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Objective:Brain arteriovenousmalformation (bAVM) is an important reason for

intracranial hemorrhage. This study aimed at developing and validating amodel

for predicting bAVMs rupture by using three-dimensional (3D) morphological

features extracted from Computed Tomography (CT) angiography.

Materials and methods: The prediction model was developed in a cohort

consisting of 412 patients with bAVM between January 2010 and December

2020. All cases were partitioned into training and testing sets in the ratio of

7:3. Features were extracted from the 3D model built on CT angiography.

Logistic regression was used to develop the model, with features selected

using L1 Regularization, presented with a nomogram, and assessed with

calibration curve, receiver operating characteristic (ROC) curve and decision

curve analyze (DCA).

Results: Significant variations in associated aneurysm, deep located, number

of draining veins, type of venous drainage, deep drainage, drainage vein

entrance diameter (Dv), type of feeding arteries, middle cerebral artery feeding,

volume, Feret diameter, surface area, roundness, elongation, mean density

(HU), andmedian density (HU) were found by univariate analysis (p < 0.05). The

prediction model consisted of associated aneurysm, deep located, number of

draining veins, deep drainage, Dv, volume, Feret diameter, surface area, mean

density, and median density. The model showed good discrimination, with a

C-index of 0.873 (95% CI, 0.791–0.931) in the training set and 0.754 (95% CI,

0.710–0.795) in the testing set.

Conclusions: This study presented 3D morphological features could be

conveniently used to predict hemorrhage from unruptured bAVMs.
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Introduction

Brain Arteriovenous malformation (bAVM), which is a

congenital anomaly caused by capillary maldevelopment and

shunts between brain arteries and veins, is an important cause

of intracranial hemorrhage (1, 2). The risk of bAVM rupture

is ∼3% per year, and is considered as an important reason

for intracranial hemorrhage in patients younger than 40 years

(3–5). Many characteristics, such as size, deep located, venous

drainage pattern, fewer draining veins, and feeding arteries, have

been described as risk factors of bAVM rupture (3, 5–12). The

hemorrhage due to bAVM causes serious consequences and

has a higher risk of hematoma removal through surgery due

to the nidus (2), making it important to predict hemorrhage

before rupture.

Several authors reported that small bAVMs had a higher

risk of rupture (13–15), but another study showed that large

bAVMs bled more frequently (12). BAVMs have irregular

geometries, but the size of bAVMs have been commonly

measured by the diameter of the maximum cross-section on

CT or Magnetic Resonance (MR) images, which could not

describe the nidus exactly. The morphological features extracted

by the 3D model can more accurately describe the bAVMs.

Otherwise, there are various risk factors with angio-architectural

features to predict bAVM rupture; however, the weight of these

features may become different when combined with the 3D

morphological features.

In this study, we evaluated different angio-architectural

features of bAVMonCT angiography in a single-institute cohort

to investigate the key points. First, we used 3D model instead

of the tomographic images to evaluate the effect of size in

predicting hemorrhage. Second, we evaluated the effect of other

3D morphological features and built a nomogram consisting of

architectural features for clinical usage.

Materials and methods

Patients and image materials

All patients were diagnosed with bAVM between January

2010 and December 2020 in multiple centers, including Taiyuan

Central Hospital of Shanxi Medical University, Zhumadian

Central Hospital, The First People’s Hospital of Lianyungang,

Shanghai Changhang Hospital, and Ordos Central Hospital, and

were retrospectively included in this study.

The following were the inclusion and exclusion criteria.

Inclusion criteria: diagnosis of unruptured bAVM using

Digital subtraction angiography (DSA) in brain, basal ganglia,

thalamus, corpus callosum, cerebellum and other locations,

intracranial hemorrhage associated with bAVM diagnosed using

CT imaging, and CT angiography images acquired before

rupture and without surgical or interventional treatment prior

FIGURE 1

An example of 3D model building on CT Angiography image. (A)

The axial image. (B) The 3D model. (C) The coronal image. (D)

The sagittal image.

to acquisition. Exclusion criteria: simple arteriovenous fistula,

combined Dural arteriovenous fistula, and occurrence of lesions

in the spinal cord. Only patients with CT angiography data on

initial hemorrhage status were included.

All CT data acquisition through the same type of equipment

(Revolution EVO; GE Healthcare). The scan protocols were as

follows: axial plane; 80 kVp; automatic tube current modulation,

300–580mA; section thickness, 0.625mm; collimation, 80mm;

rotation time, 0.5 s; noise index, 2.2.

This study was approved by the ethics committee of Beijing

Tiantan Hospital (ID: KY-2017-068-02). All patients provided

signed informed consent.

3D model building and definition of 3D
morphological features

The 3D models were built on CT angiography using the 3D

Slicer software (version 4.11, https://www.slicer.org). Each case

was segmented in axial view and corrected in sagittal and coronal

views by three researchers. All the three researchers had at least

5 years related working experience. The quality of the model was

checked by other two researchers. Researchers participating in

the review had at least 10 years of related working experience.

See Figure 1 for an example of 3D model building.

The features collected from the models included Feret

diameters (cm), volume (cm3), surface area (cm2), roundness,

flatness, elongation, mean density (HU), median density (HU),

and standard deviation of density (HU). None of the features

included the portion of the draining vein away from the nidus.
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All the nidus was completely segmented and the features

were all based on the entire nidus. Feret diameter is the diameter

of a sphere that encompasses the entire segment. The surface

area is the volume of the segment, including the outside surface

and the surface of the interior hollowed-out parts. Roundness

was calculated from the ratio of the area of the sphere calculated

from the Feret diameter by the actual area. Flatness is calculated

from the square root of the ratio of the second smallest principal

moment to the smallest. Elongation is calculated from the square

root of the ratio of the second largest principal moment to

the second smallest. All features were calculated using the 3D

Slicer software.

Clinical features selection

With the exception of the features collected from the 3D

model, other features were selected based on previous literature

reports and clinical experiences (3, 6, 7). The features included

associated aneurysm, calcification, location, features of venous

drainage, and features of feeding arteries.

The associated aneurysm included feeding artery aneurysm

and intranidal aneurysm. Arterial aneurysms were defined as

saccular dilatations of the lumen more than 2 times the width

of the arterial vessel that carried the dilatation which located in

the feeding arteries or inside the nidus (9). Arterial aneurysms

located on the arteries not contributing blood flow to the bAVM

were considered unrelated to the bAVM and were not included

in the analysis.

Locations were grouped into frontal, temporal, parietal,

occipital, and deep located. The deep located nidus was defined

as the nidus that occurred in the basal ganglia, thalamus, and

corpus callosum, and was recorded as 0 in the number of affected

lobes. The location indicated that all the nidus or a part of it was

located in some lobes.

The features of venous drainage included the number

of draining veins, the different combination types of venous

drainage and the drainage vein entrance diameter. The venous

drainage was grouped into the superior sagittal sinus, transverse

sinus and sigmoid sinus, and straight sinus. This was only

recorded if the case had the draining vein to each sinus,

which meant that a case could drain to several sinuses. The

combination types were classified as extensive superficial sinus

combining straight sinus drainage, extensive superficial sinus,

drainage, superior sagittal sinus combined with straight sinus

drainage, transverse sinus and sigmoid sinus combined with

straight sinus drainage, straight sinus drainage, and single

superficial sinus drainage. The drainage vein entrance diameter

(Dv) was also recorded. The entrance stenosis of the draining

vein had been shown to be a risk factor for bAVM rupture in

previous studies (9, 13, 16), and the diameter of the entrance of

the draining vein was a quantitative assessment of the entrance

stenosis of the draining vein.

The feeding arteries were grouped into the anterior cerebral

artery (ACA), middle cerebral artery (MCA), and posterior

cerebral artery (PCA). Different combinations of feeding arteries

were also recorded. The combination of feeding arteries

was grouped into ACA combined with MCA and PCA,

ACA combined with MCA, ACA combined with PCA, MCA

combined with PCA, and single artery feeding.

Statistical analysis

Statistical analyses were conducted using R software (version

4.1.0; http://www.Rproject.org). In univariate analysis, the

Pearson chi-square test was used to compare the counting

data. If measurement data were normally distributed, the

t-test was used for comparison; otherwise, the rank sum

test was used. Features with significant differences (p <

0.05) in univariate analysis between the two groups were

included in the multivariate regression. The Kolmogorov–

Smirnov (K–S) test was utilized to examine the normality

of continuous features. Age, volume, Feret diameter, surface

area, roundness, elongation, mean density, median density, and

standard deviation of density were all skewed in this study. Based

on the distribution of the data, the Mann-Whitney U test was

chosen as the approach to compare the two groups.

Prior to model training, all non-normally distributed

continuous variables were transformed into normally

distributed variables by power transformation. All normally

distributed variables were normalized by the zero-mean

method, and all categorical variables were transformed into

one-hot codes.

All cases were partitioned into training and testing sets in

the ratio of 7:3. The model was built using logistic regression,

and the model downscaling and feature filtering methods

were L1 regularization. Logistic regression is a multi-factor

statistical method of analysis that is highly interpretable. Logistic

regression analysis results can be displayed using a nomogram,

making clinical use easier (17–19). The reported statistical

significance levels were all two-sided, with the significance set

at 0.05.

Model demonstration and validation

Using the results of logistic regression, we developed

a mathematical model with strong interpretability and

demonstrated it by nomogram for predicting bAVM rupture,

which was a quantitative tool for clinical use.

Validation of the nomogram included internal and external

validations. The internal validation used calibration curve.

External validation used ROC curve in both the training and

validation set. The performance of clinical use of the nomogram

was quantified by decision curve analysis in both the training
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TABLE 1 The baseline information after preference score matching.

Non-hemorrhage

(n = 206)

Hemorrhage

(n = 206)

p-value

Sex 0.921

Male 114 (55.3%) 92 (44.7%)

Female 113 (54.9%) 93 (45.1%)

Age 31 (21–45) 27 (18–42) 0.169

Spetzler-martin 0.563

Score

2 23 (11.2%) 30 (14.6%)

3 73 (35.4%) 88 (42.7%)

4 78 (37.9%) 66 (32.0%)

5 32 (15.5%) 22 (10.7%)

and testing. As a reference, we compared the predictive ability of

Spetzler-Martin score for hemorrhage in this part.

Results

Baseline information

In total, 581 patients were identified and comprised the

cohort: 332 males and 249 females; mean age of 34.09 ± 16.04

years, ranging from 4 to 79 years; 206 hemorrhage and 375

non-hemorrhage cases.

The effect of age and sex on the prediction of bAVM rupture

was not clear (16, 20). To focus on the effect of radiologic

features, propensity scorematching (PSM) was carried out based

on the baseline of the hemorrhage group, with a ratio of 1:1. The

training cohort finally contained 412 patients, with 206 males

and 206 females, 206 hemorrhage and 206 non-hemorrhage

cases, and a mean age of 31.72 ± 16.35 years, ranging from 4

to 79 years.

The cohort included 206 hemorrhage cases, and 206 non-

hemorrhage cases were matched and extracted into the cohort.

The hemorrhage group included 114male (55.3%) and 92 female

patients (44.7%), while the non-hemorrhage group included

113 male (54.9%) and 93 female patients (45.1%). The median

age of the hemorrhage group was 30 (21–45) years, and that

of the non-hemorrhage group was 27 (18–42) years. There

was no significant difference between the non-hemorrhage

and hemorrhage groups (see Table 1). Since Spetzler-Martin

score was calculated by several basic characteristics, it was not

included in subsequent statistics as an independent risk factor.

Results of univariate analysis

All the characteristics collected from the CT images and

3D models are presented in Table 2. Volume, Feret diameter,

TABLE 2 The results of univariate analysis.

Non-

hemorrhage

(n = 206)

Hemorrhage

(n = 206)

p-value

Associated aneurysm 38 (18.5%) 59 (28.7%) <0.001

Feeding artery aneurysm 14 (6.8%) 22 (10.7%)

Intranidal aneurysm 24 (11.7%) 37 (18.0%)

Calcification 48 (23.3%) 37 (18.0%) 0.180

Number of affected lobes 0.062

0 14 (6.8%) 31 (15.0%)

1 129 (62.6%) 115 (55.8%)

2 54 (26.2%) 52 (25.2%)

3 9 (4.4%) 8 (3.9%)

Frontal 90 (43.7%) 79 (38.3%) 0.271

Parietal 64 (31.1%) 69 (33.5%) 0.598

Temporal 72 (35.0%) 64 (31.1%) 0.402

Occipital 38 (18.4%) 31 (15.0%) 0.356

Deep located 14 (6.8%) 31 (15.0%) 0.007

Number of draining

veins

0.003

1 146 (70.9%) 166 (80.6%)

2 33 (16.0%) 32 (15.5%)

≥3 27 (13.1%) 8 (3.9%)

Type of venous drainage <0.001

Extensive superficial

drainage+ straight sinus

11 (5.3%) 0

Extensive superficial

drainage

12 (5.8%) 16 (7.8%)

Superior sagittal sinus+

straight sinus

17 (8.3%) 16 (7.8%)

Transverse sinus+

straight sinus

6 (2.9%) 5 (2.4%)

Straight sinus 26 (12.6%) 53 (25.7%)

Single superficial sinus 134 (65.0%) 116 (56.3%)

Superior sagittal sinus

drainage

142 (68.9%) 126 (61.2%) 0.098

Transverse sinus

drainage

61 (29.6%) 43 (20.9%) 0.141

Deep drainage 60 (29.1%) 74 (35.9%) 0.041

Dv (cm) 0.65 (0.50–0.84) 0.49

(0.39–0.67)

<0.001

Type of feeding arteries 0.008

ACA+MCA+ PCA 12 (5.8%) 3 (1.5%)

ACA+MCA 33 (16.0%) 17 (8.3%)

ACA+ PCA 4 (1.9%) 5 (2.4%)

MCA+ PCA 25 (12.1%) 21 (10.2%)

Single artery feeding 132 (64.1%) 160 (77.7%)

ACA feeding 71 (34.5%) 65 (31.6%) 0.530

MCA feeding 149 (72.3%) 120 (58.3%) 0.003

(Continued)
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TABLE 2 (Continued)

Non-

hemorrhage

(n = 206)

Hemorrhage

(n = 206)

p-value

PCA feeding 72 (35.0%) 70 (34.0%) 0.836

Volume (cm3) 9.95 (3.44–24.27) 3.89

(1.67–12.62)

<0.001

Feret diameter (cm) 5.35 (3.88–7.69) 4.49

(3.33–6.03)

<0.001

Surface area (cm2) 78.53

(32.24–168.87)

39.79

(16.05–90.38)

<0.001

Roundness 0.29 (0.24–0.39) 0.34

(0.28–0.43)

<0.001

Flatness 1.31 (1.21–1.52) 1.37

(1.21–1.54)

0.177

Elongation 1.38 (1.21–1.64) 1.44

(1.27–1.78)

0.009

Mean density (HU) 306.91

(251.48–350.04)

269.57

(232.00–

327.74)

0.001

Median density (HU) 288.50

(236.00–338.25)

243.50

(193.75–

311.00)

<0.001

Standard deviation of

density (HU)

129.40

(91.74–159.93)

124.18

(101.69–

154.95)

0.956

TABLE 3 The risk factors of hemorrhage caused by AVM rupture

extracted into logistic regression after filtration.

OR 95%CI p-value

Associated aneurysm 3.276 2.061–5.206 0.000

Deep located 2.036 0.907–4.567 0.085

Number of draining veins 1.045 0.642–1.702 0.858

Deep drainage 1.120 0.653–1.923 0.680

Dv (cm) 0.355 0.128–0.989 0.048

Volume (cm3) 1.089 1.033–1.148 0.002

Feret diameters (cm) 0.948 0.780–1.152 0.591

Surface area (cm2) 0.983 0.973–0.992 0.000

Mean density (HU) 1.014 1.001–1.027 0.003

Median density (HU) 0.983 0.971–0.995 0.005

surface area, roundness, elongation, flatness, mean density, and

median density were under a skewed distribution and showed

with quartiles in Table 2. Significant variations were observed in

associated aneurysm, deep located, number of draining veins,

type of venous drainage, deep drainage, Dv, type of feeding

arteries, MCA feeding, volume, Feret diameter, surface area,

roundness, elongation, mean density, and median density (p

< 0.05).

Feature selection and development of
the prediction model

All the characteristics which showed significant variation in

the univariate analysis were extracted into the logistic regression

model. Associated aneurysm, volume, surface area, mean

density, and median density were identified as independent

predictors under L1 Regularization. Deep located, number of

draining veins, deep drainage, Dv, Feret diameters, which had

been classically described in high quality prospective AVM

natural history studies as high-risk factors for hemorrhage (2,

7, 9), were also contained in the final model (see Table 3).

Logistic regression revealed that associated aneurysm, deep

located, number of draining veins, and deep drainage were

risk factors for bAVM rupture. These risk factors increased the

probability of a ruptured bAVM in direct proportion to their

existence. Intranidal aneurysm exhibited a higher probability

of rupture than feeding artery aneurysm among associated

aneurysms. The risk of bAVM rupture rose with decreasing

Feret diameter, increasing volume, decreasing surface area,

increasing mean density, and decreasing median density, as

evidenced by the results for characteristics whose attributes were

continuous variables.

While the weights of other variables were lower, the

relative weights of the associated aneurysm, Dv, volume,

surface area, mean density, and median density were higher.

Other characteristics had varying weights as well. Because of

normalization, these feature weights had a specific comparative

value. The weights represented the importance of these features

for this dataset and, as a result, the intensity of their influence

on the bAVM rupture. As a proper set of additional factors

to the traditional bAVM rupture risk factors, 3D features were

weighted more highly in the model.

A nomogram was employed to illustrate the model in

order to boost its therapeutic utility (Figure 2). The nomogram

allowed each risk factor to be assigned a corresponding point

score, and the overall score was used to calculate the associated

probability of rupture.

Validation of the prediction model

The information for the training set and test set was shown

in Table 4. The calibration curve demonstrated good agreement

between the predicted probability and actual probability; the

figure of the calibration curve is shown in the supplementary file.

The result of the Hosmer–Lemeshow test showed a significance

of p > 0.05 (Figure 3).
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FIGURE 2

The development of the nomogram. The features are ranked by the standard deviation of the βx’s. Every factor can match a score using the

nomogram. The total score can correspond to the predicted value of the hemorrhage risk on a scale.

In the training set, the C-index of the prediction model was

0.873 with a 95% CI of 0.791–0.931 (p < 0.001), sensitivity

was 76.92, and specificity was 90.16. In the testing set, the C-

index of the prediction model was 0.754 with a 95% confidence

interval (CI) of 0.710–0.795 (p < 0.001), sensitivity was 72.33,

specificity was 69.42. The Speztler-Martin score’s ability to

predict hemorrhage was also evaluated and compared with the

prediction model. The C-index of Speztler-Martin Score was
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TABLE 4 The features of the training set and testing set.

Training set Testing set

Non-hemorrhage (n = 144) Hemorrhage (n = 144) Non-hemorrhage (n = 62) Hemorrhage (n = 62)

Sex

Male 72 (50.0%) 87 (60.4%) 42 (67.7%) 26 (41.9%)

Female 72 (50.0%) 57 (39.6%) 20 (32.3%) 36 (58.1%)

Age 29 (19–45) 27 (18–43) 33 (22–46) 26 (18–40)

Spetzler-martin score

2 18 (12.5%) 18 (12.5%) 5 (8.1%) 12 (19.4%)

3 51 (35.4%) 64 (44.4%) 22 (35.5%) 24 (38.7%)

4 51 (35.4%) 48 (33.3%) 27 (43.5%) 18 (29.0%)

5 24 (16.7%) 14 (9.7%) 8 (12.9%) 8 (12.9%)

Associated aneurysm 30 (20.8%) 40 (27.8%) 8 (12.9%) 19 (30.6%)

Feeding artery aneurysm 18 (12.5%) 26 (18.1%) 6 (9.7%) 11 (17.7%)

Intranidal aneurysm 12 (8.3%) 14 (9.7%) 2 (3.2%) 8 (12.9%)

Deep located 10 (6.9%) 18 (12.5%) 4 (6.5%) 13 (21.0%)

Number of draining veins

1 100 (69.4%) 115 (79.9%) 46 (74.2%) 51 (82.3%)

2 23 (16.0%) 24 (16.7%) 10 (16.1%) 8 (12.9%)

≥3 21 (14.6%) 5 (3.5%) 6 (9.7%) 3 (4.8%)

Deep drainage 44 (30.6%) 45 (31.3%) 16 (25.8%) 29 (46.8%)

Dv (cm) 0.61 (0.50–0.82) 0.50 (0.39–0.68) 0.68 (0.50–0.90) 0.47 (0.38–0.64)

Feret diameter (cm) 5.30 (3.67–7.43) 4.52 (3.41–5.99) 4.41 (4.11–8.00) 4.29 (2.90–6.15)

Volume (cm3) 9.46 (3.18–23.75) 4.14 (1.73–13.07) 10.86 (3.93–27.37) 3.68 (1.49–12.61)

Surface area (cm2) 74.77 (31.09–163.81) 39.79 (17.08–94.84) 84.92 (33.11–186.73) 38.95 (12.76–81.23)

Mean density (HU) 308.31 (256.16–353.36) 267.43 (225.65–321.03) 294.93 (237.87–349.14) 275.18 (244.95–331.98)

Median density (HU) 293.50 (236.75–348.50) 243.50 (192.00–301.75) 278.50 (235.00–322.25) 243.50 (200.00–314.00)

The characteristics include baseline information and all the features of the prediction model.

0.563 in training set and 0.440 in testing set. The ROC curve was

shown in Figure 4.

Clinical use

The clinical use of the prediction model was evaluated using

the decision curve, as shown in Figure 5. The decision curve

showed the net benefit of the prediction model, which was much

better than the all-treated or none-treated approach, and was

usable not only in the training set, but also in the testing set.

The Speztler-Martin score was also evaluated using the decision

curve and compared with the prediction model. The result

showed that the predictionmodel performed well and was useful

in clinic.

The actual effectiveness of the model in clinical practice was

shown by both the ROC curve and theDCA curve; the higher the

performance, the higher the usability. However, the performance

of the testing set was more important for the model because

these results demonstrate the model’s dependability.

Discussion

This study developed and validated a nomogram for

predicting hemorrhage caused by unruptured AVMs. The

nomogram makes the prediction model easy to use clinically.

Doctors can use the 3D Slicer or other model-building

software to segment the bAVM and export the features for

prediction, which can then be used to calculate the probability

of hemorrhage. The results showed that the prediction model

performed well in both training set and testing set. In

bAVM patients with medical treatment alone, prediction of

the risk of hemorrhage is important, and the model of

hemorrhage risk evaluation by 3D morphological parameters

is an important addition to the traditional risk factors,

while all risk factors are easy to understand and observe.

In choosing the patient group for this study, no specific

homogeneous population was considered. However, this study

was balanced by PSM between groups of included patients to

verify that there was no unnecessary bias in population age

and sex.
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FIGURE 3

The X-axis of the calibration curve shows the predicted

probability, and the Y-axis shows the actual probability. The

calibration curve represents the performance of the nomogram

in internal validation. The diagonal line represents the ideal

model of prediction; the closer the curve is fitted to the diagonal

line, the better the model performs.

FIGURE 4

(A) The result of ROC analysis in the training cohort. The area

under the curve (AUC) is 0.873, p < 0.001. (B) The result of ROC

analysis in the validation cohort. The area under the curve is

0.754, p < 0.001.

The risk factors for hemorrhage from bAVMs have been a

matter of discussion in the literature. In the early years, the

viewpoints of authors were that the smaller bAVMs ruptured

more frequently (14, 17, 18). As more studies were carried out,

FIGURE 5

(A) The result of decision curve analysis in the training cohort.

(B) The result of decision curve analysis in the validation cohort.

The X-axis is the high-hemorrhage risk threshold, and Y-axis is

the net benefit. The red line represents the prediction model.

The net benefit is calculated by subtracting the proportion of all

patients who are false positive from the proportion who are true

positive, weighted by the relative harm of forgoing treatment

compared with the negative consequences of an unnecessary

treatment. The oblique line in the figure represents the net

benefit when all the patients are treated as having hemorrhage,

and gray horizontal line represents the net benefit when all the

patients are treated as belonging to the non-hemorrhage group.

the conclusion for the relation between size and hemorrhage due

to bAVMs changed. Macro et al. mentioned in their study that

large bAVMs were more likely to cause hemorrhage, and other

studies concluded that size was not a risk factor (10, 19, 21, 22).

In clinical experience, different sizes often lead to different

risks of hemorrhage, and the argument should come from the

method of size measurement. The size of bAVMs was commonly

measured in the CT or DSA images in one position, which

could not accurately evaluate the nidus. Different researchers

might measure the same nidus differently, which might lead to

bias in the study results. In this study, the size of bAVMs was

measured in several features using a 3D model, including the

Feret diameter, volume, and the number of affected lobes. It

was difficult to describe the bAVM as large or small because the
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variety of bAVM shapes are only defined by using the diameter

of the maximum cross-section. From the results of the study,

it was observed that although the Feret diameter was more

accurate compared to the conventional diameter measurement,

the weight of Feret diameter was still not as high as the volume,

indicating that volume was a more informative indicator in the

description of nidus size.

Research in recent years has shown that associated

aneurysms including feeding artery aneurysms and intranidal

aneurysms significantly increased the risk of hemorrhage (23,

24), but the effect of this factor was hard to evaluated. Through

the nomogram, the weight of associated aneurysm in predicting

hemorrhage can be quantitative. The individual score of feeding

artery aneurysm and intranidal aneurysm are all more than 70.

The score of feeding artery aneurysm is higher than intranidal

aneurysm, which means higher risk of hemorrhage.

The surface area is another important factor relative to

hemorrhage. No study has mentioned that the surface area

is a risk factor. This is because the surface area can only be

measured using a 3D model. The surface area has not been

a feature to evaluate the size of bAVMs. The nidus of bAVM

is a cellular structure (25), and the surface area is a feature

that describes the CT value degree of the nidus. The smaller

the surface area at the same volume, the closer the lesion is

to a sphere, implying a more compact lesion structure, which

quantifies to some extent the traditional description of lesion

dispersion. At the same time, when the lesion structure is

sparser, there are more hollow parts within the nidus, which

also increases the surface area of the lesion. This study found

that a smaller surface area was a risk factor for hemorrhage,

which means that a closer nidus structure is more likely

to rupture.

The CT density value of the nidus is also a risk factor.

The density value represents different components of the

nidus. Similar to the surface area and volume, the CT

density of the nidus can only be measured completely using

the 3D model. The results showed that the mean density

and median density had different effects in predicting

hemorrhage. The results of this study show that a higher

mean density and lower median density lead to higher

risk. This means that the nidus with a CT density under

a positively skewed distribution has a higher risk of

hemorrhage. The positively skewed distribution has another

characteristic that the mode is focused on the left side of

the mean, which means that this type of bAVMs have more

venous components.

The method of drainage is also an important part of the

discussion in the literature. The number of draining veins,

deep drainage and draining vein stenosis have been recognized

as risk factors for hemorrhage (11, 21, 26). In this study,

a single drainage vein, deep drainage, and smaller drainage

vein entrance diameter were all independent risk factors for

bAVM rupture, which is consistent with the findings of

currently available studies. Meanwhile, for the present data

set, the most important predictor of hemorrhage risk was

the entrance diameter of the drainage vein, a feature that

was equivalent to the quantification of drainage vein stenosis.

When the draining vein is thin, the presence of an entrance

stenosis is difficult to observe, and measuring the entrance

diameter may be a fairly simple method that proves to be

equally effective.

The prediction model of this study was validated by

both internal and external validations. The calibration curve

represents the results of the internal validation (27). The curve

had a fine degree of fitting compared with the ideal curve, but

had a tendency to overestimate the risk of hemorrhage when the

predicted probability was more than 0.7.

The ROC curve shows the results of the external validation.

The C-index of the model was 0.873 and 0.754 in the

training and testing set, respectively. This result showed

that the discrimination of the nomogram was satisfactory.

The decision curve can justify the clinical usefulness of

the model through the net benefit compared to the all-

treated and none-treated groups (28). The results of the

decision curve analysis showed that the net benefit of the

prediction model was better than both the all-treated and

none-treated in the training and testing set. Due to the

natural history and ethical requirements of bAVM itself, a

multi-institutional prospective validation of the nomogram was

not suitable.

This study had some limitations. The database of this

study did not include bAVM located in brainstem, but the

location was not a factor for predicting hemorrhage according

to the results. This work was a retrospective study, and some

unpredictable bias in case inclusion was inevitable. In this study,

all cases met the same inclusion criteria and the equipment and

parameters for image acquisition were strictly standardized. All

image data were quality verified by experienced radiologists.

Features such as deep located, deep drainage, Number of

draining veins, although included in the final model, appeared

to have limited feature weights, which may be due to the data

distribution of the data set applied in this experiment and

did not indicate that these features were not important in the

prediction of bAVM rupture. Also, the degree of dispersion

which considered in previous studies as potentially influencing

the prognosis of bAVM were not included as a feature because

they could not be quantified, but we believe that the role of 3D

morphological features in predicting bAVM hemorrhage can be

better assessed by more objective metrics such as volume and

surface area.
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