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Introduction: The di�erence between the chronological and biological brain

age, called the brain age gap (BAG), has been identified as a promising

biomarker to detect deviation from normal brain aging and to indicate

the presence of neurodegenerative diseases. Moreover, the BAG has been

shown to encode biological information about general health, which can

be measured through cardiovascular risk factors. Current approaches for

biological brain age estimation, and therefore BAG estimation, either depend

on hand-crafted,morphologicalmeasurements extracted frombrainmagnetic

resonance imaging (MRI) or on direct analysis of brain MRI images. The former

can be processed with traditional machine learning models while the latter

is commonly processed with convolutional neural networks (CNNs). Using a

multimodal setting, this study aims to compare both approaches in terms of

biological brain age prediction accuracy and biological information captured

in the BAG.

Methods: T1-weighted MRI, containing brain tissue information, andmagnetic

resonance angiography (MRA), providing information about brain arteries, from

1,658 predominantly healthy adults were used. The volumes, surface areas, and

cortical thickness of brain structures were extracted from the T1-weightedMRI

data, while artery density and thickness within the major blood flow territories

and thickness of themajor arterieswere extracted fromMRAdata. Independent

multilayer perceptron and CNN models were trained to estimate the brain

age from the hand-crafted features and image data, respectively. Next, both

approaches were fused to assess the benefits of combining image data and

hand-crafted features for brain age prediction.

Results: The combined model achieved a mean absolute error of 4 years

between the chronological and predicted biological brain age. Among the

independent models, the lowest mean absolute error was observed for

the CNN using T1-weighted MRI data (4.2 years). When evaluating the

BAGs obtained using the di�erent approaches and imaging modalities,

diverging associations between cardiovascular risk factors were found. For

example, BAGs obtained from the CNN models showed an association with
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systolic blood pressure, while BAGs obtained from hand-crafted

measurements showed greater associations with obesity markers.

Discussion: In conclusion, the use ofmore diverse sources of data can improve

brain age estimation modeling and capture more diverse biological deviations

from normal aging.

KEYWORDS

cardiovascular risk factors, brain aging, brain age gap, magnetic resonance

angiography, magnetic resonance imaging (MRI)

Introduction

Brain structures are known to undergo morphological

changes with normal aging (1, 2), a process that is primarily

associated with brain tissue atrophy resulting from a

deterioration of neurons and synapses (3). Aside from

these macroscopic changes to brain morphology, cerebral blood

flow and artery morphology, among others, have also been

shown to be affected by aging (4–6). Brain tissue health may be

directly associated with the blood flow supplied through main

arteries and the downstream exchange of molecules through

smaller capillaries. Thus, atrophy and vascular impairments are

often seen in tandem with many neurological diseases, such as

dementia (7).

Biological brain age estimation using machine-learning

models is an important step toward detecting deviation from

normal brain aging trends. More precisely, the brain age

gap (BAG), representing the difference between the estimated

biological brain age and the chronological age of a patient, has

been identified as a potential indicator for several neurological

diseases (8–10). Thus, it may be a promising biomarker

for precision medicine applications in the diagnosis and

management of neurological diseases (11). Machine learning

models estimating the biological brain age of an individual using

hand-crafted, image-derived, morphological features, or brain

images directly (9, 12, 13) have been proposed in the past. For

morphological hand-crafted features, well-known algorithms

such as support vector regression, neural networks, tree-based

models, and ensemble-based models have been used in the past

(14–16). For brain age estimation using medical images directly,

convolutional neural networks (CNN) are typically used. Past

studies have proposed different types of CNN architectures with

different levels of depth/number of layers and parameters (12,

13), types of convolutional layers [e.g., two-dimensional (9) or

three-dimensional (12, 13)], or output types [e.g., age prediction

only or bidirectional generative-discriminative models (17, 18)].

However, the type of input data (morphological hand-crafted

features or brain images) used by these models has a significant

impact on the accuracy of the biological brain age estimation,

regardless of themachine learning algorithm used. Some studies,

for instance, used the exact same cohort of participants to

train two different machine learning models: one using brain

magnetic resonance imaging (MRI) scans (images) and one

using morphological hand-crafted features extracted from these

brainMRI scans as input (19, 20). They observed better accuracy

when the brain MRI scans were used directly. Overall, it

appears that brain age estimation methods that directly use

images generally report better results than those using extracted

features (12, 13, 15), though comparing results from studies

using different cohorts of participants is not straight forward

(21). Practically, models using the image data directly have

access to spatial information and internally extract a finite

number of high-level features, which are directly optimized

toward the prediction task in an end-to-end manner (22). CNNs

automatically compute feature maps by convolving the input

image with different convolutional kernels, where parameters

are optimized during model training. Therefore, CNNs can

extract shape or texture features that significantly differ from

typically used morphological hand-crafted features (e.g., brain

structure volume or thickness).

T1-weighted MRI is widely used for biological brain age

estimation as this neuroimaging sequence displays the brain

tissues with high contrast. Most previous brain age prediction

studies used T1-weighted MRI to compare different predictive

models (13, 15, 16). Others found that combining different

types of input data derived from T1-weighted MRI could

lead to improved brain age prediction results (19, 20, 23).

However, using other modalities in addition to T1-weighted

MRI may provide additional predictive information for the

brain age estimation task. Thus, a few recent studies have

combined multiple imaging modalities as input of such models,

including, for instance, T2-weighted or diffusion-weightedMRI.

These multimodal models generally resulted in overall improved

prediction accuracy (24–27). Nevertheless, no comparison

between multimodal brain age prediction models using either

images or their extracted morphological features as input has

been performed so far, although these two types of data might

provide substantially different or complementary information.

In this specific study, T1-weighted MRI and time-of-flight

magnetic resonance angiography (TOF MRA), which contains

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2022.979774
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Mouches et al. 10.3389/fneur.2022.979774

brain artery information (28), are used. While T1-weighted

MRI data have been the de-facto standard modality for brain

age prediction, the use of TOF MRA data has only been

proposed recently (29, 30), where the TOF MRA imaging

data were used as input to CNN models. Furthermore, hand-

crafted parameters describing the local artery morphology may

add another perspective of valuable information for brain age

prediction models. As vascular structures are small and highly

variable with respect to their location, CNN models may not be

able to fully focus on these structures. Thus, adding this relevant

vascular impairment information, which may contribute to

normal and pathological aging (7, 31), might improve biological

brain age prediction.

Brain age prediction models are usually trained and tested

using brain scans from healthy individuals. Models described

in the literature typically result in average brain age estimation

errors of 3–5 years (8). This clearly illustrates that there is

inter-subject variability, even in healthy subjects, that affects

biological brain aging. There are many potential reasons for

these differences, such as genetic predisposition, environmental

factors, the daily diet, drug use including nicotine and alcohol,

physical activity, and others. Accounting for all of these factors

is likely not possible, especially given that many of these factors

can easily change during the course of one’s life. However, it

may be argued that cardiovascular health is directly affected

by many of these parameters, which could be ultimately used

as surrogate variables. Within this context, it is well-known

that cardiovascular parameters are tightly linked with cognitive

decline and dementia (32). Moreover, cardiovascular risk factors

have been previously shown to be correlated with the BAG

when using biological brain age estimated from morphological

hand-crafted features (24, 25, 33, 34), or from images (30,

35). These studies observed significant correlations of BAGs

computed using different imagingmodalities with several factors

such as blood pressure, body-mass index, and smoking. In

summary, different imaging modalities seem to capture different

biological aging information (33). However, the impact of the

input data type (morphological hand-crafted features or images)

used to compute the BAG, for a specific imaging modality, on

its associations with cardiovascular risk factors has not been

investigated yet. Understanding this impact is crucial to evaluate

whether morphological hand-crafted features or images, from

a given image modality, capture similar or complementary

biological brain age information.

Therefore, the aim of this study was to investigate differences

between using hand-crafted features and imaging data as input

to brain age prediction models, in a multimodal context. To

do so, T1-weighted MRI and TOF MRA datasets from 1,658

predominantly healthy adults were used. Morphological hand-

crafted features were extracted and used as input to multilayer

perceptron (MLP)models while preprocessed imaging data were

used as input to CNN models. First, the brain age prediction

results of each model were investigated and compared. Then,

the benefits of combining brain age predictions from models

using morphological hand-crafted features and models using

image data directly were analyzed. Finally, associations between

the BAGs from the different models and several cardiovascular

risk factors were investigated. This study expands on one of our

previous studies (29). Briefly described, the aim of this previous

study was to use T1-weighted MRI and TOF MRA imaging

data to predict brain age and to identify the most predictive

regions in the image space. This current study differs from the

previous one by performing an in-depth analysis of the value of

adding hand-crafted features for the brain age prediction task

instead of using imaging data only. Moreover, a detailed analysis

of the relationship between the BAG and cardiovascular risk

factors is conducted in this study, showing relevant differences

between models. Thus, the major contributions of this study are:

(i) a thorough comparison of brain age prediction models using

morphological hand-crafted features and imaging data, with a

focus on multimodal data including TOF MRA datasets; and

(ii) the investigation of the relationship between cardiovascular

risk factors and BAG computed using different input data types

(morphological hand-crafted features or images) and imaging

modalities (T1-weighted MRI vs. TOF MRA).

Materials and methods

Clinical and imaging data

Data from the Study of Health in Pomerania (SHIP),

containing randomly selected participants from the region

of Pomerania in Germany, were used for this secondary

work. The SHIP study aimed to collect data representing

the general population to assess the incidence and prevalence

of common risk factors as well as subclinical and clinical

diseases (36). The data sample used in this second study

includes cross-sectional data. After quality control of the

imaging data and all pre-processing steps described below,

data from 1,658 predominantly healthy adults, aged between

21 and 81 years, were included. T1-weighted MRI and TOF

MRA datasets were acquired for each participant using a

single 1.5T MRI scanner (Magnetom Avanto; Siemens Medical

Solutions, Erlangen, Germany). The acquisition parameters

were: T1-weighted MRI: TR = 1,900ms, TE = 3.4ms, flip

angle = 15◦, spacing = 1.0 × 1.0 × 1.0 mm3; TOF MRA:

TR = 23ms, TE = 7ms, flip angle = 25◦, spacing = 0.7

× 0.7 × 0.7 mm3. Additionally, several clinical, lifestyle, and

behavior variables, which are referred to as cardiovascular risk

factors in the following, were assessed for each participant. The

variables used for this study include body-mass index (BMI)

(kg/m2), waist-to-hip ratio (WHR), systolic blood pressure (BP)

(mmHg) averaged over three measurements, smoking history

(encoding the following information: smoker vs. non-smoker;

past vs. current smoker; regular vs. occasional smoker), and
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TABLE 1 Demographic and cardiovascular risk factor information of

the participants included in the study.

Mean (std)

Clinical factors:

Age (years) 49.9 (13.7)

Sex (F: female;M:male) F: 909;M: 749

Systolic blood pressure at rest (mmHg) 126.0 (16.4)

Body-mass index (BMI; kg/m2) 27.3 (4.2)

Waist-hip ratio (WHR) F: 0.82 (0.06);

M: 0.94 (0.07)

Behavioral factors:

Smoking status (0: never smoked; 1: past occasional

smoker; 2: past regular smoker; 3: current occasional

smoker; 4: current regular smoker)

0: 668; 1: 56;

2: 347; 3: 266;

4:321

Number of glasses per week (0: 0; 1: <1; 2: 1–6; 3: >6) 0: 112; 1: 458;

2: 963; 3: 125

alcohol consumption (number of glasses of alcohol per week).

The cardiovascular risk factors are summarized in Table 1 and

Figure 1, which shows density plots for the cardiovascular risk

factors with continuous values.

All participants provided written informed consent and the

SHIP study was approved by the local ethics commission of

the University of Greifswald (BB 39/08, 19.06.2008). The scans

were completely anonymized for this secondary study so that no

additional ethics approval was required.

Morphological hand-crafted features:
Extraction and model architecture

Figure 2 illustrates an overview of the input data processing,

model architecture, and model combination approach.

Morphological brain features were extracted from the

T1-weighted MRI brain scans using FastSurfer (37). FastSufer

is a deep learning pipeline replicating the widely used Freesurfer

(38) analysis pipeline with reduced computational requirements.

It segments a T1-weighted MRI dataset into 95 brain structures,

and the extracted features include the surface area, gray matter

volume, and average thickness of cortical structures, as well as

the volume of subcortical structures and the total brain volume.

As a result, 223 features were extracted and are available for

each participant.

Morphological artery characteristics were extracted from the

TOF MRA datasets. Therefore, a level-set-based method was

first used to segment the arterial structures from the TOF MRA

datasets. Briefly described, this method uses a fuzzy combination

of the TOF MRA intensity image and the vessel-enhanced TOF

MRA image (39) as input to a level-set segmentation algorithm

with anisotropic energy weights (28). Then, the centerline of

each vessel was extracted using the method described in Lee

et al. (40) and further used to estimate the vessel thickness.

Vessel thickness was calculated by determining the distance

between each centerline voxel and the closest vessel boundary

voxel, estimated using the distance transform described in

Danielsson (41). Two types of regions of interest, defined in

the MNI brain atlas space (42), were used: the cerebral blood

flow territories (43), and the major brain arteries (6), which

were localized using a statistical TOF MRA atlas (44). These

regions of interest were transformed into each individual TOF

MRA dataset by combining image registration transformations,

as detailed in Mouches et al. (6). Generally, two transformations

were estimated: a rigid transformation between each TOF MRA

dataset and its corresponding T1-weighted MRI dataset, and

a non-linear transformation between each T1-weighted MRI

dataset and the 152 MNI brain atlas. The transformed atlas

regions were used together with each corresponding vessel

segmentation and vessel thickness map to extract region-

specific artery measurements. The final set of features includes

the diameters of the main arteries, including the posterior

cerebral arteries (PCA), the middle cerebral arteries M1 and M2

segments (MCA), the basilar artery (BA), the internal carotid

arteries (ICA), and the anterior cerebral arteries A1 and A2

segments (ACA). Furthermore, the mean artery diameter and

density in themajor blood flow territories (MCA, PCA, andACA

territories) were quantified, resulting in a total of 24 features.

The quality of the datasets and the corresponding

segmentations were visually checked by an observer with

more than 5 years of dedicated experience in brain image

analysis (PM). For T1-weighted MRI datasets, FastSurfer

segmentation results were overlaid onto each MRI scan and

evaluated in axial, coronal, and sagittal views. Datasets with

insufficient segmentation results for at least one brain structure

were excluded. Linear registration of the T1-weighted MRI

was assessed by overlaying each dataset onto the MNI brain

atlas and excluding mis-registered datasets. For the TOF

MRA datasets, quality control was conducted in two steps.

First, segmentation accuracy was visually assessed using a

three-dimensional visualization of the segmented vessels.

Then, the registration of the MNI brain atlas to each TOF

MRA dataset was visually checked by overlaying the registered

cerebral blood flow territories and major brain artery masks

onto the vessel segmentations for each participant. Exclusion

criteria were incomplete or noisy vessel segmentation and

mis-registration, as described in Mouches et al. (6). Figure 2

shows the segmentation results for one dataset.

Two separate MLP models were used to predict brain

age from the morphological hand-crafted features extracted

from the T1-weighted MRI (223 features) and the TOF

MRA (24 artery features + total brain volume) datasets.

The architecture of the MLP models was optimized by testing

different configurations with one to four hidden layers and the

following number of neurons per hidden layer: T1-weighted
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FIGURE 1

Density plots for males (blue) and females (red) for cardiovascular risk factors with continuous values.

MRI: (256), (256, 128), (256, 128, 64), (256, 128, 64, 32); TOF

MRA: (32), (16, 32), (8, 16, 32), (4, 8, 16, 32). The MLP models

were trained for 1,000 epochs using the Adam optimizer with a

learning rate of 0.1 and a batch size of 200.

Image data: Preprocessing and model
architecture

The T1-weighted MRI datasets as well as the TOF MRA

datasets were pre-processed to facilitate brain age prediction

using the images directly as input. More precisely, the pre-

processing steps included bias field correction (45), skull

stripping (46), and affine registration to the MNI brain atlas

(42), using the registration algorithm implemented in ANTs

(47). Finally, the intensity of each scan was center scaled using

its mean intensity and standard deviation and the scans were

cropped to remove non-informative background voxels. More

information about the preprocessing steps can be found in (29).

The architecture for the CNN models used in this work

was inspired by the Simple Fully Convolutional Neural Network

(SFCN) proposed in Peng et al. (13), which is one of the best

performing model architectures when trained and evaluated

using the UK Biobank data (48). Briefly described, the model

architecture contains four consecutive blocks consisting of one

three-dimensional convolutional layer [(3× 3× 3) kernel], one

batch normalization layer, one max pooling layer [(2 × 2 ×

2) kernel], and one ReLU non-linear activation layer (49). The

convolutional layers from these four blocks contain 32, 64, 128,

and 256 filters, respectively. A fifth block contains one three-

dimensional convolutional layer with a (1 × 1 × 1) kernel and

64 filters, and one batch normalization layer followed by ReLU

activation. Finally, a sixth block consisting of an average pooling

layer, a dropout layer with a 0.5 dropout rate, and a dense layer

with linear activation outputs the age prediction. The models

were trained from scratch to predict the brain age using a mean

squared error as a loss function and the Adam optimizer with

a learning rate of 0.001, a batch size of 8, and 200 epochs.

Additionally, data augmentation consisting of ± 5◦ rotations
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FIGURE 2

Processing pipeline. Example input data and approach to combine the brain age prediction models using di�erent input types. MLP and CNN

model architectures are detailed, with both CNNs (CNN_T1 and CNN_TOF) having the same model architecture. Red: input layer, Blue: hidden

layer, Green: output layer. MLP, Multilayer perceptron; CNN, Convolutional neural network; T1-weighted MRI, T1-weighted magnetic resonance

imaging; TOF MRA, Time-of-flight magnetic resonance angiography.

and ± 10 voxel translations was applied to 50% of the training

data in each batch to prevent overfitting and increase model

performance (29).

Model evaluation

The models were evaluated using an age-stratified 5-fold

cross-validation approach. Therefore, for each iteration of the

cross-validation, 1-fold was used for testing and 4-folds were

used for training. Two hundred forty-nine datasets from each

training set (15% of the whole data) were selected in an

age-stratified way for validation. This approach ensures the

robustness of the results by leveraging a large amount of training

data in each cross-validation iteration while using each dataset

for testing once. The best models for each fold were obtained

by monitoring the loss value on the validation data during

training and saving themodel with the lowest loss value. The best

performing architecture for the MLP models, on average over

the 5-folds, had 2 and 3 hidden layers for the T1-weighted MRI

and TOFMRA features, respectively (refer to model architecture

in Figure 2). For comparison purposes, a null model, which
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assigns the average age of the training datasets to all test datasets,

was also evaluated.

For a more detailed feature importance analysis, the

SmoothGrad saliency method (50) was applied to individual

models for randomly selected participants, as described in

Mouches et al. (29). This gradient-based saliency method allows

us to evaluate importance directly in the input data space (i.e.,

with saliency maps in the case of CNN models and with feature

importance in the case of MLP models).

Model combination

To assess the benefits of combining both imaging modalities

(T1-weighted MRI and TOF MRA) and both input data

types (images or morphological hand-crafted features), different

combinations of the four individually-trained models were

evaluated: CNN based on T1-weighted data (CNN_T1), CNN

based on TOF MRA data (CNN_TOF), MLP based on T1-

weighted morphological hand-crafted features (MLP_T1), and

MLP based on TOF MRA morphological hand-crafted features

(MLP_TOF). Therefore, the predicted brain age results for the

validation data for each individual model were used as input to

a multiple linear regression model trained to predict brain age

(refer to Figure 2), as proposed by Jonsson et al. (51). These

weights were then also applied when linearly combining the

test data from the 5-folds described above. Wilcoxon-signed

ranked tests were used to compare the absolute errors on

the test data of (i) the CNN_T1 vs. the CNN_T1+MLP_T1;

(ii) the CNN_TOF vs. the CNN_TOF+MLP_TOF; and

(iii) the CNN_T1+CNN_TOF vs. the model combining all

four individual models. As a result, the benefits of adding

morphological hand-crafted features for every single modality

and in a multimodal setting are assessed.

Brain age gap and association with
cardiovascular risk factors

It is well-known that brain age prediction models suffer

from age-related biases. These biases result in the age of young

subjects typically being overpredicted and the age of elderly

subjects typically being underpredicted (52, 53). Therefore, the

predicted brain ages from each individual model (MLP_T1,

MLP_TOF, CNN_T1, CNN_TOF) were first adjusted for age

bias, following the linear regression method proposed in de

Lange et al. (25). For each fold of the cross-validation, the

validation data were first used to compute the slope (α) and

intercept (β) of the regression line between chronological age

and predicted age such that:

Predicted Age = α × Chronological Age+ β (1)

After that, the predicted results of the test data were

corrected as follows:

Corrected Predicted Age = Predicted Age+
[

Chronological Age

−
(

Chronological Age× α + β
)]

(2)

Finally, the BAG, representing the difference between the

corrected predicted brain age and the chronological age, was

computed for each test subject and individual model.

After age-related bias correction, associations between

the BAG and cardiovascular risk factors were analyzed for

the test subjects (not involved in model training or age-

related bias parameters estimation). Multiple linear regression

analyses were conducted for each cardiovascular risk factor

and for each individual model BAG (MLP_T1, CNN_T1,

MLP_TOF, CNN_TOF):

BAG = β1 × Chronological Age+ β2 × Sex

+β3 × Cardiovascular Risk Factor (3)

Here, the specific risk factors along with age and sex

were used as independent variables while the brain age gap

was used as the dependent variable (25). The p-values of

the beta coefficients were corrected for false discovery rate

(54) and p-values < 0.05 were considered significant. The

cardiovascular risk factors were standardized prior to the

multiple linear regression analyses to enable a comparison of the

beta coefficients. The analyses were conducted using the python

statsmodels package (55).

Results

Individual model performance

The performance of each individual model is reported

in Table 2. It shows the mean absolute error (MAE) and

Pearson’s correlation (r) when comparing the chronological

age and the estimated biological brain age, averaged over

the five cross-validation folds. When analyzing each imaging

modality separately, the CNN models perform better than the

corresponding MLP models. Overall, more accurate results are

seen for the models based on T1-weighted images, with the

CNN using T1-weighted MRI images as input performing the

best (MAE: 4.20 years). The worst performing model is the

MLP using morphological hand-crafted features derived from

the TOF MRA datasets (MAE: 9.52), although it is worth noting

that it still outperforms the null model (MAE: 11.41).

Figure 3 displays plots of the chronological age vs. the

predicted age. It shows the performances of each individual

model, of pairwisemodel combinations, and when all models are

combined. More accurate models show a tighter 95% prediction
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TABLE 2 Performance of the null model and of the di�erent individual and combined models.

Model MAE (std across CV folds) R (std across CV folds) Age-related bias (r)

(std across CV folds)

Null model 11.41 (0.10) −0.01 (0.0) 1 (0.0)

Individual models MLP_T1 5.54 (0.20) 0.861 (0.012) −0.432 (0.043)

MLP _TOF 9.52 (0.26) 0.524 (0.025) −0.790 (0.012)

CNN_T1 4.20 (0.18) 0.926 (0.004) −0.453 (0.059)

CNN_TOF 5.13 (0.19) 0.887 (0.012) −0.466 (0.080)

Combined models Combined T1 4.11* (0.08) 0.929 (0.004) −0.489 (0.046)

Combined TOF 5.06* (0.22) 0.887 (0.012) −0.476 (0.058)

Combined MLP 5.49 (0.22) 0.865 (0.012) −0.510 (0.026)

Combined CNN 4.08 (0.13) 0.931 (0.005) −0.491 (0.047)

All combined 4.00† (0.10) 0.932 (0.005) −0.420 (0.040)

MAE, Mean absolute error (years); r, Pearson’s correlation between the predicted and chronological age, Age-related bias: Pearson’s correlation between the chronological age and the

brain age gap. For each column, the average and standard deviation over the five cross-validation folds are reported. All Pearson’s correlation values are significant (<0.001, two-tailed

p-value). *Significant difference with the corresponding CNN (Wilcoxon signed ranked test; p < 0.01); †Significant difference with the Combined CNN (Wilcoxon signed ranked test;

p < 0.05). std, Standard deviation; CV, Cross-validation; MLP, Multilayer perceptron; CNN, Convolutional neural network; T1, T1-weighted MRI; TOF MRA, Time-of-flight magnetic

resonance angiography.

interval around the fitted linear regression line. The fitted linear

regression lines also clearly illustrate the age-related bias present

in the model’s predictions, which is further confirmed by the

non-zero intercept value of each regression line. Overall, among

the four individual models, the CNN_T1 model demonstrates

the tightest 95% prediction interval and the MLP_TOF model

the largest one.

Figure 4 shows saliency maps and feature importance

for two test participants. These two examples demonstrate

that the two data types (i.e., image and hand-crafted

feature) bring complementary information. For instance,

for the T1-weighted MRI data, the lateral sulcus are

identified as important, in line with our previous study

(29), while for the hand-crafted features, the white matter

hypointensities, third ventricle, and brainstem appear as

more important.

In summary, the individual model performances

reveal that the CNN using T1-weighted images

performs best. Moreover, it shows that all models and

types of input data contain age-relevant information,

as they all lead to better results compared to the

null model.

Combined model performance

When combining the two types of input data (MLP +

CNN models), significant improvements are observed for

both imaging modalities (CNN_TOF alone: MAE = 5.13 and

CNN_TOF+MLP_TOF: MAE = 5.06, p < 0.01; CNN_T1

alone MAE = 4.20 and CNN_T1+MLP_T1: MAE = 4.11,

p < 0.01). When evaluating cross-modality combinations, the

model combining the output predictions of all four different

models resulted in the best overall MAE of 4.0 years. This

is a slight improvement compared with the results obtained

when only the two CNNs were combined (MAE = 4.08; p

< 0.05). The model combining all four individual models

also resulted in the smallest age-related bias (r = −0.420),

which is illustrated by the chronological age vs. predicted age

plot shown in Figure 3. These results suggest that diversifying

the type of input data has the potential to improve brain

age prediction performances. They also illustrate that CNN

models specifically designed for the brain age prediction task

still benefit from being combined with hand-crafted feature-

based models.

In terms of input data type importance, the weights

of the linear combination can be used to get a general

understanding of the importance of each modality. The

normalized weights for each model averaged over the

5-folds, are CNN_T1: 0.62; CNN_TOF: 0.23; MLP_T1:

0.23; MLP_TOF: −0.08. These results are in line with

individual model performances as best performing

individual models also show the highest weights in the

linear combination.

Association with cardiovascular risk
factors

Figure 5 shows the beta coefficients for the different

cardiovascular risk factors [i.e., β3 in Equation (3), Section Brain

age gap and association with cardiovascular risk factors] and

their standard errors as estimated by the multiple regression

models. Significant beta coefficients (p < 0.05, after false
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FIGURE 3

Plots of the brain age predictions vs. the chronological age for the di�erent models and the di�erent possible model combinations. The dashed

line shows the diagonal, and the plain line shows the fitted regression line, with its equation. MLP, Multilayer perceptron; CNN, Convolutional

neural network; T1-weighted MRI, T1-weighted magnetic resonance imaging; TOF MRA, Time-of-flight magnetic resonance angiography.

discovery rate correction) are indicated with ∗. BMI, WHR, and

BP showed the highest correlations with the BAG. BMI was

significantly associated with each of the four model BAGs (all

β > 0.50). The two factors related to body fat (BMI and WHR)

showed an overall greater association with the BAGs from the

MLP models than with the BAGs from the CNN models (BMI:

MLP BAGs β > 0.72, CNN BAGs β < 0.66; WHR: MLP BAGs

β > 0.88, CNN BAGs β < 0.57). BP was significantly associated

with the BAG from the CNN models (CNN BAGs β > 0.67),

while smoking showed a significant correlation only for the

MLP_T1 BAG (β = 0.45). Alcohol consumption did not show

any significant association with any of the BAGs. BMI andWHR

showed significant association with the BAG from the MLP

models, but lower beta coefficients for the BAG from the CNN

models. On the other hand, BP had higher beta coefficients for

the BAG from the CNN models. These discrepancies observed

for the different types of models may be explained by the type of

information contained in the input data.

Discussion

This study demonstrates that combining outputs from

brain age predictive models using diverse types of input data

(morphological hand-crafted features and images) leads to

significantly increased prediction accuracy. More specifically,

these findings hold true for (i) two different imaging modalities,

and (ii) in a multimodal context. Furthermore, associations

between the BAGs obtained using the different imaging

modalities and input data types and several cardiovascular risk

factors were identified. This illustrates that BAGs computed

using different brain age prediction models capture different
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FIGURE 4

Examples of input data importance (axial and sagittal views of saliency maps for the CNN models and feature importance for the MLP models)

for two participants. Brain age predictions of the combined and individual models are indicated. RH, Right hemisphere; LH, Left hemisphere;

PCA, Posterior cerebral arteries; MCA, Middle cerebral artery; BA, Basilar artery; ICA, Internal carotid artery; FT, Flow territory; V, Volume; GV,

Gray volume; TA, Thickness average.

information regarding cardiovascular risk factors (refer to

Section Association with cardiovascular risk factors).

Brain age-prediction model performance

Overall, the results from this study show that self-

optimized CNN models achieve more accurate brain age

predictions compared to MLP models using morphological

hand-crafted features. This behavior was observed for both

imaging modalities and is in line with previous studies

using T1-weighted MRI data and derived features (19, 20).

Additionally, this study demonstrates that the same behavior can

be found when using a completely different imaging technique,

namely, TOF MRA datasets. It is likely that this finding is

also true for other sequences. The second finding of this

study shows that models using the brain tissue information

from T1-weighted MRI data perform better than the two

models using brain artery information from TOF MRA data.

This was also reported in our previous study using CNN
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FIGURE 5

Association of the brain age gap with cardiovascular risk factors. Beta coe�cients and their error bars for the di�erent cardiovascular risk factors

for each multiple regression model predicting the brain age gap for the di�erent brain age prediction models. *p < 0.05; MLP, Multilayer

perceptron; CNN, Convolutional neural network; T1, T1-weighted MRI; TOF, Time-of-flight MRA; BMI, Body-mass-index; WHR, Waist-to-hip

ratio; BP, Blood pressure.

models (29). The MLP_TOF model shows the worst results

but performs better than the null model. This confirms that

measurements of brain arteries contain at least some relevant

age-related information, as previously observed in Mouches

et al. (6). This low performance could also be explained by

the small number of input features (25 artery measurements)

fed to the MLP_TOF. The considerable difference between the

results of the CNN_TOF and MLP_TOF models suggests that

the CNN_TOF model uses additional information, other than

artery density and thickness. This information is potentially not

directly related to the arteries, although brain tissue contrast is

poor on TOFMRA data. In line with this finding, it was reported

in our previous study (29) that cerebrospinal fluid structures,

visible on TOF MRA datasets, were also used by the CNN

models for decision making. Therefore, it may be argued that,

first, the CNN_TOF model also used some tissue morphology

information from the TOF MRA datasets and, second, that

using only artery-related information for brain age prediction

as done by the MLP_TOF model does not enable an accurate

age prediction.

The accuracy of the biological brain age prediction improves

when combining the predictions from the CNN models,

automatically identifying optimized features, and the MLP

models, using morphological hand-crafted features. These

results are generally in line with the findings of Bermudez et al.

(19) and (20). The former aggregated brain volumetric features

and features extracted by a CNN model using T1-weighted

MRI data. The latter ensembled the output predictions

from seven different models using diverse machine learning

algorithms/deep learning model architectures and using various

input data types (hand-crafted features, gray and white matter

maps) derived from T1-weighted MRI datasets. Both studies

reported higher accuracy when aggregating both feature types

compared to using only the volumetric features or only the CNN

features. Compared to those previous studies, the current study

adds relevant new insights for biological brain age prediction

methods. First, the CNN architecture used in this study is

one of the best performing, state-of-the-art architectures for

brain age prediction (13). Therefore, our findings demonstrate

that even such advanced CNN models designed for the

specific task of brain age prediction can benefit from being

coupled with models using morphometric features. Second, two

imaging modalities providing complementary information were

considered in this study, extending these findings beyond just

T1-weighted MRI datasets. Similarly, past studies showed that

ensembling predictions from CNN models trained on different
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inputs derived from T1-weighted MRI scans (e.g., gray matter

and white matter segmented images, linearly and non-linearly

registered images, etc.) lead to improved brain age prediction

accuracy (13, 23, 51). Overall, all of these findings support the

notion that combining different data representations from a

single imaging modality has advantages, even when using deep

learning models. Indeed, CNN-based features are abstract, high-

level features, and do not necessarily match clinically relevant

features. Similarly, some morphological features such as cortical

thickness cannot be easily replaced by imaging features that are

purely derived using convolutions.

For instance, in Levakov et al. (56), a brain age prediction

CNNmodel based on T1-weighted MRI scans was implemented

and brain regions contributing the most to the model’s

predictions were identified. The authors reported that the fourth

ventricle, among other regions, was a predictive region used

by CNN. However, they also found that the volume of the

fourth ventricle was not correlated with age (56). In their study,

some structures where morphology is known to be correlated

with age were not used by their CNN. This is the case for the

frontal pole, for instance, whose thickness is known to be highly

affected by age (2, 26, 57). These observations and the saliency

analyses suggest that combining clinical knowledge fromderived

morphological features such as cortical thickness and knowledge

from trained machine learning models can potentially lead to

improved biological brain age estimation. Feature importance

could also be investigated in the context of an end-to-end

trained combinedmodel to investigate the relationships between

the different input data types. Nevertheless, implementing

explainability methods in a combinedmodel using different data

types and model architectures is not straight forward and needs

further research itself (58).

Association with cardiovascular risk
factors

Relevant associations between the risk factors and the BAGs

were found. More precisely, increased BMI, WHR, and BP

were associated with an increased BAG (i.e., predicted age

> chronological age; older-looking brain). These results are

in line with previous research reporting a negative impact of

these factors on brain tissue atrophy, white matter lesions (59),

and artery density and thickness (6, 60). Moreover, similar

associations were also identified in the past when predicting

brain age frommorphological hand-crafted features. Past studies

also reported associations with BP and smoking status (24, 25,

33, 34), as well as with obesity markers (33, 34, 61).

The differences observed in the associations between

cardiovascular risk factors and the CNN vs. the MLP BAGs

could be explained by the differences captured in the input

data. For example, the CNN models used preprocessed images

that were affinely registered to a template, which removes

some information from the images such as the total brain

volume. However, this information might be better captured

in the morphological hand-crafted features containing raw

volumes of brain structures. Other important information such

as white matter lesions, appearing hypointense on T1-weighted

MRI data, might be better represented in the image data.

Although these lesions are segmented by FastSurfer and their

volume is used as a hand-crafted feature, the information about

their location is not encoded in the hand-crafted features.

Therefore, BAGs obtained from brain age estimation based

on different data types (hand-crafted features vs. images) or

imaging modalities contain different information and biases.

It is also important to note that image preprocessing, such

as the type of image registration applied, can influence the

information contained in the image. Thus, it can affect the

model performance as well as the association of the BAG with

other factors. For these reasons, it would be interesting to

investigate the influence of pre-processing steps on brain age

prediction accuracy in more detail. Klingenberg et al. (60), for

example, investigated the influence of linear and non-linear

image registration used for preprocessing of datasets on the

accuracy of neurological disease classification. They found that

the registration of datasets to a common reference space as a

pre-processing step generally improves classification accuracy. It

is likely that this is also the case for the brain age prediction task

as the machine learning models need to learn other correction

factors in case of non-registered datasets (e.g., orientation and

location of the brain) that are not related to the brain age but

increase the complexity of the training task.

Limitations

This study has a few limitations that should be mentioned.

First, this study used cross-sectional data and cardiovascular

risk factors that were collected at a single time point in

life. However, the exposure duration to risk factors might

considerably impact the BAG. Thus, including temporal data

could also reveal if changes in the brain caused by exposure

to risk factors are reversible. Moreover, this study was limited

to an analysis of selected cardiovascular risk factors. However,

the BAG biomarker has been shown to be associated with more

diverse factors, such as medical history (35) and genetics (51),

which should also be taken into account in future studies.

Next, some limitations regarding the fairness of the models’

comparison remain. Such limitations include the input data

dimensionality, which differs between the T1-weighted MRI-

and TOF MRA-based models, and the image preprocessing

steps. Those were applied prior to the analyses with CNNs

but not prior to the feature extraction process. Therefore, the

impact of these two aspects on brain age prediction model

performance should be studied in the future study. Finally, the
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different models were combined using a linear combination of

their predictions, which led to improved accuracy. Nevertheless,

more sophisticated, and potentially non-linear, methods should

be investigated in the future as ways to further improve the

results presented in this study. In terms of the association of

the BAG with cardiovascular risk factors, linearly combining

model outputs results in a weighted average of the cardiovascular

risk factors-related information contained in the different data

sources used to generate the BAGs. Therefore, using a non-linear

combination could help to identify more complex interaction

patterns between the information captured by each data source

or to mitigate the biases captured in the BAGs.

Conclusion

In conclusion, the results of this study demonstrate the

benefits of using diverse sources of input data for the brain

age prediction task. Doing so has the potential to improve

the quality of the brain age gap biomarker and its ability

to capture biologically relevant deviations from normal brain

aging patterns. Moreover, associations between the brain age

gap and factors impacting normal brain aging trends should

be carefully interpreted. The current findings demonstrate that

these associations rely on the information captured by the data,

and on the data preprocessing methods. Therefore, bringing

together clinical knowledge and advanced black box deep

learning could help toward extracting more diverse data and,

thus, generate better brain aging models.
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