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Objectives: There is elevated unease regarding how repetitive head impacts,

such as those associated with soccer heading, contribute to alterations in brain

function. This study examined the extent heart rate variability (HRV) and cardiac

baroreceptor sensitivity (BRS) metrics are altered immediately following an

acute bout of soccer heading.

Methods: Seven male elite soccer players (24.1 ± 1.5 years) completed

40 successful soccer headers in 20-min. The headers were performed

under controlled circumstances using a soccer ball launcher located 25

meters away and using an initial ball velocity of 77.5 ± 3.7 km/h (heading

condition). An accelerometer (xPatch) on the right mastoid process quantified

linear/rotational head accelerations. Participants also completed sham (body

contact) and control (non-contact) sessions. A three-lead ECG and finger

photoplethysmography characterized short-term spontaneous HRV/cardiac

BRS, before and after each condition. The SCAT3 indexed symptom scores

pre-post exposures to all three conditions.

Results: During the heading condition, cumulative linear and rotational

accelerations experienced were 1,574 ± 97.9 g and 313,761 ± 23,966 rad/s2,

respectively. Heart rate trended toward an increase from pre- to post-heading

(p = 0.063), however HRV metrics in the time-domain (ps > 0.260) and

frequency-domain (ps > 0.327) as well as cardiac BRS (ps > 0.144) were not

significantly changed following all three conditions. Following the heading

condition, SCAT3 symptom severity increased (p = 0.030) with a trend for

symptom score augmentation (p = 0.078) compared to control and sham.

Conclusion: Whereas, symptoms as measured by the SCAT3 were induced

following an acute bout of controlled soccer heading, these preliminary
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findings indicate they were not accompanied by alterations to autonomic

function. Ultimately, this demonstrates further research is needed to

understand the physiological underpinnings of alterations in brain function

occurring immediately after a bout of soccer heading and how thesemay, over

time, contribute to long-term neurological impairments.

KEYWORDS

repetitive football/soccer heading, heart rate variability, autonomic function, sub-

concussive impacts, sport concussion assessment tool 3, SCAT3

Introduction

Around the globe, more than 265million individuals partake

in soccer making it the world’s most prominent sport (1) and

one that also results in substantial risk for head injuries to

occur (2–4). This is very likely at least partially due to the

unique aspect of this sport in which players use their heads

to contact the ball and direct it during play. Previous research

has demonstrated soccer heading occurs ∼4 to 10 times per

game with variations dependent upon age, sex, and player

position [e.g., (5)]. Beyond the immediate effects of soccer

heading on brain function, there is emerging concern that the

number of repetitive sub-concussive impacts a soccer player

has over their career may be associated with the development

of long-term neurodegenerative disorders (6–9). Nevertheless,

there is currently a paucity of data providing insight into the

magnitude and total exposure necessary to cause alterations

in brain function in the immediate aftermath of a bout of

soccer heading.

The autonomic nervous system functions to maintain

homeostasis through the unconscious regulation of various

bodily functions (e.g., heart rate, respiration, digestion, etc.) (10).

Previous research has demonstrated autonomic function can

be aberrant in certain pathophysiological states [e.g., Parkinson

disease (11), multiple sclerosis (12), traumatic brain injury (13–

15), etc.], through heart rate variability (HRV) and baroreceptor

sensitivity (BRS) domains. HRV is a technique designed to

examine the activity of the autonomic nervous system through

the variations in consecutive R-R intervals (16). Conversely,

BRS maintains cardiovascular homeostasis through a negative

feedback loop by balancing input from the sympathetic and

parasympathetic nervous systems during acute alterations in

blood pressure (17).

Autonomic function has been found to be dysregulated

following concussion (13–15, 18), though the exact physiological

underpinning of this phenomenon remains unknown.

Furthermore, there is a relative void within the current

literature examining the effects repetitive heading impacts has

on autonomic function. To our knowledge there has only been

one study which investigated an acute bout of five soccer head

impacts and found minimal alterations in HRV parameters (19).

As such, there is a substantial lack of understanding regarding

the physiological changes that occur to the autonomic nervous

system from both concussive and sub-concussive head impacts.

Therefore, this investigation sought to examine the acute effects

a controlled bout of soccer heading using a soccer ball launcher

has on the autonomic nervous system relative to sham (body

contact) and control (non-contact) sessions. It was hypothesized

repeated sub-concussive impacts in the form of soccer heading

would lead to an elevated sympathetic response in HRV and

cardiac BRS metrics that would not be present during sham

(non-head impacts) and control (no impacts) conditions.

Materials and methods

Participants

Seven male soccer players (age: 24.1 ± 1.5 years; BMI: 25.5

± 1.6 kg/m2) participated in this investigation, which used a

crossover design that has also examined cerebral autoregulation

(20), neurovascular coupling (21), and blood-based biomarkers

(22) within the same three randomized conditions (heading,

sham, and control). All individuals had a minimum of 5 years of

soccer playing experience and refrained from caffeine, alcoholic

beverages, smoking, and exercise for 12 h prior to testing.

Participants were healthy with no history of cardiac, respiratory,

neurological, vascular, or severe neurodevelopmental disorders.

Testing procedures were explained prior to data collection

to ensure all participants were familiar with them. Written

informed consent was obtained and ethical approval was

through the University of British Columbia clinical research

ethics board (H14-00368). Participants were compensated $50

CAD for each testing session, for a total compensation of $150

CAD across the duration of the study.

Study design

On each testing day, spontaneous short-term HRV

and cardiac BRS was quantified using a pre-test, exposure,
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post-test design through electrocardiography and finger

plethysmography (23, 24). These variables were measured while

each individual quietly stood for 5min, before and roughly

15–20min after each condition. Participants completed these

conditions with an average of 26.1 ± 25.2 days between testing

conditions in a pseudo-random order, in brief the conditions

consisted of:

i) Heading—participants performed 40 headers in 20min

with ∼30 s between each trial. They stood ∼25m from

a JUGS machine (JUGS International, Taulatin, Oregon,

USA). In the case of an unsuccessful trial, a second soccer

ball was launched within the 30 s time frame. The soccer

balls used were FIFA regulation size 5 ball inflated to 13 psi

and propelled from the JUGS machine at an average of 77.5

± 3.7 km/h, which was recorded with a Bushnell Velocity

Speed Gun (Bushnell Outdoor Products, Richmond Hill,

Ontario, Canada).

ii) Sham—Participants performed 40 ball contacts in 20min

with any part of the body other than the head. Other than

this requirement, all the other details of this condition were

the same as the Heading condition. This intervention was

performed to determine if alterations to the autonomic

nervous system require head contract or if they could arise

from body contact or “whiplash-like” effects (25).

iii) Control—No soccer balls were launched in this condition,

as participants were taken to the testing area, and completed

20min of quiet rest, before returning to the laboratory for

post-condition data collections.

For a greater description of the heading, sham, and control

protocols the reader is directed to (21).

Lab-based instrumentation

A three-lead electrocardiogram (ECG) and finger

photoplethysmography, with a brachial cuff to adjust finger and

brachial artery height differences (Finometer; Finapres Medical

Systems, Amsterdam, The Netherlands), was attached to each

individual before and following the three aforementioned

conditions (26, 27). All data were sampled at 1,000Hz

(PowerLab 8/30 ML880; AD Instruments) and stored for offline

analysis using commercially available software (LabChart

version 7.1; AD Instruments). All measurements were collected

at the same time of day to control for diurnal variation (28, 29).

Consistent with other research in the soccer heading field,

linear and angular acceleration were measured using the xPatch

(X2 Biosystems; Seattle, WA) system placed over the right

mastoid process of participants during both the header and sham

conditions (20–22, 25, 30–32). These sensors monitor three axes

of translational acceleration as well as three axes of angular

velocity with a 1,000Hz sampling frequency. Head impact

accelerations exceeding the threshold of 10 g were automatically

recorded by the device and the associated peak linear/rotation

accelerations (PLA, PRA) as well as the average impact duration

were quantified. In the event, the impact from heading the soccer

ball (or contact to the body in the sham condition) did not meet

or exceed the standard 10 g threshold of the device, the impact

was then coded as 0 g for interpretations of average/cumulative

impact exposure levels. For this paper, we analyzed average

and total linear and rotational acceleration in each condition.

Others have shown soccer heading effects based on number of

head impacts (33, 34) or time between impacts (35), however,

because these variables were held relatively constant in the

current study, we felt that average and cumulative impact

magnitude variables would capture head impact exposure

most appropriately.

The total number of symptoms and symptom severity

scores were recorded with the third edition of the Sport

Concussion Assessment Tool (SCAT3) before and after the

three interventions (36). This tool contains a Likert scale

ranging from 0 (no symptom) to 6 (severe) with 22 symptoms

regarding somatic, cognitive, and neurobehavioral functions.

The total number of symptoms (range: 0–22) and symptom

severity were calculated by totaling the severity for each

symptom (range: 0–132). Participants had a follow up call in the

evening following soccer heading to assess symptom persistence.

No individuals reported any lingering symptomology at this

time point.

Data processing

Following at least 1min of standing, short-term

HRV/cardiac BRS measures were collected through 5min

of quiet standing in accordance with established guidelines

(37, 38) using commercially available software (Version 1.0,

Ensemble, Elucimed, Wellington, NZ). The outcome variables

for HRV included the root mean square of successive normal

sinus QRS complexes interval (R-R interval) differences

(RMSSD), number of successive R-R intervals that differ by

more than 50ms (NN50), the percentage of R-R intervals that

differ by more than 50ms (pNN50), and low frequency (LF)

and high frequency (HF) power (23, 37–40). The cardiac BRS

was quantified through the LF gain (0.07–0.20Hz) metric

(23, 24, 41).

Statistical analysis

Statistical analyses were conducted with SPSS v.25.0 (IBM

Crop, Armonk, NY). A three (condition: heading, sham,

control) by two (time: pre, post) repeated measures analysis

of variance was performed. Bonferroni post-hoc analyses were

conducted to determine significant condition effects, with a

priori Bonferroni corrected simple effects comparisons for
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FIGURE 1

SCAT3 symptom metrics measured before and after exposure to

heading, sham, and control conditions across all participants.

Boxes span upper and lower quartile with median indicated;

whiskers represent range. SCAT3 metrics describe (A) total

number of symptoms reported, and (B) summed severity of all

symptoms reported.

condition or time. Data are presented as mean ± standard

deviation. Significance was set a priori at p < 0.05.

Results

xPatch impact sensor

Greater than 98% of the headers were recorded by the xPatch

Sensor as above the threshold of 10 g, with an average of 40.7

± 3.6 g and 8097.8 ± 807.3 rad/s2 of linear and rotational

acceleration, respectively. This translates to 1574.7 ± 97.9 g of

total linear acceleration and 313760.6 ± 23966.4 rad/s2 of total

rotational acceleration during the soccer heading intervention.

Conversely, during the sham condition, <1% of the body

contacts registered an impact >10 g, with an average linear

acceleration of 3.2 ± 5.7 g and rotational acceleration of 827.9

± 1424.5 rad/s2 (these values are underestimates as any impact

below 10 g was registered as 0 g). Thus, the cumulative exposure

during the sham condition was 1574.7 ± 97.9 g and 1284.8 ±

2453.2 rad/s2, for linear and rotational acceleration, respectively.

FIGURE 2

Heart rate measured before and after exposure to heading,

sham, and control conditions across all participants. p-values

are for a priori simple e�ects comparisons.

Sport concussion assessment test – 3rd
edition (SCAT3)

At baseline prior to the soccer heading, total symptom score

and severity were not different between the three conditions

(all p > 0.80) (Figure 1). There was no significant change in

the number or severity of symptoms following sham or control

exposures (all p > 0.23, Figure 1). By contrast, following soccer

heading, there was an increased symptom severity (p = 0.03)

and a trend toward an elevated number of symptoms (p =

0.08) (Figure 1). Five of the seven participants reported a greater

number of symptoms and symptom severity following soccer

heading, which returned to baseline in all participants at the

evening follow-up phone call. The most commonly reported

symptoms following soccer heading were headache (71%, 1.3 ±

1.1); pressure in the head (57%, 0.7 ± 0.8); and don’t feel right

(57%, 0.7± 0.8).

Heart rate variability and baroreceptor
sensitivity metrics

A trend toward an increase in heart rate was noted during

the soccer heading condition (p = 0.063) when comparing pre

(74.8 ± 7.1 bpm) to post (82.3 ± 6.6 bpm) heart rate (Figure 2).

Contrarily, there was no significant heart rate change following

sham (p = 0.439) or control exposures (p = 0.666) (Figure 2).

Moreover, following all three conditions, no significant change

was present in time-domain (all p> 0.260) or frequency-domain

(all p> 0.327: Figures 3, 4)metrics. Congruently, cardiac BRS LF

gain was not significantly changed from pre- to post-exposure

in all three interventions (all p > 0.144) (Figure 5). All of the

aforementioned metrics had comparable pre-measures (all p >

0.427) between the three interventions (Figures 2–5). Detailed
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FIGURE 3

Time-domain HRV metrics before and after exposure to

heading, sham, and control conditions across all participants. (A)

Root-mean square di�erences of successive R-R intervals

(RMSSD), (B) Number of adjacent R-R intervals that di�er from

each other by more than 50ms (NN50), and (C) Percentage of

successive R-R intervals that di�er by more than 50ms (pNN50).

The columns are average values for the group with the standard

deviation being represented with the error bars (p-values all

>0.05).

information on the resting physiologic parameters, SAC scores,

and HRV and BRS metrics in each condition can be found in

Tables 1, 2.

Discussion

This investigation examined how an acute bout of controlled

soccer heading affects autonomic function. The main findings

were an acute bout of soccer heading resulted in: (1) an

elevation in symptom severity that resolved within 24 h; (2)

a trend toward augmented absolute heart rate levels, but no

significant change in time- and frequency- HRV domains; and

(3) no alterations in cardiac BRS. Taken together, the current

data suggest a controlled bout of soccer heading is insufficient

FIGURE 4

Frequency-domain HRV metrics comparing before and after

exposure to heading, sham, and control conditions across all

participants. (A) relative lower frequency (LF) power. (B) relative

high frequency (HF) power, and (C) LF/HF ratio. The columns are

average values for the group with the standard deviation being

represented with the error bars (p-values all >0.05).

to cause short-term alterations in autonomic nervous system

function, although it did appear to result in a short-term

worsening of symptoms as measured with the SCAT3.

Comparison to previous research

Several studies have examined the effect acute soccer

heading has on various physiological parameters (42–53). This

study varies substantially from much of the prior work in

that it induced large cumulative linear and rotational impact

exposure levels that were beyond those typically observed

in match play. We have previously shown in a series of

studies that the magnitude of head impact in the current

investigation alters blood-based biomarkers associated with

concussion (22), neurovascular coupling metrics (21), and

cerebral autoregulation metrics (20). Nevertheless, despite these
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FIGURE 5

Cardiac baroreceptor sensitivity comparing before and after

exposure to heading, sham, and control conditions across all

participants, which is represented by the low frequency (LF) gain

metrics. The columns are average values for the group with the

standard deviation being represented with the error bars

(p-values all >0.05).

previous findings using the same protocol, there were minimal

changes observed with respect to the autonomic nervous system

function, aside from a trend toward increased heart rate

(Figure 2). The relative lack of agreement between the current

findings and those from our previous publications using the

same protocol suggests that autonomic nervous system function

is less sensitive to the effects of head impact exposure in an acute

bout of soccer heading than either cerebrovascular function or

blood biomarkers associated with neurological disruption.

The current findings with respect to the autonomic nervous

system have some similarities to a study in 2019 by Harriss

et al. (19), who noted small and moderate effect size (Cohen’s

d) differences in HRV metrics following acute soccer heading.

However, the two studies vary in several key aspects. The current

investigation had individuals successfully perform 40 headers

with a 20-min span at a distance of ∼25m, whereas Harriss

et al. (19), had players engage in just 5 headers, although

these were performed in under a minute at a distance of just

∼8m. Moreover, they propelled the ball at 21.6 km/h toward the

participants, whereas the current protocol used initial velocity

of 77.5 ± 3.7 km/h, resulting in average linear and rotational

head accelerations near the upper values previously reported

(54). Finally, the previous investigation examined spontaneous

HRV and cardiac BRS measures in a supine position; whereas

in this study they were taken in an upright position, which is

known to reduce variation and enhance reproducibility (55).

Given this context, one might have expected larger effects in the

current study than in that of Harriss et al. (19). Despite this, both

studies found that acute soccer heading has minimal effects on

autonomic function.

Furthermore, other reports have noted perturbations in

HRV (18, 56, 57) and cardiac BRS (58) metrics following

more substantive head impacts (e.g., concussions) among

athletes. The exact physiological underpinnings that occur to

the autonomic nervous system following concussion are largely

unknown; however, this may in part be explained through the

metabolic cascade known to occur following concussion (59, 60).

This cascade involves diffuse axonal dysfunction and altered

neurotransmission. After an initial period of hypermetabolism,

there is altered mitochondrial function leading to reduced

glucose utilization. Cardiac BRS and HRV are known to

be influenced through output from the brain stem and

the hypothalamus, respectively (10). Therefore, a cellular or

neurometabolic disruption in networks associated with these

regions could result in dysautonomia which may partially

explain these deficits seen more often following concussion,

as opposed to the controlled soccer-heading performed in the

current investigation. Future research is needed to understand

the total exposure required to cause immediate changes in

different aspects of brain function.

Whether and how such alterations are related to the

development of longer-term neurodegenerative disorders

observed in former soccer players (6–9) is currently unknown.

The results from this study suggest changes in autonomic

function as probed by HRV are unlikely to be involved at

least as they relate to sub-concussive soccer heading impacts.

Clearly, other pathophysiological processes and/or exposure

to concussive impacts must play a role in these longer-term

clinical outcomes.

Limitations

A prominent limitation of the current study is the small

sample size, which is likely linked to the non-significant findings.

Nonetheless, a pseudo-random crossover design was used to

reduce the likelihood any covariates (i.e., concussion history,

genetics, soccer experience, etc.) (61, 62) influenced the findings,

and also optimized statistical power while exposing fewer

participants to potentially hazardous conditions. Therefore,

we believe the results provide pertinent knowledge to the

literature, given the cumulative impact of heading exposure

and the comparable sample size to previous soccer heading

studies. Additionally, the group recruited were exclusively male

soccer players which is important as female soccer players have

one of the highest rates of concussion among female athletes

(63). However, despite methodological differences, these results

are similar to a published study examining HRV in female

adolescents (19). Furthermore, we also had no way of blinding

participants to their exposure (heading, sham, or control), which

could induce alterations to sympathetic and parasympathetic

tone, thereby changing absolute heart rate and potentially HRV

metrics. The SCAT3 has recently been shown to have only

moderate reliability and specificity in diagnosing concussion

and post-concussive symptoms (64) and, thus, its utility in the

context of this study can be questioned. Moreover, as the SCAT3

relies on subjective self-report, participants may have been more

likely to report symptoms knowing they had just been exposed to

a controlled bout of repeated head impacts. Nonetheless, as the
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TABLE 1 Resting physiologic parameters and Standardized Assessment of Concussion recorded before and after heading, sham, and control

exposures.

Metric Heading Sham Control p-value

Pre Post Pre Post Pre Post Condition Time Condition x Time

MAP

(mm Hg)

95.8 (6.2) 91.9 (4.4) 94.2 (6.4) 90.1 (3.2) 91.9 (6.2) 92.6 (5.3) 0.604 0.155 0.439

Respiratory

rate (bpm)

15.8 (1.1) 15.6 (1.6) 15.6 (2.4) 15.1 (3.0) 15.0 (4.4) 15.0 (3.9) 0.870 0.646 0.812

IOP

(mmHg)

15.6 (3.0) 15.6 (3.0) 14.9 (3.0) 14.9 (3.0) 15.6 (2.7) 15.6 (2.7) 0.807 0.746 0.873

SAC score 26.3 (1.8) 26.3 (1.8) 27.4 (2.6) 27.4 (2.6) 27.9 (1.1) 27.9 (1.1) 0.142 0.719 0.542

Data are presented as mean (SD).

MAP, mean arterial pressure; IOP, intraocular pressure; SAC, Standardized Assessment of Concussion (measure from Sport Concussion Assessment Tool version 3).

TABLE 2 Baroreceptor sensitivity and heartrate variability before and after heading, sham, and control exposures.

Metric Heading Sham Control p-value

Pre Post Pre Post Pre Post Condition Time Condition x Time

BRS

(ms/mmHg)

8.1 (1.8) 6.6 (1.7) 8.0 (1.8) 6.8 (3.1) 7.6 (2.4) 8.9 (2.5) 0.566 0.559 0.299

RMSSD

(ms)

35.5 (11.2) 30.7 (9.0) 33.1 (14.9) 37.2 (24.6) 39.5 (20.7) 49.7 (21.7) 0.212 0.571 0.547

NN50 53.9 (31.3) 40.3 (23.5) 44.1 (40.5) 44.0 (48.9) 53.1 (52.8) 91.7 (68.3) 0.223 0.568 0.318

pNN50

(%)

14.8 (9.0) 10.1 (6.1) 12.8 (12.9) 12.4 (16.2) 15.2 (16.1) 23.2 (16.2) 0.324 0.817 0.451

LF power

(nu)

84.9 (7.5) 85.7 (11.2) 78.3 (13.4) 84.6 (9.3) 80.3 (6.6) 81.3 (9.7) 0.440 0.381 0.707

HF power

(nu)

15.1 (7.5) 14.3 (11.2) 21.7 (13.4) 15.4 (9.3) 19.7 (6.6) 18.7 (9.7) 0.440 0.381 0.707

Data are presented as mean (SD).

BRS, baroreceptor sensitivity; RMSSD, root mean square of successive R-R interval differences; NN50, number adjacent NN intervals that differ from each other by more than 50ms;

pNN50, percentage of successive R-R intervals that differ by more than 50ms; LF power, low frequency power; HF power, high frequency power.

methodology in this study used objective outcomes [short-term

HRV/cardiac BRS: (23, 24, 37–39)] and validated questionnaires

(36) the risk of bias from this is minimal. Finally, skin-

worn impact sensors can potentially overestimate head-impact

exposure levels as a result of skin-based movement artifact

during impacts (65–67). It is possible this may have occurred

during the current investigation and the absolute values reported

in this manuscript may have overestimated the exposure levels.

Despite all these, the present findings are important given the

lack of autonomic data presented within the current literature

on soccer heading.

Conclusion

This investigation found exposure to 40 soccer head impacts

elevates symptom severity and a trend toward an increase

in absolute heart rate, although no alterations were found in

HRV and cardiac BRS. These findings add to the evolving

body of literature regarding the alterations in brain structure

and function resulting from an acute bout of soccer heading.

Future experiments are needed to comprehensively understand

acute changes that occur to the autonomic nervous system and

the associated structures across the lifetime of heading in a

soccer career. Finally, investigations into the impact of soccer

heading on HRV and cardiac BRS response changes with respect

to age, sex, soccer skill level, and accumulative exposure are

also warranted.
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