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Cerebrovascular abnormalities are a common feature of sickle cell disease

that may be associated with risk of vaso-occlusive pain crises, microinfarcts,

and cognitive impairment. An activated endothelium and adhesion factors,

VCAM-1 and P-selectin, are implicated in sickle cell vasculopathy, including

abnormal hemodynamics and leukocyte adherence. This study examined the

association between cerebral expression of these adhesion factors and cortical

microvascular blood flow dynamics by using in-vivo two-photon microscopy.

We also examined the impact of blood transfusion treatment on these markers

of vasculopathy. Results showed that sickle cell mice had significantly higher

maximum red blood cell (RBC) velocity (6.80 ± 0.25 mm/sec, p ≤ 0.01 vs. 5.35

± 0.35 mm/sec) and more frequent blood flow reversals (18.04 ± 0.95 /min,

p ≤ 0.01 vs. 13.59 ± 1.40 /min) in the cortical microvasculature compared

to controls. In addition, sickle cell mice had a 2.6-fold (RFU/mm2) increase

in expression of VCAM-1 and 17-fold (RFU/mm2) increase in expression of

P-selectin compared to controls. This was accompanied by an increased

frequency in leukocyte adherence (4.83 ± 0.57 /100 µm/min vs. 2.26 ± 0.37

/100 µm/min, p ≤ 0.001). We also found that microinfarcts identified in sickle

cell mice were 50% larger than in controls. After blood transfusion, many of

these parameters improved, as results demonstrated that sickle cell mice had

a lower post-transfusionmaximumRBC velocity (8.30± 0.98mm/sec vs. 11.29

± 0.95 mm/sec), lower frequency of blood flow reversals (12.80 ± 2.76 /min

vs. 27.75 ± 2.09 /min), and fewer instances of leukocyte adherence compared

to their pre-transfusion imaging time point (1.35 ± 0.32 /100 µm/min vs.

3.46 ± 0.58 /100 µm/min). Additionally, we found that blood transfusion was

associated with lower expression of adhesion factors. Our results suggest

that blood transfusion and adhesion factors, VCAM-1 and P-selectin, are

potential therapeutic targets for addressing cerebrovascular pathology, such

as vaso-occlusion, in sickle cell disease.
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Introduction

Sickle cell disease (SCD) is caused by a single point

mutation in the beta-globin gene, resulting in the substitution

of valine for glutamic acid in the resulting β-globin peptide.

In turn, this leads to polymerization of deoxyhemoglobin,

forming sickled erythrocytes (1). SCD impacts an estimated

100,000 individuals in the United States, and the incidence

of SCD among African Americans is approximately 1 in

360 newborns (2, 3). SCD involves clinical complications

that impact multiple organ systems, with pain being the

most frequent and results from vaso-occlusion. As a common

symptom of SCD, vaso-occlusive pain crises result from

sickle shaped erythrocytes and leukocytes blocking blood flow,

particularly in small vessels, resulting in ischemia of organs

and thus, pain (4, 5). Additionally, these vaso-occlusive events

(VOEs) can be triggered by processes such as inflammation,

thrombosis, increased aggregation of cells, and adhesion of

blood cells to the vascular endothelium, ultimately leading to

blockages that deprive the tissues of nutrients and oxygen

(6–9). This results in tissue death and infarction in several

organ systems including the spleen, liver, kidney, and lungs

(4, 10). Another possible consequence of VOEs is silent

cerebral infarction (SCI) or cerebral microinfarctions, which

are small ischemic lesions that may occur without overt

neurological symptoms. Studies have shown that SCIs or

cerebral microinfarcts may be linked to the development

of cognitive decline, and are associated with vascular and

hemodynamic abnormalities such as cerebral macro and/or

micro-vasculopathy, hypoperfusion, or obstructions to blood

flow (11–13). Magnetic resonance imaging (MRI) studies from

clinical cohorts in the Cooperative Study of Sickle Cell Disease

showed that children with silent cerebral microinfarcts also

have a higher risk of stroke (14, 15). Further studies from

this cohort showed that school-aged children with SCD and

silent infarcts experienced difficulties with neuropsychological

functions (16). In mouse models, a recent study from our

laboratory showed that sickle cell (SS) mice had 2.5 times more

cortical microinfarcts than controls. Additionally, these mice

had significantly higher prevalence of evidence of spontaneous

cerebral vasculopathies, such as higher red blood cell (RBC)

velocity, more tortuous capillary vessels, and more frequent

capillary occlusive events (12).

Vaso-occlusive events occur more frequently in the low flow

“micro” vessels such as, the pre-capillary arterioles, capillaries,

and post-capillary venules (17, 18). Studies in non-sickle cell

mouse models showed that blockage or experimental occlusion

of the principal (penetrating) cortical venules (PCV) lead to

stagnant flow in the upstream arterioles. This impairs blood

flow into the cortex, thus, highlighting the importance of the

entire cerebral microvascular tree, in the etiology of cerebral

microinfarcts (11). However, it is important to note that SS RBCs

typically pass through the capillary bed prior to hemoglobin

polymerization, suggesting that additional factors may also be

involved in the pathology of VOEs in SCD (19, 20). For instance,

endothelial activation has been shown to play a role in the

pathogenesis of VOEs in SCD (8, 18, 21). This is shown by

the demonstration of significantly higher levels of circulating

endothelial cells in patients with SCD compared with matched

controls (21). In vitro studies also demonstrated the capacity

for the more rigid sickle erythrocytes to mechanically activate

endothelial cells, leading to an increase in expression of cellular

adhesion molecules (markers of endothelial activation) which

in turn propagates further adhesion and vaso-occlusion in a

vicious cycle (8, 22, 23). The role of these cellular adhesion

molecules [such as Intercellular Adhesion Molecule 1 (ICAM-

1), P- and E-selectins and vascular cell adhesion molecule

1 (VCAM-1)] and thus endothelial activation in VOEs is

further supported by a recent report of higher levels of E-

selectin, VCAM-1, and ICAM-1 in SCD patients compared

to controls (18). One study demonstrated significantly higher

levels of these molecules, suggesting endothelial activation

among SCD patients presenting with complications and even

higher levels among those presenting with an active vaso-

occlusive pain crises, compared to steady state (24). It is already

well demonstrated that individuals with SCD have elevated

leukocyte counts, which in the setting of increased VCAM-

1 expression, results in increased endothelial interaction and

thus arrest (25, 26). Our lab reported a strong relationship

between serum soluble VCAM-1 (sVCAM-1), P-selectin and

ICAM-1 levels, and risk of stroke in patients (children) with

SCD. In the same study, we also demonstrated that lower levels

of these cell adhesion markers were associated with stroke free

survival as well as use of blood transfusion therapy for stroke

prevention in patients with SCD (27). A paradigm proposed

by Frenette et al. (28) suggests a multi-step model of vaso-

occlusion whereby sickle cells induce endothelial activation,

creating an environment where adherent leukocytes can interact

with both RBCs and the endothelium to hinder blood flow,

and subsequently create blockages (28, 29). In addition, it

has been documented that among patients with sickle cell

disease, those with higher cerebral blood flow as a compensatory

mechanism for lack of brain oxygenation, performed more

poorly on tests of cognitive function (30). This highlights the

importance of exploring how adhesion factors may relate to

this abnormal blood flow in SCD. Taken together we reasoned

that the level of expression (or deposition) of cellular adhesion

molecules in the cerebral microvascular endothelium will play

a role in cerebral microvascular hemodynamics and could be a

physiological mechanism for the cortical microinfarct or SCIs

observed inmousemodels of SCD and adults/children with SCD

respectively (12, 25, 31, 32).

Vascular cell adhesion molecule-1 (i.e., VCAM-1), is

expressed on blood vessels (endothelial cells) after activation by

chemical (such as cytokines and chemokines) and/ormechanical

stimulation, resulting in cytokine release. It is involved in
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adhesion of lymphocytes, monocytes, eosinophils, and basophils

to the endothelium (33). According to Stuart and Setty (34), in

a state of hypoxia, sickled red blood cells adhere to endothelial

VCAM-1 using the very late activation antigen-4 (VLA4) ligand

(34). P-selectin has also been implicated in the pathophysiology

of SCD and is currently the target of a newly developed

anti-vaso-occlusive crisis (VOC) drug (35–42). The chronic

inflammatory milieu of SCD results in a persistently elevated

serum level as well as endothelial expression of P-selectin,

which is necessary for the initial binding of leukocytes to

the vascular endothelium (43, 44). However, in the setting of

SCD, P- selectin expression is likely to result in disruption

of normal hemodynamics from excess/aberrant leukocyte-

endothelial interaction (45, 46). While studies have shown that

excessive endothelial expression of VCAM-1 and P-selectin

results in VOEs and therefore pain in the periphery, the impact

of such excess adhesion molecule expression on leukocyte-

endothelial interaction and therefore cerebral microvascular

hemodynamics is not known. Our study investigated this

relationship given its potential implication for cerebral/cortical

infarction and therefore neurological complications such as

cognitive impairment. We also examined the relationship

between the deposition (expression) of the two most well

documented cellular adhesion molecules, VCAM-1, and P-

selectin, associated with SCD complications and cerebral

microvascular hemodynamics. Finally, we examined the impact

of packed red blood cell transfusion on these adhesionmolecules

and therefore cerebral hemodynamics.

Methods

Animal preparation

The Institutional Animal Care and Use Committees

(IACUC) of Emory University and the Medical University

of South Carolina approved this study, and all research was

conducted in accordance with the National Research Council

and National Institutes of Health Guide for the Care and Use

of Laboratory Animals 8th Edition (47). Figure 1 provides an

overview of the experiments.

This study used the Townes mouse model, a humanized

sickle cell mouse model (with HbSS) and corresponding

humanized control group (with HbAA). Mice are male and

∼13 months old at the time of starting the experiments. They

were divided into two main groups. Group one was used to

examine changes in microvascular hemodynamics while group

two was used to examine the impact of red blood cell transfusion

on microvascular hemodynamics. Blood transfusion therapy

is a primary treatment option for primary and secondary

stroke prevention for children and adults with SCD and has

been shown to reduce hemoglobin S concentration as well as

reducing the risk of stroke and silent cerebral infarct (cerebral

microinfarcts) (48–50).

In our study, all mice in both the baseline group and

the transfusion experiment group underwent implantation of a

cranial window (placed over the somatosensory cortex) under

anesthesia to obtain optical access to the intracranial space.

The procedures for anesthetizing mice and performing the

cranial window surgery have been described in our prior

publications (12, 51). Two to three hours following surgery,

the mice in the blood transfusion group underwent pre-

transfusion two-photon laser scanning microscopy (TPLSM)

imaging. Afterwards (i.e., immediately following imaging and

prior to recovery from anesthesia), sickle cell mice received

blood transfusions with 300 µl of packed red blood cells from

humanized Townes HbAA mice while control (HbAA) mice

received 300 µl intravenous (IV) saline. All infusions were

performed slowly over 1min. The goal of the packed RBC

transfusion was to raise the hemoglobin level by at least 1g/dL.

Mice in the baseline group underwent post-surgery imaging, but

they did not receive any transfusion fusions and were sacrificed

immediately following the two-photon (2 Photon) imaging.

The mice that received blood or saline infusion, underwent

a second 2 Photon imaging 2–3 weeks after the infusion. It

is important to note that, in the transfusion experiment each

group of mice served as their own treatment control, thus the

pre and post transfusion imaging represent the same group

of mice at different time points. The AA mice also served an

additional purpose of being a control for the impact of handling

as well as to enable us to show that any positive effect of

packed RBC transfusion observed in the HbSS mice, is not due

to the passage of time and thus resolution of the initial stress

from surgery.

In vivo imaging procedure

To examine hemodynamic parameters, in-vivo images of

cortical capillaries, precapillary arterioles, and post capillary

venules (low flow cortical microvascular hemodynamics) were

obtained using 2 Photon microscopy based on the schedule

described above. Imaging was performed with a Sutter Moveable

Objective Microscope (MOM) and a Coherent Ultra II Ti:

Sapphire laser source. Methods for animal preparation during

imaging and for measurement of cerebral hemodynamic and

microvascular parameters via in vivo 2 Photon blood flow

imaging have been previously described and published (12, 52,

53). about 2–5min prior to commencing imaging, fluoresceine

conjugated dextran (FITC-dextran 2kD to label the plasma) and

Rhodamine 6G (to label leukocytes) are administered to themice

mouse IV, in that order.

Hemodynamic analysis

To examine hemodynamic parameters, we used custom

MATLAB codes to analyze line scans of cerebral capillary,
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FIGURE 1

Overview of methods. Townes mouse model, a humanized sickle cell (with HbSS) and control (HbAA) mouse model (12–13 months).

IHC, immunohistochemistry.

pre-capillary and post-capillary blood vessel images acquired

using 2 Photon microscopy from SS and control (AA) mice.

Using the MATLAB scripts, we were able to determine the

following: mean and standard deviation of RBC flow velocity,

maximum and minimum velocity of RBC flow, frequency

(per minute) and magnitude of microvascular RBC/blood flow

reversal and leukocyte (WBC) rolling on the endothelium.

Microvascular RBC or blood flow reversal is a change in the

original direction of blood flow relative to the direction of the

line scan and could be multiple transient changes or a single

change that last the duration of the line scan. A rolling or

adherent WBC is defined as WBC stagnation lasting two or

more seconds. We normalized the number of leukocyte rolling

or leukocyte adherence events to a fixed vessel segment (100µm)

per unit time (1min). This is to ensure reproducibility of our

findings (54). All image analysis was performed by members of

our laboratory who were blinded to the genotype or transfusion

status of the mice.
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Immunohistochemistry

At the end of 2 Photon imaging, the mice were sacrificed,

and the brain extracted for immunohistochemistry (IHC)

analysis to examine the microvascular deposition of adhesion

factors, possible presence and size (area) of cerebral (cortical)

microinfarcts, and possible presence of gliosis at the site of

infarcts. The immunohistochemical protocol/approach has been

previously described and published (12). For the baseline

mice, the IHC was performed immediately following the

imaging. For the mice that were transfused either with saline

(HbAA) or packed RBC (HbSS), all IHC was performed

after the post-transfusion 2 Photon imaging, and there was

no pre-transfusion IHC analysis. We used the following

primary antibody combinations to label 50-micron brain

tissue sections from SS and AA mice. Panel 1 contained

VCAM-1, Lectin (to localize and stain the vasculature),

and NeuN (to localize and stain neuronal nuclei). Panel 2

contained P-selectin, GFAP (to localize and stain reactive

astrocytes), and NeuN. Panel 3 contained E-selectin, Iba-1

(to localize and stain microglia), and NeuN. These slides are

digitally imaged using a PerkinElmer digital slide scanner

(Akoya Biosciences), and then images were preprocessed by

performing spectral (channel) unmixing using PhenoChart

(Akoya Biosciences). IHC Images were analyzed using ImageJ,

with standard parameters for each fluorophore. Briefly, after

spectral unmixing, the images from each fluorescent channel

were transferred to image J, where they were binarized and a

mask was created. The mask was then applied to the source

images to obtain fluorescent intensity as an indication of the

level of deposition (expression) of the molecule e.g., VCAM-

1 of interest. The threshold values for creating the masks as

well as analysis parameters were kept constant between images

and between genotype (i.e., HbSS and HbAA) mice for each

fluorophore/fluorescent channel and their adhesion molecule of

interest. The resulting intensity was then normalized to a unit

(mm2) image size and expressed in relative fluorescence unit

(RFU) per mm2.

Statistical analysis

We performed data analysis for comparison between sickle

cell and controlmice usingGraphPad Prism software (GraphPad

Software Inc, La Jolla, CA). We checked our data for normality

using the Shapiro-Wilk test, and then we used the Welch

corrected t-test for comparison of differences between sickle

cell and control mice because of the heteroscedasticity in our

data based on Levene’s F-test for equality of variance. Our

study minimum sample size was 3 mice per genotype group

and was based on our prior experiments and publications

using this mouse model (55–57). Quantitative results are

presented using bar plots with means and standard error

of means (SEM), comparing sickle to control mice and

with a p-value of < 0.05 considered statistically significant.

Qualitative data are presented as representative array of

histochemical images.

Results

Cerebral hemodynamic properties at
baseline for sickle cell mice compared to
age-matched controls

Analysis of the 2 Photon microscopy imaging data for

cerebral microvascular hemodynamic measurements revealed

that sickle cell mice had significantly higher maximum RBC

velocity (6.80 ± 0.25 mm/sec vs. 5.35 ± 0.35 mm/sec, p

= 0.0009) compared to age-matched controls (Figure 2A). In

addition, we noted that that sickle mice have a higher frequency

of cerebral microvascular blood flow reversal (18.04/min vs.

13.59/min, p= 0.008) compared to controls (Figure 2B). Further

analysis revealed that the velocity of blood flow reversal was

also significantly higher among sickle cell mice (0.84 ± 0.14

mm/sec vs. 0.52 ± 0.06 mm/sec, p = 0.03) compared to

controls (Figure 2C). Also, blood flow reversal parameters are

used to identify how often and at what velocity blood flow

in a vessel is disturbed (58–60). This suggests that blood

flow is abnormal in sickle cell mice, and this may be related

to VOEs.

Sickle cell mice have elevated
expression/deposition of endothelial
adhesion factors (VCAM-1 and
P-selectin) compared to controls

To better understand the potential underlying factors

responsible for the disturbed hemodynamics observed above,

we performed immunohistochemical (IHC) analysis of the

brains from the sickle cell and control mice, after completion

of 2 Photon imaging. The IHC analysis focused mainly on

VCAM-1 and P-selectin for reasons already mentioned in the

background section (25, 27, 36, 37). Our analysis showed

that sickle cell mice had significantly larger area of VCAM-

1 coverage expressed per µm2 (p < 0.0001), as well as

expression/deposition (intensity) measured in RFU/mm2 (p <

0.0001) in the cerebral microvasculature compared to controls

at baseline (Figures 3A–C). Considering both the intensity

and coverage parameters for expression, high intensity areas

of fluorescence are not necessarily localized to one specific

brain area. Similarly, and to large extent not surprising,

we also noted that sickle cell mice had significantly larger
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FIGURE 2

Altered capillary hemodynamics in 13-month-old sickle cell mice compared to age-matched controls. (A) average maximum capillary RBC

velocity in millimeters per second. (B) average frequency of capillary blood flow reversal per minute (C) average velocity of capillary blood flow

reversal in millimeters per second (AA: n = 5, average of ∼194 vessel segments; SS: n = 7, average of ∼390 vessel segments). Error bars are

standard error of means (SEM). *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. Mean comparisons done using Welch’s corrected t-test. Results here are

only from the mice in the baseline group.

area of P-selectin coverage per µm2 (p < 0.0001) and

expression/deposition (intensity) measured in RFU/mm2 (p <

0.0001) in the cerebral microvasculature compared to controls

(Figures 3D–F). Using images from 2 Photon microscopy and

custom MATLAB scripts as already described, we quantified

leukocyte adherence in the cortical microvasculature. The result

indicates a significantly higher frequency of leukocyte adherence

events in sickle cell mice (4.83 ± 0.57 /100µm/min vs. 2.26

± 0.37 /100µm/min; p = 0.002) compared to controls at

baseline (Figure 3G). This result is unsurprising given the

well-established role of elevated P-selectin and VCAM-1 in

as markers of endothelial activation as well as mediators of

leukocytes rolling (37, 61–65).

Microinfarct frequency and area in sickle
cell mice compared to age matched
controls at baseline

Using a separate cohort of mice (male AA and SS mice that

were 13 months old) that were neither transfused with packed

red blood cells (pRBC) nor had cranial window implanted,

we assessed the frequency and size (area) of microinfarcts (≥

50µM in diameter) in brain slices of sickle cell and control

mice by examining all brain sections from sickle cell (N =

7) and control (N = 6) mice, encompassing ∼20 sections

per mouse spanning the entire cerebrum. Surprisingly, our

analysis revealed that there was no significant difference in the

frequency (22.60 ± 5.53 vs. 21.14 ± 4.0) for every 20 brain

slices (Figure 4A). On the other hand, we noted that the cortical

microinfarcts were significantly larger in sickle cell [0.2 ± 0.03

cm2 vs. 0.1 ± 0.02 cm2, p = 0.02] compared to the control

mice (Figures 4B–D). This recapitulates data in our previous

study (12).

A single packed red blood cell transfusion
improved cerebral microvascular
hemodynamic measures in sickle cell
mice

Given that blood transfusion therapy is still one of the most

effective ways to prevent cerebrovascular complications such

as stroke or recurrent stroke in SCD, (66–69) we decided to

offer a single packed RBC transfusion to the sickle cell mice

as described earlier. To accomplish this, we obtained whole

blood from Townes humanized HbAA mice, spun it down,

removed the plasma, resuspended the pellet in sterile cold

PBS, centrifuged again (to wash), and then resuspended in

sterile PBS at room temperature before proceeding immediately

to transfuse. Sickle cell mice received 300 µL of packed

RBC IV (with a goal of raising the hemoglobin by 1 g/dL),

immediately following the pre-transfusion (PrT) 2 Photon

microscopy session as described above. Control (HbAA) mice

received 300 µL of normal saline about the same as the sickle

cell mice. 2–3 weeks post transfusion, the mice underwent

a second (post-transfusion) 2 Photon microscopy imaging.

It is important to note, that while control mice received

saline infusion, they did not receive blood transfusions and

the PrT and PT designations are meant to indicate the

fact that they were imaged at two time points that align
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FIGURE 3

Adhesion factor expression and the rate of leukocyte adherence are elevated in the brains of sickle cell mice. Fluorophore of interest was

isolated to show fluorescent areas representing VCAM-1 deposition along the microvasculature. (A) Representative image of stained tissue

sections (50 um thick) from SS (bottom) and AA (top) mice. Areas of fluorescence indicate VCAM-1 deposition. These images were taken after

spectral unmixing but prior to transferring to ImageJ for binarizing and overlaying masks. Adhesion factor expression was measured by

analyzing fluorescence intensity and reported as relative fluorescence units (RFU) per millimeter squared of brain tissue. (B) Average area of

VCAM-1 coverage per µm2 (C) VCAM-1 expression compared to controls. (D) Representative image of stained tissue sections (50 um thick)

from SS (bottom) and AA (top) mice. Fluorophore of interest was isolated to show fluorescent areas representing P-selectin deposition along the

microvasculature. Areas of fluorescence indicate P-selectin deposition. (E) Average area of P-selectin coverage per µm2. (F) microvascular

P-selectin expression (RFU/mm2). (G) Leukocyte adherence (defined as lasting two seconds or more) per 100µm length of vessel per minute

was higher in sickle cell mice (p < 0.001) (AA: n = 5; SS: n = 7). Error bars are standard error of means (SEM). ***p ≤ 0.001; ****p ≤ 0.0001. Mean

comparisons done using Welch’s corrected t-test. Results here are only from the mice in the baseline group. For VCAM-1 analysis, AA = 184

brain slices and SS = 215 brain slices, while for P-selectin analysis, AA = 189 brain slices and SS = 165 brain slices. For leukocyte rolling, AA =

average of ∼194 vessel segments; SS = average of ∼390 vessel segments.

with pre- and post-transfusion imaging time points in sickle

cell mice.

The 2 photon microscopy images generated from the

pre- and post-transfusion images were analyzed as described

earlier. The result from our analysis showed that sickle cell mice

that received packed RBC transfusion had a 36% (p = 0.03)

reduction in maximum cortical microvascular RBC velocity,

compared to their pre-transfusion values. On the other hand,

we noted a 43% increase (p = 0.04) in maximum cortical

microvascular RBC velocity in the control mice compared to

their pre-transfusion values (Figure 5A). Also, compared to

pre-transfusion levels, we noted significant lower frequency of

microvascular blood flow reversal (Figure 4B, p < 0.0001) as

well as decreased velocity (0.62 ± 0.06 mm/sec vs. 0.46 ±

0.06 mm/sec, p = 0.04) of cerebral microvascular blood flow

reversal (Figure 4C) in sickle cell mice that were transfused with

packed RBC. This suggests that blood transfusion treatment

significantly improves hemodynamic abnormalities in sickle

cell mice.

Packed RBC transfusion decreases
endothelial activation in cerebral
microvasculature by decreasing
expression/deposition of VCAM-1 and
P-selectin, and leukocyte adherence in
sickle cell mice

As stated earlier (Figure 3B), packed RBC transfusion is one

of the mainstays for the prevention of stroke and neurovascular

complications of SCD. Thus, as reported earlier, we used

IHC to examine whether the single bolus of packed RBC

transfusion had any impact on endothelial activation and
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FIGURE 4

Baseline microinfarct data from 13-month-old mice. (A) Frequency of cortical infarcts per was not significantly di�erent between HbAA and

HbSS. (B) area of cortical infarcts in cm2. Error bars are standard error of means (SEM) (AA: n = 5; SS: n = 5). *p < 0.05. (C) Representative image

of AA mouse microinfarct area. (D) Representative image of SS mouse microinfarct area. Mean comparisons done using Welch’s corrected t-test.

FIGURE 5

Hemodynamic analysis in sickle cell and control mice before and after blood or saline transfusion. (A) average maximum capillary RBC velocity

in millimeters per second. (B) average frequency of capillary blood flow reversal per minute (C) average velocity of capillary blood flow reversal

in millimeters per second (AA: n = 3–5; SS: n = 5–7). Error bars are standard error of means (SEM). NS, Not significant; *p ≤ 0.05; ****p ≤

0.0001. Mean comparisons done using Welch’s corrected t-test (HbAA_PrT was compared to HbAA_PT and HbSS_PrT was compared to

HbSS_PT. There was no cross-genotype comparison since AA mice were not transfused with packed RBC. Prt, Pre-transfusion; PT,

Post-transfusion. AA = average of ∼73 vessel segments pre-transfusion and 23 vessel segments post-transfusion; SS = average of ∼90 vessel

segments pre-transfusion and 54 vessel segments post-transfusion.

therefore expression/deposition of VCAM-1 and/or P-selectin.

Analysis of the IHC images, showed that sickle cell mice

had significantly lower coverage (0.25 ± 0.02 /µm vs. 0.91

± 0.14 /µm, p < 0.0001) compared with control mice. Also,

when compared to the values obtained for sickle cell mice at

baseline (Figure 3B), sickle cell mice that were transfused with

packed RBC had a more than 7-fold lower VCAM-1 coverage.

Additionally, microvascular VCAM-1 expression/deposition

was significantly lower in sickle cell mice post transfusion (33.45

± 3.44 RFU/mm2 vs. 168.90 ± 20.71 RFU/mm2, p < 0.0001)
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FIGURE 6

Blood transfusion improves cerebral vascular endothelium in sickle cell mice. (A) Average area of VCAM-1 coverage per µm2 in AA mice

compared to SS. (B) Microvascular VCAM-1 expression in RFU/mm2 in AA mice compared to SS. (C) Average area of P-selectin coverage per

µm2 (p < 0.0001). (D) Microvascular P-selectin expression (RFU/mm2). (E) Leukocyte adherence in AA and SS mice pre- and post-transfusion.

AA: n = 3–5; SS: n = 5-7. Error bars are SEM. NS, Not significant; **p ≤ 0.01; ****p ≤ 0.0001. Mean comparisons done using Welch’s corrected

t-test. For VCAM-1 analysis, AA = 73 brain slices and SS = 147 brain slices, while for P-selectin analysis, AA = 162 brain slices and SS = 164 brain

slices. For leukocyte rolling, AA = average of ∼73 vessel segments pre-transfusion and 23 vessel segments post-transfusion; SS = average of

∼90 vessel segments pre-transfusion and 54 vessel segments post-transfusion.

compared with control mice. And, when compared with values

measured at baseline for sickle cell mice that were not transfused

(Figure 3C), sickle cell mice that were transfused with packed

RBC had an ∼7-fold lower VCAM-1 expression/deposition in

the cerebral microvasculature (Figures 6A,B). We also examined

P-selectin coverage and expression/deposition as described

earlier and observed that microvascular P-selectin coverage

(12.45 ± 0.94 /µm vs. 4.85 ± 0.33 /µm, p < 0.0001) and

expression/deposition (1165.00 ± 109.20 RFU/mm2 vs. 302.30

± 24.87 RFU/mm2, p < 0.0001) were higher among sickle cell

mice that were transfused with packed RBC, compared with

controls (Figures 3C,D). Notwithstanding, when compared to

values measured at baseline for sickle cell mice (Figures 3E,F),

sickle cell mice that received packed RBC transfusion, had an

approximately 3-fold (12.45 ± 0.94 /µm vs. 37.34 ± 2.16 /µm)

and 2.4-fold (1165.00 ± 109.20 RFU/mm2 vs. 2742.00 ± 169.70

RFU/mm2) lower P-selectin coverage and expression/deposition

respectively (Figures 6C,D). Finally, we examined pre- and post-

packed RBC (for sickle cell mice) and saline (for controls)

transfusion leukocyte adherence events.We noted that there was

no significant difference in leukocyte adherence events between

both time points for the control mice. However, sickle cell

mice transfused with packed RBC had a significant reduction in

leukocyte adherence events (1.35 ± 0.32 /100µm/min vs. 3.46

± 0.58 /100µm/min; p = 0.0017) compared to pre-transfusion

levels (Figure 6E). The data here suggests that a potential

underlying benefit of transfusion for reduction of VOE could

be via mitigating endothelial activation and therefore leukocyte

adherence events.

Discussion

Cerebrovascular abnormalities, including strokes and

microinfarcts, have been well-documented in sickle cell disease

and are associated with cognitive impairment (14, 70). In

addition, high levels of adhesion factors have been implicated

in SCD related complications, where they act as mediators

of cellular (especially leukocyte) endothelial interactions

and therefore vaso-occlusion (71, 72). Taken together, these

events are crucial in the understanding of neurological

pathology in SCD. The goal of this study was to examine
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the role of endothelial adhesion molecules (VCAM-1 and

P-selectin) in cerebral microvascular hemodynamics, as

well as the impact of blood transfusion treatment on these

parameters (hemodynamics and expression of adhesion

molecules). This study showed that compared to age-matched

controls, aged Townes sickle cell mice have an abnormal

cerebral microvascular hemodynamic profile, which is also

associated with increased leukocyte adherence that seems to be

mediated by a higher expression of adhesion factors (VCAM-1

and P-selectin). We also observed that these abnormalities

were reduced, and in some instances, reversed, by blood

transfusion treatment.

We observed a significantly higher average maximum

microvascular RBC velocity in sickle cell mice compared to

controls (Figure 2A). This finding corresponds with that from a

previous study that showed higher capillary RBC velocity in aged

sickle cell mice (12) as well as with observations in children and

adults with SCD (25). The average maximum cortical blood flow

velocity may be an indication of a compensatory mechanism

for poor cerebral perfusion from downstream narrowing or

obstruction and/or anemia. It is important to note that we are

unable to precisely report capillary RBC velocity because we did

not stain for smooth muscle actin, which would have enabled us

to discriminate capillaries from pre-capillary arterioles and/or

post capillary venules. Thus, our 2 Photon imaging may have

included precapillary arterioles and post-capillary venules, and

we refer to this throughout the paper as “microvasculature”.

Notwithstanding, it is well known that besides the cortical

capillaries, other segments of the cerebral vascular tree, such

as the arteries and arteriole, carotid, and vertebral arteries, are

affected in SCD, (73, 74) and the large vessel changes might

reflect a later manifestation of microvascular abnormalities

such as documented in this study. Furthermore, sickle cell

mice had greater instances and higher velocity of blood

flow reversal (Figures 2B,C). The exact mechanism for these

reversals is unclear, however, studies (75, 76) suggest that

experimental occlusion of either arterioles or venules results

in cortical microvascular blood flow reversals as documented

here. Thus, our finding suggests that the spontaneous blood flow

reversals observed in our study could be due to spontaneous

cerebral microvascular VOEs. While peripheral VOEs which

are a hallmark of SCD and are well documented, cerebral

microvascular VOEs have not been documented until recently

(12) and are potentially manifesting in our study as blood flow

reversals. These disturbances/turbulence in flow may also lead

to endothelial activation. Overall, our report of a high velocity

of flow, is corroborated by a recent report among patients with

SCD, where using multiple-inflow-time arterial spin labeling,

they showed a significantly higher cerebral blood flow in patients

with SCD compared to controls (77).

Another important observation from our study is

the elevated baseline expression/deposition of cerebral

microvascular VCAM-1 and P-selectin in sickle cell mice

compared to controls (Figures 3B–F). This data suggests

that endothelial dysfunction may play a large role in SCD-

related cerebral micro vasculopathy and thus neurovascular

complications. The high maximum velocity and frequent

flow reversals found in these mice may constitute some

of the mechanical forces that trigger the expression of

these endothelial adhesion factors (25, 78, 79). A recent

study documented increased expression of VCAM-1 in the

endothelium of aortic valve leaflets when they were exposed

to shear stress (80). Thus, in concert with the prior stated

mechanical damage to the endothelium, resulting from the

physical contact with sickle RBC, these mechanical forces

contribute to the promotion of microvascular thrombus

generation from increased released of tissue factors, exposure

of platelets to subendothelial tissues and therefore formation

of platelet aggregates. This further promotes and increases the

likelihood of cerebral microvascular VOEs and highlights the

value of closely examining the role of endothelial adhesion

factors in cerebral microvasculopathy (81).

Given the observations (Figures 3B–F), it is therefore

no surprise for us to see a significantly higher frequency

of leukocyte adherence in sickle cell mice compared to

controls. This increased frequency of leukocyte adherence may

also be associated with the higher expression of adhesion

factors observed in Figures 3B–F. For example, VCAM-

1 is the primary means by which leukocytes bind to

the endothelium, using VLA-4, while P-selectin is one

of the primarily means via which neutrophils interacts

with the endothelium. Several studies in both humans and

mice have shown that P-selectin and VCAM-1 are heavily

implicated in SCD vascular dysfunction (26, 78, 82). These

studies suggest that leukocyte-endothelial interactions (possibly

mediated by VCAM-1 and/or P-selectin) are predominantly

occurring in the post-capillary venules (83–86). Furthermore,

recent clinical trials with crizanlizumab, a humanized P-

selectin monoclonal antibody, have shown incredible promise,

with patients with SCD who were treated with the drug,

experiencing significantly fewer vaso-occlusive pain crises

compared to patients on placebo, although these studies

have no cerebral endpoints (38, 87). Another in-vitro study

of Crizanlizumab showed inhibition of leukocyte adherence

to P-selectin under physiologic blood flow conditions (44).

Although the long-term benefits of crizanlizumab are yet

to be determined, based on these previous studies and

our results, it is tempting to predict that long-term use

of crizanlizumab may attenuate some features of cerebral

microvasculopathy and possibly SCD-related neurovascular

pathologies, via reduction occurrence of VOEs in in the cerebral

microvasculature (38, 44, 87).

Additionally, we noted that at baseline (without any

intervention) the frequency of spontaneous microinfarct was

not significantly different. The size (area) was significantly

larger among sickle cell mice compared to controls (Figure 4B).
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The exact mechanism behind this is not yet clear. In a prior

study, Luo et al. (88) reported that following middle cerebral

artery occlusion, Townes sickle cell mice had significantly larger

cerebral infarct size, compared to controls (88). Based on the rest

of our data, it is plausible to reason that the growth of the infarct

might be a self-propagating process (89) in the background

of increased endothelial expression of adhesion molecules,

increased leukocyte adherence and therefore higher frequency of

VOEs as reported earlier in this section. This is amechanism that

warrants further investigation, and our lab is actively looking

into this as it could also represent a therapeutic target for

reducing the well described SCD-related cognitive decline which

occurs in children and adults in the absence of an overt cerebral

injury (90, 91).

Our observation of an apparent “normalization” of

hemodynamic parameters/measured with packed RBC

transfusion, compared to pre-transfusion levels in sickle

cell mice and compared to controls (Figures 5A–C) was an

intriguing albeit unsurprising finding. This result is exciting as it

represents the first-time demonstration of a possible underlying

mechanism of the benefits of blood transfusion. The dramatic

change in maximum cerebral microvascular blood flow velocity

could imply an improved ability to effectively perfuse the

brain tissue without needing additional output velocity as a

compensatory mechanism. According to this data, it seems that

blood transfusion might have as a benefit, the normalization

of cerebral microvascular dysfunction as a mechanism for the

reported benefit in stroke prevention reported in children with

SCD (48). Additionally, it is also possible that the reduction

in flow velocity could be due to a decreased in VOEs, as we

also observed a reduction in frequency (Figure 5B) and velocity

(Figure 5B) of blood flow reversal. Furthermore, we also noted

that compared to pre-transfusion or baseline levels, there was

a significantly less microvascular expression and deposition

of VCAM-1 and P-selectin, as well as significant decrease

in leukocyte adherence in the cerebral of sickle cell mice.

Taken together, the significant difference in expression and

deposition of adhesion molecules combined with the reduction

in leukocyte adherence, might account for some if not all

the improvement seen in cerebral hemodynamic parameters.

Due to the short duration of the blood transfusion therapy in

addition to the fact that the assessment of cortical microinfarcts

were performed post-mortem, we were unable to examine the

impact of blood transfusion on frequency or size of the infarct

as a function of the lower expression/deposition of adhesion

endothelial adhesion molecules and/or leukocyte adherence.

However, this will be the subject of future investigations in

our laboratory.

A limitation of our study was that the expression

of adhesion factors was quantified in the whole brain

while hemodynamic changes were measured in cortical

microvasculature. Nevertheless, our study corroborates the

findings of several in vivo and in vitro studies by showing

evidence of leukocyte-endothelial interactions, likely promoted

by increased expression of adhesion factors expression. As

mentioned earlier, we were also not able to reliably evaluate

the impact of blood transfusion on frequency or size of

cortical microinfarcts due to the short duration of time (2

weeks) from packed RBC transfusion to imaging and sacrifice

of the mice. Future study designs have already worked out

ways around this limitation using longitudinal approach to

imaging. Due to equipment availability and other logistical

reasons, we were also not able to access the post-transfusion

hemoglobin levels and as such we are unable to make a

firm statement with regards to how much the hemoglobin

levels of the sickle cell mice went up post transfusion.

Finally, we are not able to directly infer from our current

data, a causal relationship between the improvement of

hemodynamic parameters and lower expression of adhesion

factors. However, ongoing studies in our lab using bone

marrow chimera as well as sickle cell mice null for P-selectin

and VCAM-1, should enable us to make such inference in

the future.

Conclusion

By examining hemodynamics and adhesion factors

using two-photon laser microscopy and post-mortem

immunohistochemistry in both pre- and post- transfusion

sickle cell mice, we were able to document evidence of cerebral

microvasculopathy in sickle cell mice. Additionally, we were

able to show that blood transfusion might exert its benefit of

preventing neurovascular complications by mitigating cerebral

microvascular endothelial activation and the underlying

mechanism of VOEs. Thus, our study potentially highlights

one of the mechanisms that may be contributing to how

blood transfusion prevents stroke and other neurovascular

pathologies. The significant decrease in VCAM-1 and P-

selectin expression in the brain following blood transfusion

offers a particular new avenue for investigation, as well as

therapeutic targets.
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