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Background: There has been a decline in the stroke incidence across high

income countries but such knowledge exists at Country or State rather than

areal unit level such local government area (LGA). In this disease mapping

study, we evaluate if there are local hot spots or temporal trends in TIA

rate. Such knowledge will be of help in planning healthcare service delivery

across regions.

Methods: Linked hospital discharge data (Victorian Admitted Episodes Dataset

or VAED) was used to collect TIA (defined by ICD-10-AM codes G450-G459)

cases from 2001 to 2011. The State of Victoria is the second most populous

state in Australia, with a population of 6.7 million and can be divided into 79

administrative units or LGA. The data is anonymized and contains residence of

the patient in terms of LGA but not exact location. The date of the TIA event

when the patient is admitted to hospital is provided in the dataset. The number

of TIAs per year was aggregated for each LGA. Standardized TIA ratios were

calculated by dividing actual over expected cases for each LGA per year. We

used Integrated Nested Laplace Approximation (INLA) to perform spatial and

spatiotemporal regression, adjusting for hypertension, sex and population, age

(≥60), and socio-economic status (SES) decile within the LGA. The final model

was chosen based on the lowest the Deviance Information Criterion (DIC) and

Watanabe-Akaike information criteria (WAIC).

Results: Choropleth maps showed a higher standardized TIA ratios in North-

West rural region. Compared to the baseline model (DIC 13,159, WAIC 13,261),

adding in a spatial random e�ect significantly improved the model (DIC 6,463,

WAIC 6,667). However, adding a temporal component did not lead to a

significant improvement (DIC 6,483, WAIC 6,707).

Conclusion: Our finding suggests a statically significant spatial component

to TIA rate over regional areas but no temporal changes or yearly trends. We

propose that such exploratory method should be followed by evaluation of

reasons for regional variations and which in turn can identify opportunities in

primary prevention of stroke, and stroke care.
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Introduction

In 2016, the global lifetime risk of stroke from the age

of 25 was 24.9%, an increase from 22.8% in 1990, and was

almost twice as high for ischaemic than haemorrhagic stroke (1).

Stroke incidence, hospitalization rates and mortality for stroke

has also been continuing to decline in high-income countries

(2, 3). Particularly in the UK and Australia, stroke incidence

and survival after stroke has improved over the 1990s/2000s

decade (4, 5). At Country or State level, studies of trends in

recurrence such as by our group (6) and others (7, 8) document

a small decrement in trend in risk of recurrence in early 2000s

and more recently plateauing of recurrence rate in the last 5

years (7). In geographically large country such as Australia with

great distance between rural and urban areas, it is not known if

the observed decrease in total stroke incidence/hospitalization

rates and mortality for stroke over time also occurs at a regional

level (6).

To plan and ensure fair health care access for all, we

need to evaluate if the TIA incidence is different at a regional

level (hot spots) and if these geographical patterns change

over time and if prevention program needs to be designed for

the region given that region’s attributes (9). Papers and maps

focussing on TIA and stroke prevalence and state of stroke

services across the globe are available but focussed works on

regional data in Australia for TIA is not available (10–12).

This knowledge can help planning of primary and secondary

prevention therapy. Investigators have used spatial model to

show that the racial differences in cardiovascular health across

United States of America (USA) exist predominantly in the

Stroke Belt (South Eastern USA) and Stroke Buckle (Northeast

region surrounding the Great Lakes) (13). The Stroke Belt region

has been subject of many publications over the year trying to

explore the cause of this racial disparity in health outcome

(14). At a global level, the term global stroke belt has been

used to describe the higher prevalence of stroke from Eastern

Europe to Russia and China (15). To our knowledge there are

no previous attempts with an ecological model to map regional

variation in TIA rate in Australia. This issue is understandable

given that the approach is methodologically complex and

requires significant coding in programming language rather

than through commercial statistical programwith graphical user

interface. This is necessary as there is a needs to account for

spatial and temporal correlation in the data (16). For example,

spatial correlation can occur among neighboring administrative

units (16), termed Local Government Areas (LGA) in Australia.

In this study, we perform disease mapping to explore regional

trend in TIA hot spots using firstly spatial regression follow

by spatiotemporal analysis to better characterize the location

of TIA hot spots and changes of these TIA hot spots

over time.

Design and methods

Setting

The State of Victoria is the second most populous state in

Australia, with a population of 6.7 million based on 2016 Census

and can be divided into 79 administrative units or LGA (17, 18).

Melbourne is the capital city of the State of Victoria and has a

population of ∼4 million. For this study, the entire State will be

separately analyzed. A sensitivity analysis will be performed in a

subset of the data exploring if the changes are consistent when

the analysis is restricted to Greater Melbourne. In this paper,

the term areal unit refers to the fact that data for each LGA is

contained within a bounded region.

Data sources

The retrieved hospital data (Victorian Admitted Episodes

Dataset or VAED) has been described previously in a publication

on overall trend in TIA rate for the State of Victoria (6). In short,

all TIA episodes from linked hospital discharge and Emergency

Department (ED) data were extracted for the period between

July 1, 2001 to June 30, 2011 based on 4-digit ICD-10 codes for

TIA encompassing G450-G459 (19). Only the incident episodes

of TIA were collected, ensuring that the case did not present

previously with a TIA or stroke (ICD-10-AM codes 1630–1639)

in the previous 2 years. The data from VAED is anonymized and

contains residence of the patient in terms of LGA but not exact

location. As such analysis is performed at areal unit level rather

than at point pattern level. The date of the TIA event when the

patient is admitted to hospital is provided in the dataset. The

number of TIAs per year in each LGA was then calculated. The

geocodes of the boundaries of each LGA were retrieved from the

Australian Bureau of Statistics for the spatial and spatiotemporal

analyses (20).

Statistical analysis

Standardized TIA ratios were calculated by dividing the

actual number of TIA cases for each LGA for each year over

the expected number of cases (16). The expected cases for

each LGA can be obtained by multiplying raw TIA rate by

the population in each LGA. This is the first step toward

performing spatial regression. Choropleth (thematic) maps were

created to depict standardized TIA ratios over time with the

color representing standardized TIA ratio. In this paper, we

used red color to highlight higher standardized ratio. Analysis

was completed for both all LGAs in the entire State, and

LGAs only in Greater Melbourne. Following the creation of
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FIGURE 1

(A) Spatial and (B,C) temporal weights for spatial and

spatiotemporal regression. (A) Each red line in the map of the

state represents two neighboring LGAs (where two regions

share one point in common boundary), and this was used for

the spatial weight component of the spatiotemporal regression.

The red and blue trend lines of TIAs per year are the posterior

distribution of the temporal weights of the (B) spatial lag, and (C)

Leroux models respectively used in the spatiotemporal

regression, with 95% confidence interval bands.

raw maps of standardized TIA ratios, spatial regression was

performed adjusting for aggregate count of hypertension, sex

and population count, proportion of population above 60 and

SES decile according to the Index of Relative Socioeconomic

Advantage and Disadvantaged (IRSAD) within each LGA.

The idea in spatial regression is that neighboring regions

are similar but distant regions are less so (16). In other words,

adjacent regions are not independent but correlated. The nature

of this correlation can be defined according to the spatial weight

for LGA. The concept of neighbor is defined as any two regions

that share a common border. In Figure 1, it can be seen that

the centroid of one LGA is connected, regardless of direction,

to adjacent centroid. Next, the spatial weight is incorporated

into regression analyses analogous to weighted regression.

These analyses were performed using a latent Gaussian model

known as Integrated Nested Laplace Approximation (INLA)

(21). The INLA method provides a fast and efficient approach

to approximate the Bayesian posterior distribution compared

to prior approaches using other software such as Bayesian

inference Using Gibbs Sampling running onWindows operating

system (WINBUGS) (21).

A multivariate Poisson model adjusting for hypertension,

sex and population count was used as the baseline model.

Multiple different spatial regression algorithms were then

used to explore the trends in TIA over different LGA

(16, 22).

Spatial models

1- Fixed = baseline mmodel adjusted to hypertension, sex

and LGA population count.

2- Spatial 1 = Intrinsic conditional autoregression/ICAR

(or Besag) model. This method uses spatial weight from

the neighborhood adjacency matrix (structured random

effect) (16). This model may not function well in cases

where the areal unit contains small count (of the number

of TIA) because of the possibility of over smoothing these

smaller areal units.

3- Spatial 2 = Besag-York-Mollie model (BYM). This

model extends the intrinsic conditional autoregressive

component from above to include an ordinary

(unstructured) random effects component for non-spatial

heterogeneity (16).

4- Spatial 3 = Leroux et al. model. The Leroux model can be

considered as a generalization of ICAR and BYM models

as it combines featured of the structured and unstructured

random effect component into one (16). This approach

attempts to find a balance between the ICAR and BYM

models in terms of the local weight for smoothing.

5- Spatial 4 = Spatial lag model. This model is appropriate

when the outcome and explanatory data exhibit spatial

clustering (22). In this case the outcome is predicted by

an additional term in the regression model describing the

neighboring region’s outcome.

Spatiotemporal models

The spatial model was expanded for the spatiotemporal case

by adding a linear component to map for time and time-space

interactions (Figures 2, 3) (23, 24). The spatiotemporal models

evaluated included:

1- Temporal 1 = Temporal component with random walk

of order one. This model applies a temporal term which

takes on a random walk through the neighborhood

structure (23).

2- Temporal 2 = Temporal component with autoregression

of order one. This model include a time lagged value from

the previous year (24).

Models were calibrated using Marginal likelihood,

Deviance Information Criterion (DIC) and Watanabe-Akaike

information criteria (WAIC) (25, 26). The optimal model

is one which has the lowest DIC and WAIC. The temporal

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2022.983512
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kawai et al. 10.3389/fneur.2022.983512

FIGURE 2

Graphs of example LGAs highlighting actual cases compared to expected cases over 2001-2010. Actual cases (red dots) were higher than the

expected cases (blue line) in (A) North West rural region and (B) East rural region and (C) outskirt suburbs of inner city, highlighting TIA hot spots.

This is in comparison to the (D) inner suburbs of the inner city, where the actual cases were similar to expected cases or lower.

FIGURE 3

(A) Actual Standardized TIA Ratios measured each year in the state. (B) Posterior probabilites of the best performing spatiotemporal model

utilizing a spatial lag component and temporal component of random walk order of one. (C) Actual Standardized TIA Ratios measured each year

in the inner cities of the state. (D) Posterior probabilites of the best performing spatiotemporal model utilizing a spatial lag component and

temporal component of random walk order of one. Covariates used in the regression were hypertension, sex, and population count, proportion

of population above 60 and SES decile according to the Index of Relative Socioeconomic Advantage and Disadvantaged (IRSAD).

weights can be seen in Figure 1. All analysis was completed in R

programming language (version 4.0.3).

Sensitivity analysis

There is a potential problem with identifying hot spots in

rural regions where the TIA count is low. A related issue is

the strong dependency of standardized TIA ratio on the TIA

count and population within the LGA (27). This issue arises

because the boundary for the areal unit or LGA is arbitrary and

shifting of the boundarymay change the results.We conducted a

sensitivity analysis by merging adjacent LGAs from the smallest

count of TIA to reach threshold numbers of TIAs of 10, 20, 30,

and 40 for each year analyzed (Figure 4) and compared the effort

of this merge to the hot spots identified in rural regions.
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FIGURE 4

Sensitivity analysis to detect changes in hot spots by merging regions with TIA count of (A) 10, (B) 20, (C) 30, and (D) 40 per year. Covariates

used in the regression were hypertension, sex and population count, proportion of population above 60 and SES decile according to the Index

of Relative Socioeconomic Advantage and Disadvantaged (IRSAD).

Results

In previous analysis, we had provided the total TIA rate

and recurrence and we refer to that paper for further details

(6). The characteristics of the cohort are described in Table 1.

In brief, the proportion of patients with TIA above the age of

75 over the years varied from 0.57 to 0.60 and TIA above the

age of 60 varied from 0.85 to 0.89. The proportion of males

over the years varied from 0.47 to 0.51. The yearly trend in

the number of TIA and corresponding 95% confidence interval

can be seen in Figure 1. Data for the 79 LGA is provided in

the Supplementary material. This shows an increase in TIA

rates over the decade, which is proportional to the population

increase. After adjusting to population, our previous paper

showed a decline in TIA incidence for this data.

Standardized TIA ratios

Here, the standardized TIA ratio for each LGA (n = 79) for

the years 2001 to 2010 is provided in the Supplementary Table 1.

Actual TIA cases compared to expected TIA cases were higher

in areas of South-West, North-East and Far East Rural regions

of Victoria, as well as the outskirt suburban areas of Melbourne

(Figure 2). This was in comparison to the inner suburban

areas of Melbourne, where the number of actual cases were

similar or lower to the expected number of TIA cases. The

choropleth maps of standardized TIA ratios in LGAs across

the entire state showed significant hotspot in North-West rural

region, with actual cases being ∼5–11 times higher than the

expected cases (Figure 3). This hotspot was present throughout

2001–2010 but was most pronounced between 2002 and 2005.

Within Greater Melbourne, standardized TIA ratios showed a

comparably higher rate in the outskirt suburban areas, especially

in the South-East regions, with actual cases being ∼2 times

higher than the expected cases (Figure 3). This was also constant

throughout the years. A sensitivity analysis was performed to

explore the impact of increasing the count of TIA in LGA on

location of hot spots (Figure 4). This analysis showed that a

threshold of 30 TIAs per year still resulted in a hotspot in

the North-West region, with the actual cases being 5–10 times

higher than the expected cases. For a threshold of 40 TIAs per

year, the North-West hotspot was diluted to being 1–2 times

higher actual cases than expected cases.

Spatial and spatiotemporal regression

When adding in the spatial component (ICAR, Besag-York-

Mollie, Spatial lag, Leroux) to the baseline model, this increased

the Marginal Likelihood, and decreased the WAIC and DIC

suggesting a spatial significance (Table 2). The optimal models

with the lowest WAIC and DIC and which best explained the

data were the Leoux and spatial lag models. The posterior

probabilities of standardized TIA ratios for the entire State and

Greater Melbourne measured using the best performing spatial

models were plotted in Figures 2, 3 respectively.

There was no improvement to the spatial model after adding

the temporal component, suggesting a lack of temporal trend at

regional level.

Discussion

In this disease mapping study, we examined TIA as spatial

and spatiotemporal problems. Importantly, we showed that

there was a strong spatial component to TIA incidence with
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hot spots observed around the North-West rural region and

South East of Greater Melbourne. Although we had observed a

decreasing trend in TIA incident at a State level (6), we did not

observe any trend over a 10-year period at a regional level. Our

findings provide a strategy to detect regional variation in disease

as well as change in trend over time. This strategy can be used to

monitor and implement preventative strategies at macro (State

or Country) and micro (regional) level.

In this analysis, we had used a standard approach to

spatial and spatiotemporal regression. Other investigators

chosen apriori models such conditional autoregressive model

(using neighbourbood weight) or Besag-York-Mollie model

(neighborhood weight with unstructured random effect) (28).

We have chosen to evaluate different spatial models sequentially

as some models might be better suited given the location and

influence of neighboring LGAs. This was the reason behind

evaluating models starting from conditional autoregressive

model to spatial lag model. In our analysis, the spatial lag and

Leroux models best describe the Victorian data.

Our spatial model showed hot spots in North-West rural

region of Victoria, and the South-Eastern Greater Melbourne.

Our sensitivity analyses showed that the North-West cluster was

significant even after combining multiple LGA with a threshold

of 40 TIA per year per region. This unique structural pattern

may be due to the remote areas of these LGA, with a lack of

hospitals close to these areas. This aspect, further combined

with the older population within these LGA, may explain the

higher TIA rate. Our findings raised the Specter of the Stroke

Belt in South-Eastern USA (14). A large proportion (31%)

of people in Stroke Belt region live in rural areas. In depth

studies on the Stroke Belt revealed lifestyle factors including

dietary habits (high consumption of fried food, meat, processed

meat, egg based dishes, high sugar content in food and drinks),

lower socioeconomic status, smoking as contributors to this

finding (14). By contrast, physical activity was similar across

the regions and not a contributor to the high risk of stroke

in South Eastern USA (14). In Canada, isolated hot spot exists

in rural Canada rather than stroke belt phenomenon (9). A

consistent theme is the association of stroke among regions

with lower socioeconomic group even though the distribution

of socioeconomic groups has remained stable (9). In Denmark,

stroke and heart disease rates are higher on the Eastern part of

Zealand than Eastern part of Jutland (28).

Our models did not show any significant change over time,

with the hot spots remaining similar over the 10 years. This

further adds to our discussion point that whilst the overall

stroke recurrence after TIA decreased over 2001–2011 (6), the

distribution in each location remained the same over the years.

Our findings may raise the possibility primary and secondary

prevention may not be optimal or possible in some regions

in rural areas and Greater Melbourne. A study in Canada has

highlighted that risk factors were more common and less likely

to be well managed in rural than in urban residents without
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TABLE 2 Spatiotemporal analysis of standard TIA ratios in local government areas in Victoria.

Victoria Greater Melbourne

Model Marginal

likelihood

WAIC DIC Marginal

likelihood

WAIC DIC Best model

Spatial regression

Fixed (baseline) −6,628 13,261 13,159 −4,325 8,689 8,557

Spatial 1-Intrinsic conditional

autoregression

−3,425 6,667 6,463 −1,617 3,147 3,001

Spatial 2-Besag-York-Mollie −5,025 6,665 6,462 −2,243 3,147 3,001

Spatial 3-Leroux and others −4,292 6,665 6,461 −1,950 3,146 3,001 *

Spatial 4-Spatial lag model −3,435 6,665 6,462 −1,619 3,146 3,001 *

Spatiotemporal regression

Spatial 1+ Temporal 1 −3,461 6,707 6,483 −1,643 3,166 3,001

Spatial 1+ Temporal 2 −3,438 6,683 6,471 −1,624 3,151 2,994

Spatial 2+ Temporal 1 −5,061 6,705 6,482 −2,269 3,165 3,001

Spatial 2+ Temporal 2 −5,038 6,681 6,470 −2,249 3,150 2,994

Spatial 3+ Temporal 1 −4,329 6,705 6,481 −1,977 3,165 3,001

Spatial 3+ Temporal 2 −4,303 6,682 6,471 −1,958 3,150 2,994

Spatial 4+ Temporal 1 −3,470 6,704 6,481 −1,646 3,164 3,001

Spatial 4+ Temporal 2 −3,441 6,683 6,471 −1,626 3,150 2,994

Spatiotemporal analysis of standard TIA ratios in local government areas in Victoria. Stepwise inclusion of spatial and temporal components in our Poisson regression model. Fixed,

original Poisson regression model adjusted to hypertension, sex and LGA population count, proportion above age of 60, and socioeconomic status; Spatial component were either intrinsic

conditional autoregression (ICAR), Besag-York-Mollie (BYM), Leroux et al. (Leroux), or spatial lag model (SLM). Temporal components were either random walk of order 1 (Temporal

rw1) or autoregression of order 1 (ar1). Models were compared using marginal likelihood, Wakanabe-Akaike information criteria (WAIC) and deviance information criterion (DIC). The

optimal models are represented by * sign and are chosen as they have the lowest DIC and WAIC.

previous stroke episodes (29). Studies evaluating changes at

regional over 10 years are not common. One such study

described stability of observed pattern of high stroke risk in

South Eastern USA (30). Importantly, this study compare the

estimates in each county for 1995–1996 with the estimates for

2005–2006 (30). In Figure 2, we have illustrated the issue of

comparingmoment tomoment changes in TIA rates for selected

regions in rural and Greater Melbourne. It would be valuable to

apply a similar method to the North American data to describe

the temporal trend in each county (30).

Limitations

The advantage of spatial model with aggregate data

(ecological model) is that it can be performed using

administrative data such as what we have done here. While

our analyses were conducted retrospectively, the routine

administrative data contributing to our analyses were collected

prospectively. There are some limitations to this type of

approach as the data used are not at the individual level but is

based on aggregate count of TIA for each LGA.

Linear mixed model is one approach to the use multilevel

modeling and which can include personal risk factors. We

did consider the use of mixed model analysis which allow

grouping of patients for each LGA. However, this approach does

not recognize the neighborhood of adjacent LGA and require

additional terms to describe this hierarchical structure.

As such the findings based on aggregate data and not

individual data can be susceptible to the ecological inference

fallacy and require further evaluation. While we have individual

patient data, we cannot analyze at a person level in terms of

covariate such as age, sex, hypertension and socioeconomic

group. The models used aggregate count of hypertension, age

above 60, males and socioeconomic group. This limitation

require caution in the extrapolation of the findings to the

individual. However, this method can be used to monitor

regional hot spots and trend on a yearly level for the State of

Victoria or at national level.

Another issue with the use of large areal unit such as LGA is

that geocoding of addresses for the individuals are not available

in Victoria, likely due to privacy concerns. In the absence of

near approximation of addresses, we could not convert location

data into smaller areal units than LGA. For examples, LGA can

encompass several suburbs, with different postal addresses. Such

conversion of large areal unit to smaller areal unit is possible

in some European countries and in North America (28, 31).

Our finding of hot spots for TIA in Victoria is exploratory

in nature and needs to be replicated in independent dataset.

Further evaluation of local data is required to explain why hot

spot occurs in this region and not in other rural regions. This

is an important caveat when using spatial model as they should

be considered as exploratory rather than confirmatory. Whilst

we adjusted our models to certain characteristics, there may still

be unknown or unmeasured underlying confounding variables

that may further explain the distribution. Our analyses could
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be, in the future, strategically supplemented by targeted cohort

studies of risk factor management in regional hot spots that

are identified. Examples of such works can be seen in papers

describing the evaluation of the Stroke Belt in USA (14, 30, 32).

In our State, data on patient location is coded as LGA and

not smaller areal units such as suburb (with postal addresses).

This issue limits our ability to perform a more detailed analysis

such as the ones by North American investigators (32). Suburbs

are smaller in size than LGA but there is no direct conversion

between the two forms.

Finally, as highlighted previously, the diagnostic coding

of TIA may have some misclassifications, including patients

presenting with TIA mimics (33). This will always be the case

when using administrative dataset where we do not have a

chance to go back and review the diagnosis. However, given the

same coding structure was utilized for the analysis, it is assumed

that the error would be distributed evenly among the LGA.

Conclusion

Our findings show hot spots in regional Victoria and

within Melbourne but no yearly trends. We propose that this

exploratory method may be of use to detect hot spots follow by

detailed evaluation to identify opportunities to improve primary

prevention of stroke, and stroke care.
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