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Background: The di�erential diagnosis between autoimmune encephalitis

and low-grade di�use astrocytoma remains challenging. We aim to develop

a quantitative model integrating radiomics and spatial distribution features

derived from MRI for discriminating these two conditions.

Methods: In our study, we included 188 patients with confirmed autoimmune

encephalitis (n = 81) and WHO grade II di�use astrocytoma (n = 107).

Patients with autoimmune encephalitis (AE, n = 59) and WHO grade II di�use

astrocytoma (AS, n= 79) were divided into training and test sets, using stratified

sampling according to MRI scanners. We further included an independent

validation set (22 patients with AE and 28 patients with AS). Hyperintensity

fluid-attenuated inversion recovery (FLAIR) lesions were segmented for each

subject. Ten radiomics and eight spatial distribution features were selected

via the least absolute shrinkage and selection operator (LASSO), and joint

models were constructed by logistic regression for disease classification.

Model performance was measured in the test set using the area under

the receiver operating characteristic (ROC) curve (AUC). The discrimination

performance of the joint model was compared with neuroradiologists.

Results: The joint model achieved better performance (AUC 0.957/0.908,

accuracy 0.914/0.840 for test and independent validation sets, respectively)

than the radiomics and spatial distribution models. The joint model achieved

lower performance than a senior neuroradiologist (AUC 0.917/0.875) but

higher performance than a junior neuroradiologist (AUC 0.692/0.745) in the

test and independent validation sets.

Conclusion: The joint model of radiomics and spatial distribution from a single

FLAIR could e�ectively classify AE and AS, providing clinical decision support

for the di�erential diagnosis between the two conditions.
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autoimmune encephalitis, low-grade di�use astrocytoma, MRI, radiomics, spatial
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Introduction

Autoimmune encephalitis (AE) is a severe autoimmune

mediated neuroinflammatory disorder that causes various

neuropsychiatric syndromes, including seizures, behavior or

cognitive dysfunction, or autonomic instability (1). Effective

and timely immunotherapy is essential for a better prognosis.

Currently, the diagnosis of AE relies on antibody testing and

the treatment response to immunotherapy, which is limited

by the availability of the test and treatment (1, 2). Therefore,

early diagnosis of AE for more appropriate clinical management

remains a significant challenge.

Although clinical manifestations provide crucial

information for the diagnosis of AE, with the growing

number of non-infectious cases identified in the last decade,

radiological imaging, and MRI plays an increasingly critical role

in the early diagnosis of AE (3). The typical MRI characteristics

of AE include hyperintensities on T2-weighted images (T2WI)

or fluid-attenuated inversion recovery (FLAIR) imaging in the

medial aspect of the temporal lobes (1, 3).

However, AE shares common MRI characteristics with low-

grade diffuse astrocytoma, a primarymalignant brain tumor that

usually requires surgical treatment (4). These shared features

include hyperintensities on T2-weighted images (T2WI) without

enhancement on post-contrast T1-weighted images (T1WI)

(5). The misdiagnosis of the two conditions could result

in unnecessary immunotherapy or surgical treatment (1, 6).

Accurately differentiating the two conditions clearly impacts

patient management and benefits patient quality of life.

The existing knowledge of differentiating AE from low-

grade diffuse astrocytoma is largely based on sporadical case

reports (5, 7–10). The previous studies demonstrated several

characteristics in distinguishing autoimmune encephalitis from

glioma through conventional MRI, and unilateral lesions and

loss of differentiation between gray and white matter are

also supporting signs for gliomas (5). However, subjective

identification depends more on the clinical experience of

the neuroradiologists. Thus, differential diagnosis remains

a challenge in clinical practice. In addition, advanced MR

sequences might be helpful to the situation (11–14), but their

clinical application was limited due to complex processing steps.

As a result, a more efficient and specific tool is needed to tackle

the challenge of differentiating AE and glioma.

Radiomics is an emerging field that converts medical

imaging to quantitative features using computational methods

(15). Radiomics features, including morphological, statistical,

and textural features, could provide information reflecting

underlying pathophysiology that is difficult to capture by visual

inspection (16). Recently, radiomics has been successful in

the differential diagnosis of neurological diseases for clinical

decision-making (17–20). Meanwhile, previous radiomics

models (21, 22) also showed promising performance based on a

single sequence. Particularly, FLAIR is a sequence widely used

in routine clinical practice, which has demonstrated validated

efficacy in characterizing both tumor core and peri-tumor

edema. Therefore, radiomics based on the FLAIR sequence

could provide essential information in differentiating the

two diseases.

Scanty studies focused on differentiating

neuroinflammation from low-grade glioma using computational

methods (22). A previous study conducted a radiomics analysis

to discriminate neuroinflammation from grade II glioma

(22). This study established the feasibility of radiomics in

differentiating AE from low-grade glioma. However, a model

based on traditional radiomics may not be comprehensive

enough to evaluate brain lesions based on relatively small

sample size.

While radiomics features reflect the local information of the

lesions, the global information could also be shown by the spatial

distribution signatures, which provide unique information for

characterizing glioma and AE. For instance, gliomas tend to

be located in regions enriched with the genes associated with

chromatin organization and synaptic signaling (23). Besides,

it is reported that IDH-mutated low-grade gliomas are more

located in the frontal lobes, while IDH wild type is more

in the basal ganglia of the right hemisphere (24). As for

AE, the lesion tends to spatially affect the limbic system (1,

25). Therefore, adding the spatial distribution features to the

traditional radiomics features promises to better differentiate AE

from low-grade glioma.

In this study, we hypothesized that a joint model of

radiomics and spatial distribution features could improve

the differentiation model between the two diseases. To test

this hypothesis, we retrospectively collected 188 patients

with a confirmed diagnosis of autoimmune encephalitis

or low-grade astrocytoma. We then constructed a joint

model based on the radiomics and spatial distribution

features extracted from the FLAIR sequence. The model

performance was validated in multiple imaging sets

and also compared with the diagnostic performance

of neuroradiologists.

Materials and methods

The study was approved by the Institutional Review Board

of Huashan Hospital, and the need for written informed consent

was waived due to the retrospective nature of the study.

All human studies were approved by the Huashan Hospital

Ethics Committee and were performed following the ethical

standards laid down in the 1964 Declaration of Helsinki and

its amendments. The flowchart of the study design is shown in

Figure 1.
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FIGURE 1

A flowchart of the study design.

Patients

We included two cohorts with patients diagnosed with

astrocytoma (AS cohort) or autoimmune encephalitis (AE

cohort) from 2014 to 2021.

The inclusion criteria for the AE cohort were as follows: (1) a

clinical diagnosis of AE according to the 2016 diagnostic criteria

(1) by two neurologists; (2) positive laboratory examination for

autoimmune antibodies (Abs), including neural surface antigens

(NMDAR, LGI1, CASPR2, GABABR, and AMPAR) in both

immunohistochemistry and cell-based assays for Abs, and dot-

blot analysis for the presence of onco-neuronal Abs (anti-

Hu, Yo, CV2, Ri, Ma2, and amphiphysin); and (3) availability

of MRI in the acute onset, including T1WI, T2WI, FLAIR,

diffusion-weighted images (DWI), and contrast-enhanced T1-

weighted (CE-T1WI) images.

The inclusion criteria for the AS cohort were as follows:

(1) histopathologically confirmed grade II astrocytoma (WHO

2016) (26); (2) availability of preoperativeMRI, including T1WI,

T2WI, FLAIR, DWI, and CE-T1WI; and (3) no history of brain

tumors, brain biopsy, or other preoperative treatment.

We excluded the following cases for both cohorts: (1)

previous history of neuropsychiatric diseases; (2) missing

sequences; and (3) poor imaging quality. We also excluded the

cases without apparent lesions on T2WI or FLAIR for the AE

cohort, and the cases with representative manifestations for the

AS cohort (space-occupying effect and heterogeneous signals,

e.g., hemorrhage, necrosis, and cyst) with the consensus of two
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experienced neuroradiologists (Hu B. and Li YX.) blinded to the

radiomic analysis.

The training, test, and independent
validation set

The patients diagnosed from 2014 to 2020 were randomly

split into training and test sets at a 3:1 ratio, by stratified

sampling according to the MRI scanner within each disease

cohort using the R software (Version 3.6.2, http://www.r-

project.org/), resulting in 103 patients in the training set (AE

cohort: 44; AS cohort: 59) and 35 patients in the test set (AE

cohort: 15, AS cohort: 20). The patients diagnosed in 2021 were

taken as the independent validation set, including 22 patients

with AE and 28 patients with AS.

MRI protocols

MRI examination of the enrolled patients was performed

on three 3.0T MRI scanners (two GE Discovery 750 scanners

and one Siemens Viero MR scanner) using the head coil with

eight channels.

The following sequences were included as follows: T1WI,

T2WI, FLAIR, DWI, and CE-T1WI acquired after intravenous

injection of 0.1 mmol/kg of gadolinium-chelate contrast

medium. The scan parameters on GE MR750 were shown as

follows: T1WI (repetition time, TR 2,000ms, echo time, and

TE 9ms), T2WI (TR 3,000ms and TE 98ms), and FLAIR (TR

7,000ms, TE 93ms, and TI 2,100ms). The scan parameters on

Siemens Viero MR included the following: T1WI (TR 2,000ms

and TE 17ms), T2WI (TR 4,552ms and TE 97ms), and FLAIR

(TR 8,525ms, TE 142ms, and TI 2,501ms). The slice thickness

of all the axial images was 5mm with a 1mm interslice gap,

and the field of view was 240 × 240mm. Digital imaging and

communications in medicine (DICOM) data were converted to

NIfTI format for later processing, and then the basic information

of patients was simultaneously removed for the protection

of privacy.

Region of interest (ROI) segmentation

The region of interests of each scan of each subject were

segmented manually on FLAIR images. For AS cases, the ROI

covered the enhancing tumor and peripheral edema and was

adjusted following the inspection of DWI and CE-T1WI images.

For AE cases, the ROI covered all the hyperintense T2 lesions

referring to T1WI and DWI images; single lesions with a

maximal in-plane length of fewer than five voxels (<2.5mm)

were ignored.

The ROIs were manually drawn by a neuroradiologist with 4

years of experience (Piao SR.). The consensus was reached after a

careful review and modified by an experienced neuroradiologist

(Li YX, with 20 years of experience in neuroradiology).

Both neuroradiologists were blinded to the diagnosis and

grouping of the patients. A segmentation threshold and

region-growing segmentation algorithm implemented using the

software (MITK; www.mitk.org) were used to create these ROIs.

Construction and evaluation of the
radiomics model

Radiomics features extraction and
quantification

Radiomic features were extracted from each lesion ROI

using the Standardized Environment for Radiomics Analysis

(SERA) (27–29) (https://qurit.ca/software/sera/) implemented

in MATLAB (Version 2020b; MathWorks). According to

guidelines from the Image Biomarker Standardization Initiative

(IBSI) (30), 351 radiomics features (29 morphology, 20 statistics,

30 histogram features, and 272 higher-order texture features)

were included for the following analysis.

Radiomics feature selection

All extracted radiomics features were standardized before

feature selection. Spearman’s correlation matrix of the features

was first calculated. Subsequently, hierarchical clustering was

performed based on the correlation matrix, selecting the most

representative features.

Next, the selected features were input to a least absolute

shrinkage and selection operator (LASSO) (29), to build a

radiomics signature for discriminating AS and AE. The classifier

was trained using 10-fold cross-validation on the training set

to determine the optimal parameters among the full coefficient

paths, where the most predictive features and their weights were

determined. A Radiomics Index for Lesion (RIL) was calculated

by summing the selected features and corresponding weights

from the single-lesion-based radiomics model. A threshold T

was defined as the optimal cutoff by themaximumYouden index

in receiver operating characteristic (ROC) curves, classifying

each lesion into negativity-like (RIL<T) or positivity-like lesion

court (RIL≥T).

Subject-level discrimination model

To optimally merge RIL-based single-lesion classification

into a subject-level diagnosis, a lesion-merged function (30)

was used for defining and calculating the Radiomics Index for

Subject (RIS). By comparing the summated distances of RIL−

court (negativity-like) and RIL+ court (positivity-like) lesions

relative to the threshold T, the court with a higher summated
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distance was selected as the diagnosis of a scan, and the distance

of the corresponding court was averaged as the RIS. With n and

p denoting the numbers of all lesions in RIL− court (negativity-

like lesions with RIL<T) and RIL+ court (positivity-like lesions

with RIL>T), respectively, and the RIS value of each scan is

calculated as the following expression:

RIS =















1
p

p
∑

i=1
RIL+i ,

p
∑

i=1
|RIL+i −T|≥

n
∑

j=1
|RIL−j −T|

1
n

n
∑

j=1
RIL−j ,

p
∑

i=1
|RIL+i −T|<

n
∑

j=1
|RIL−j −T|

Construction and evaluation of the
spatial distribution model

Spatial distribution feature extraction was processed

through probabilistic lesion mapping procedures via SPM12

(http://www.fil.ion.ucl.ac.uk/spm) (31). First, the T1W image

was co-registered with the T2-FLAIR image. Next, the

converted T1W image was transformed into the Montreal

Neurology Institute (MNI) space. Then, the transformation

parameter was applied to the FLAIR image and the whole-brain

lesion ROI. Finally, the threshold of each lesion mask in

the standard space was set to 0.5 and binarized to avoid the

expansion of the lesion caused by normalization.

After those above pre-processing, 27 spatial distribution

features were extracted based on the MNI-space lesion masks

for each scan, including lesion location distribution statistics

represented by the number of lesion voxels in different brain

regions (12 supratentorial and four infratentorial) and lesion

size distribution statistics including the number of lesions,

mean/maximum/summed sizes, and the number of lesions

within seven size ranges (8∼80, 80∼160, 160∼320, 320∼640,

640∼1,280, 1,280∼2,560, and >2,560 mm3).

The spatial distribution model was constructed using a

similar LASSO method as the radiomics model, with the spatial

distribution features of each scan as inputs. The output of the

spatial distribution model was named as spatial distribution

index (SDI) for each scan.

Joint model and model selection

A joint radiomics and spatial distributionmodel (hereinafter

referred to as joint model) was constructed as the combination

of RIS from the radiomics model and SDI from the spatial

distribution model by logistic regression.

The performance of the radiomics model, the spatial

distribution model, and the joint model was compared by

the ROC curve. The corresponding AUC, accuracy, sensitivity,

and specificity of the models were evaluated in the training

and test sets and additionally assessed in the independent

validation set.

Comparing diagnostic performance with
neuroradiologists

Two neuroradiologists (Bao YF and Zhu YQ, with 12 and 4

years of experience, respectively) independently reviewed all 188

cases. Both were blinded to the final diagnosis and grouping and

judged purely based on the MRI and clinical information. The

diagnostic agreement of the two neuroradiologists was assessed

and compared with the joint model.

Statistical analysis

All statistical analyses were performed using the R software

and GraphPad Prism 8.0. The clinical characteristics of the two

cohorts were compared using Fisher’s exact test for nominal

categorical variables and an independent t-test for continuous

variables. The Kappa test was used to assess the inter-observer

agreement of the two neuroradiologists. The ROC analysis was

performed to compare the performances of radiomics, spatial

signatures, and the neuroradiologists’ assessment. The AUCs of

the different models were compared using the DeLong test. A

two-sided P < 0.05 was considered significant.

Results

Patient characteristics

Detailed patient characteristics are shown in Table 1. No

significant difference was found in demographic characteristics

between the AE and AS groups. In the AE group, the types of

the auto-antibodies were as follows: AMPA2 (n = 1), CASPR2

(n = 1), CV2 (n = 1), DPPX (n = 1), GABA (n = 9), GAD (n

= 7), LGI1 (n = 18), MA2 (n = 1), MOG (n = 2), NMDA (n =

33), PNMA2 (n = 1), and multiple/co-existing auto-antibodies

(n = 6). They mainly showed extensive lesion distribution, and

most were in the temporal lobe. Some showed leptomeningeal

enhancement on post-contrast T1WI.

In the AS group, seven subjects (6.54%) exhibited multiple

lesions located on bilateral hemispheres. The rest were single

lesions in either the left hemisphere (54/107, 50.47%) or the right

hemisphere (46/107, 42.99%). For lesion location, 56 subjects

were found with lesions in the frontal lobe, 31 in the temporal

lobe, eight in the parietal lobe, five in the insula, and other

locations, mainly including the occipital lobe, thalamus, and

brain stem. Thirty-three subjects showed enhancement on CE-

T1WI, 11 of which were significant enhancement, and others

were mild-to-moderate enhancement. Besides, 21 subjects were

found to have T2-FLAIRmismatchmanifestation or showed rim

on FLAIR.
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TABLE 1 The characteristics of di�erent data sets.

Characteristics Overall (n = 188) Training set Test set Independent validation set p-value

Age (years) 41.36± 15.54 41.19± 15.13 39.49± 15.98 44.10± 15.31 0.599

Gender

Male 125 68 23 34 1

Female 63 35 12 16

Disease type†

AE 81 44 15 22 -

AS 107 59 20 28

Total number 188 103 35 50

Ages are mean± standard deviation, and others are the number of patients. The p-values are generated from the comparisons of the characteristics between training and test sets.
†AE: definite autoimmune encephalitis, AS: WHO grade II astrocytoma confirmed by histopathology.

Performance of the radiomics model

Ten radiomics features were selected to construct a

radiomics classifier (Figure 2), which achieved comparable

performances on the training (AUC 0.964, accuracy 0.951,

sensitivity 0.977, and specificity 0.932) and the test set (AUC

0.910, accuracy 0.947, sensitivity 0.933, and specificity 0.957).

There were no significant differences in the performance of the

training and the test set (p > 0.05).

Performance of the spatial distribution
model

Eight features were selected to construct a spatial

distribution classifier (Figure 2), which also achieved

comparable performances on the training (AUC 0.983,

accuracy 0.951, sensitivity 0.932, and specificity 0.966) and

the test set (AUC 0.930, accuracy 0.943, sensitivity 1.000, and

specificity 0.900). No significant difference was found in the

performance of the training and test sets (p > 0.05).

Performance of the joint model

The logistic regression model, which incorporated RIS

(coefficient = 12.899, p = 0.005) and SDI (coefficient of

SDI=17.735, p=0.003), achieved better performance than both

separate models (training set: AUC 0.994, accuracy 0.951; test

set: AUC 0.957, sccuracy 0.914). The model achieved slightly

lower performance in the independent validation set, and the

AUC, accuracy, sensitivity, and specificity were 0.908, 0.840,

0.964, and 0.929, respectively.

The DeLong test comparing the performance of the training,

test, and independent validation sets showed no significant

difference (training vs. test, p = 0.298; training vs. independent

validation, p = 0.116; and test vs. independent validation, p

= 0.453). In testing the effect of different image acquisition

settings, Fisher’s exact test showed no significant difference (p

= 0.552, 0.733, and 1.000 for the training, test, and independent

validation sets, respectively). Detailed information is available in

the Supplementary Table.

Comparing the models with
neuroradiologists

The senior neuroradiologist (Bao YF) achieved consistently

better performance (AUC: 0.932, 0.917, and 0.875) than the

junior neuroradiologist (Zhu YQ, AUC: 0.661, 0.692, and 0.745)

in diagnosing the training, test, and independent validation

sets, respectively. The inter-observer agreement of the two

neuroradiologists showed a Kappa value of 0.336, 0.394,

and 0.618 in the training, test, and independent validation

sets, respectively.

In addition, we compared the diagnostic performance

of the two neuroradiologists with the joint model. In all

three sets, the diagnostic performance of the joint model was

significantly higher than the junior neuroradiologist (p < 0.0001

in the training set, p=0.001 in the test set, and p=0.013

in the independent validation set). In contrast, there is no

statistical difference between the diagnostic performance of the

joint model and the senior neuroradiologist in the test and

independent validation set (both p > 0.05).

The diagnostic performance of the three models is displayed

in Table 2. The ROC curves are shown in Figure 3. MR images of

representative cases are shown in Figure 4.

Discussion

Our study proposed a novel radiomics-based approach for

distinguishing AS from AE. The joint model based on radiomics

and spatial distribution features achieved promising accuracy
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FIGURE 2

The feature selection and performance of the radiomics model and spatial distribution model. The radiomics features (A) and spatial distribution

features (B) were selected by LASSO and the selected features were trained for the establishment of the single-lesion-based radiomics model

and spatial distribution model.

TABLE 2 The diagnostic performance of the three models.

Radiomics model Spatial model Joint model

Train Test Train Test Train Test

AUC 0.964 0.910 0.983 0.930 0.994 0.957

Accuracy 0.951 0.947 0.951 0.943 0.951 0.914

Sensitivity 0.977 0.933 0.932 1 0.932 0.867

Specificity 0.932 0.957 0.966 0.900 0.966 0.950

FIGURE 3

Receiver operating characteristic (ROC) curves of the joint model and two neuroradiologists in the training set (A), test set (B), and independent

validation set (C), respectively. AUC, area under the ROC curve.

and similar performance with an experienced neuroradiologist,

outperforming a junior neuroradiologist.

Currently, a large number of radiomics studies have

been reported, especially in the field of brain tumors,

covering a wider range of tasks, including differentiating

subtypes (32–34), tumor grading (35), and predicting

the prognosis (36, 37). The previous studies showed that

first- or second-order texture features were particularly
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FIGURE 4

MR images of representative cases. (A–C) A case in the AE group shows symmetrical hyperintensities of the hippocampus on FLAIR. (D–F) A

case in the AS group exhibits a mass located in the right frontal lobe with a quite clear boundary. (G,H) A case in the AS group was misdiagnosed

as AE by two neuroradiologists, which shows patchy abnormalities located in the left frontal lobe and temporal lobe. (I–L) A case in the AS

group shows multiple and symmetrical hyperintensities throughout the brain, which was diagnosed incorrectly by both neuroradiologists. AE,

short for definite autoimmune encephalitis; AS, short for WHO grade II astrocytoma confirmed by histopathology.

useful in distinguishing benign and malignant brain

tumors (38, 39).

However, few studies tackled the challenge of discriminating

brain tumors from neuroinflammation. Han et al. conducted a

radiomics analysis classifying 39 patients with grade II glioma

from 18 patients with neuroinflammation, which achieved

the AUC of 0.950 and 0.925 based on multiple sequences.

Interestingly, the performance based on a single sequence

remained promising (22). In comparison, our joint model

performed better than this study, which suggests the significance

of integrating local and global information from radiomics

and spatial distribution signatures. In our study, the spatial

distribution analysis quantitatively characterizes the lesion

distribution location and size of the lesion. The lesion location

could account for the pathological pathways. The lesion size

characteristics could also reflect the lesion distribution and

disease severity. For example, different kinds of AE can also be

different in the lesion distribution owing to the different nature

of the auto-antibodies, such as MOG-IgG, which affected the

integrity and function of the myelin through MOG protein,

mainly localized on the outer surface of the myelin sheath

and oligodendrocytes in central nervous system (31, 40).

Furthermore, due to the minor interference caused by MR

parameters, the spatial distributionmodel is more stable than the

radiomics model, especially under the circumstance of a small

sample size.

The FLAIR sequence in the present study achieved good

performance, which suggested that the proposed computer-

based approach has the potential to be applied based on the

MRIs acquired in routine clinical practice. On FLAIR, the

edema and ischemia reflected were exhibited obviously, and

texture features extracted from FLAIR potentially provided

more information reflecting the pathophysiological changes

in lesions considered more obvious on FLAIR, which could

also be clues in the differentiation of neoplastic lesions and

inflammatory diseases.

Our study has clinical significance as it provides an

automatic approach to differentiate AE from glioma. Most

importantly, our model achieved comparable performance with

experienced neuroradiologists, which shows the potential to aid

clinical decision-making in a cost-effective and time-efficient

manner. The proposed approach based on quantitative features

could provide a comprehensive and objective analysis of theMRI

data, compared with the visual evaluation of neuroradiologists

which sometimes could lead to bias.

There were several limitations in this study. Due to the

retrospective nature of the study, different subtypes of AE

mediated by different auto-antibodies were not separated due

to the rarity of the condition. With more cases available,

future studies could focus on the characteristics of AE with

specific antibodies. Besides, our joint model of radiomics

and spatial distribution was mainly based on the FLAIR

sequence. The discrimination values of other sequences

between brain tumors and inflammation will be analyzed in

further study. Additionally, MRIs were acquired from multiple

scanners. Although no significant influence was found from the

acquisition settings, the results need to be further validated via a

prospective multi-center study.

In conclusion, our joint model of radiomics and spatial

distribution could provide an effective method for classifying
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autoimmune encephalitis and low-grade diffuse astrocytoma.

The joint model from a single sequence on MRI exhibited a

muchmore convenient and efficient process and protocols based

on global and local signatures, with a clear path that is easy to

follow in further practice.
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