are compromised after final arousal in spring

(64), we and others have reported evidence of enhanced cognitive

capacities after interbout arousal (65, 66). Arousal from torpor in

mice also enhances synaptic strength and improves memory in a

mouse model of Alzheimer’s disease (67). Hibernation and cooling

in non-hibernating species increase expression of cold-shock, RNA

binding proteins such as RBM3 which promotes synaptogenesis

(68–70) and skeletal muscle hypertrophy (71). These lessons point

to an opportunity to study the benefit of regenerative therapies

post TTM.

3.5. Hibernation argues for complementary
neuroprotective and regenerative adjunctive
therapies to enhance the e�cacy of targeted
temperature management

HIE treated with TTM of 33◦C still leads to severe complications

with 48 percent of cases ending in death or moderate to severe

disability (72). Adjunctive therapies for TTM are in development

for HIE (73). Of the approximately 350,000 people who suffer an

OHCA and are treated by EMS, only 6 to 16 percent survive (74)

despite access to TTM. Clearly there is a need to optimize benefit of

TTM, potentially by turning the focus from temperature to metabolic

suppression and cerebral oxygenation. There is also an opportunity

to add neuroprotective and regenerative therapies to TTM. Since the

HACA and Bernard trials in 2002 the frequency of cooling to 33◦C

post OHCA grew with advances of cooling devices. During this time

the proportion of patients with ROSC after OHCA who survive to

hospital discharge also increased (75). Nonetheless, the more recent,

large, well-controlled and well-designed TTM2 trial found no benefit

of lowering core body temperature to 33◦C over fever management

(76), but the neuroprotective benefit of hibernation torpor (8)

emphasizes the benefit of lowered brain temperature. Hibernation

also suggests that lowered temperature should be secondary to the

inhibition of thermogenesis and metabolic suppression. Without

metabolic suppression and a suppressed cold-defense response the

efficacy of cooling per-se will likely remain variable and limited.

Similarly, bradycardia and hypotension are consequences of cooling

and may or may not be sufficient to sustain sufficient cerebral

perfusion pressure. Sufficiency of BP during lowered Tc could be

determined if brain tissue oxygenation was monitored. By contrast,

hypotension during rewarming may counteract the benefit of cooling

by failing to meet the metabolic demands of a warming brain.

To translate synthetic torpor to the clinic, cerebral oxygenation

targets during TTM and rewarming should be followed. Other

neuroprotective and regenerative adaptations in hibernating animals

should also be investigated and developed as adjunctive therapies

for TTM.
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