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Background and purpose: Hematoma expansion (HE) is a critical event

following acute intracerebral hemorrhage (ICH). We aimed to construct

a non-contrast computed tomography (NCCT) model combining clinical

characteristics, radiological signs, and radiomics features to predict HE in

patients with spontaneous ICH and to develop a nomogram to assess the risk

of early HE.

Materials and methods: We retrospectively reviewed 388 patients with ICH

who underwent initial NCCT within 6h after onset and follow-up CT within

24h after initial NCCT, between January 2015 and December 2021. Using the

LASSO algorithm or stepwise logistic regression analysis, five models (clinical

model, radiological model, clinical-radiological model, radiomics model, and

combinedmodel) were developed to predict HE in the training cohort (n= 235)

and independently verified in the test cohort (n = 153). The Akaike information

criterion (AIC) and the likelihood ratio test (LRT) were used for comparing the

goodness of fit of the five models, and the AUC was used to evaluate their

ability in discriminating HE. A nomogram was developed based on the model

with the best performance.

Results: The combined model (AIC = 202.599, χ2 = 80.6) was the best fitting

model with the lowest AIC and the highest LRT chi-square value compared

to the clinical model (AIC = 232.263, χ2 = 46.940), radiological model

(AIC = 227.932, χ2 = 51.270), clinical-radiological model (AIC = 212.711,

χ2 = 55.490) or radiomics model (AIC = 217.647, χ2 = 57.550). In

both cohorts, the nomogram derived from the combined model showed

satisfactory discrimination and calibration for predicting HE (AUC = 0.900,

sensitivity = 83.87%; AUC = 0.850, sensitivity = 80.10%, respectively).
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Conclusion: The NCCT-based model combining clinical characteristics,

radiological signs, and radiomics features could e�ciently discriminate early

HE, and the nomogram derived from the combined model, as a non-invasive

tool, exhibited satisfactory performance in stratifying HE risks.

KEYWORDS

intracerebral hemorrhage, radiomics analysis, hematoma expansion, nomogram,

computed tomography

Introduction

Approximately 10–20% of patients with stroke present with

spontaneous intracerebral hemorrhage (ICH), which has poor

outcomes. Nearly 40% of patients with ICH die within the

first month, and about 80% of survivors require long-term

care (1, 2). No effective treatments have emerged to deal

with ICH. Hematoma expansion (HE), defined as an increase

in hematoma volume after the initial diagnosis of ICH by

brain imaging, occurs in approximately one-third of patients

with ICH and can predict early neurological deterioration and

poor long-term clinical outcomes (3, 4). Recent studies have

found that HE can be modified after admission, thus making

it a magnet for researchers in this field (3, 5–7). Early and

accurate identification of HE in patients with ICH can facilitate

individualized treatment.

A variety of clinical and radiological predictors of HE

have been reported, such as the time to initial CT, baseline

hematoma volume, warfarin use, spot sign, and blend sign. The

spot sign derived from CTA has been proven reliable (7), and

incorporated into many models to predict HE (8–10). However,

CTA examination is expensive, inaccessible in poverty-stricken

regions, and not suitable for patients with contraindications,

such as contrast reaction or renal impairment. Researchers

have also developed some models based on non-contrast CT

(NCCT) markers, such as blend sign, swirl sign, island sign, and

hypodensity (11, 12). However, these markers show overlapped

definitions, and a consensus of diagnostic criteria for HE lacks,

all limiting the sensitivity of previous models in predicting the

risk of HE (13–15).

Radiomics provides a reproducible, objective, and

non-invasive method for the assessment of intralesional

heterogeneity, by high-throughput extraction of quantitative

features from routine medical images (16–18). Radiomic

features from NCCT images can be employed to predict HE

(19–21). Based on the scores of radiomic features extracted

from NCCT images, the models show good performances in

predicting HE (22–26).

However, few studies have evaluated the predictive ability of

the model integrating clinical characteristics, radiological signs,

and radiomic features of hematoma. In this study, we established

a model of this kind and analyzed its performance. Additionally,

we generated an individualized nomogram to assess the risk of

HE in patients with acute ICH.

Methods

Patient selection

The workflow is shown in Figure 1. Patients with

spontaneous ICH older than 18 years who presented to

the Emergency Department of The Affiliated Changsha Central

Hospital between January 2015 and December 2021 were

retrospectively evaluated. Eligible patients recruited between

January 2015 and December 2018 were selected as the training

cohort, and patients recruited between January 2019 and

December 2021 as the test cohort. The training and test cohorts

were then divided based on whether HE was present or not. HE

was defined as an absolute increase of 6ml or a relative increase

of 33% in the hematoma volume from initial to follow-up CT,

as previously reported (27). The patients were enrolled in our

study if the initial cranial CT was performed within 6 h after

symptom onset and the follow-up CT was performed within

24 h after the initial CT. Patients who met the following criteria

were excluded: (1) surgical intervention prior to follow-up CT,

(2) ICH not located in the basal ganglia, (3) severe artifacts

on the initial NCCT, (4) no follow-up cranial CT, (5) tumor,

aneurysms, or arteriovenous malformation assumed to be the

cause of hemorrhage, (6) traumatic ICH, and (7) primary or

secondary intraventricular hemorrhage.

Image data acquisition

The patient was scanned by a 64-slice spiral CT scanner

(LightSpeed VCT, GEHealthcare) or a 16-slice spiral CT scanner

(Brilliance, Philips Medical System). The scanning energy was

set at 120 or 100 kV tube voltage and 350mA or 400mA tube

current. The slice thickness was 5.0mm, the pixel spacing was

0.45∗0.45 mm2 or 0.50∗0.50 mm2, and the spacing between

slices was 5.0mm. The image matrix size was 512∗512. In order

to reduce the discrepancy between imaging parameters obtained
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FIGURE 1

The workflow of this study. LASSO, least absolute shrinkage and selection operator; NCCT, non-contrast computed tomography. ICH,

intracerebral hemorrhage.

by different devices, we re-sampled all voxels before extraction

into 1.0∗1.0∗1.0 mm3.

Lesion segmentation

Cranial NCCT images transferred from the picture archiving

and communication system (PACS) were saved as DICOM files,

then imported into software (3D Slicer, Version 4.8.1, Harvard

University) for semi-automatic segmentation. Two radiologists

(Junjie Zhou and Jingjiang Yao) blinded to patients’ clinical data

manually delineated hematoma regions on NCCT images.

Radiomic feature extraction

The segmented regions of hematoma were transformed into

NRRD format files. Then, a total of 1,409 radiomic features were

extracted automatically for each patient using the Pyradiomics

software V2.2.0 (28). These features were divided into seven

classes (Supplementary Table S1): (1) first-order statistics, (2)

shape, (3) gray level co-occurence matrix (GLCM), (4) gray

level run length matrix (GLRLM), (5) gray level size zone

matrix (GLSZM), (6) neighboring gray tone difference matrix

(NGTDM), and (7) gray level dependence matrix (GLDM). All

the feature classes, except for shape (a feature class only in
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original images), were extracted from both the original and

derived images, including gradient, exponential, logarithmic,

local binary pattern (LBP), square, square root, and wavelet-

filtered images. Each feature was named by concatenating the

image type from which the feature was extracted, feature class,

and feature name with an underline. For example, Wavelet-

HHL_GLRLM_ShortRunEmphasis was a feature derived from a

wavelet-HHL filtered image, classified into GLRLM, and named

as ShortRunEmphasis.

Radiomics model construction

To construct the radiomics model, we used the least absolute

shrinkage and selection operator (LASSO) algorithm to select

potential radiomics features in the training cohort. We used 10-

fold cross-validation to determine the LASSO tuning parameter

(λ) resulting in the maximum area under the receiver operating

characteristic curve (AUC). The LASSO forces small coefficients

to zero and thereby performs regression and feature selection

simultaneously. The radiomics score (R-score) was constructed

using features with nonzero coefficients: R-score = (Σβj
∗

Xj)+Intercept (j = 0,1,2,3. . . . . . ); in the formula, Xj represented

the jth selected feature; and βj was its coefficient; using the

same method, we calculated the corresponding R-score in the

test cohort.

Radiological model construction

Two experienced neuroradiologists (with 12 and 10 years

of experience, respectively) who were blinded to the clinical

information reviewed radiological features of the initial NCCT

images. Discrepancies were resolved by a third investigator. The

radiological features included: (1) shape (regular or irregular);

(2) density (homogeneous or heterogeneous); (3) swirl sign

(absent or present); (4) blend sign (absent or present); (5)

black hole sign (absent or present); (6) hypodensity within

hematoma (absent or present); (7) island sign (absent or

present); (8) satellite sign (absent or present); (9) baseline

ICH volume; (10) midline shift; (11) diameter-2D. The

radiological features were defined according to previously

described radiological criteria (29). In particular, a blend sign

was defined as an area of hematoma with low attenuation

adjacent to an area of hematoma with high attenuation, with

a density differing by at least 18 Hounsfield units between

the two areas (30). Hypodensity was defined as a hypodense

region within the area of hemorrhage with any shape or

dimension, and that was not connected to the surrounding brain

parenchyma (31). Midline shift was measured at the level of the

septum pellucidum. Diameter-2D was the maximal dimension

measured on the largest cross-section of the hematoma. The

radiological features were compared between HE and non-

HE groups. The radiological model was built by incorporating

significant variables into a stepwise logistic regression analysis

using the Akaike information criterion (AIC) and likelihood

ratio test (LRT) criteria.

Clinical model construction

Demographic information, medical history, and clinical

and laboratory data were collected from the electronic

medical record (EMR) system at our hospital. Data of

medical history included hypertension, diabetes mellitus,

atrial fibrillation, coronary artery disease, renal insufficiency

(estimated glomerular filtration rate <60 ml/min/1.73 m2),

hepatic insufficiency (B and C of Child–Pugh grade), smoking,

alcohol consumption, prior ICH, prior ischemic stroke,

antiplatelet drugs use, and anticoagulant use. Clinical data

included baseline Glasgow Coma Scale (GCS) score, systolic

and diastolic blood pressure upon admission, blood pressure

targets and duration required to achieve it, time from onset

to initial NCCT, and methods of reversal of antiplatelets

and anticoagulants. Laboratory data included leukocyte count,

neutrophil count, lymphocyte count, neutrophil to lymphocyte

ratio (NLR), platelet count, prothrombin time (PT), activated

partial thromboplastin time (APTT), international normalized

ratio (INR), fibrinogen, baseline blood glucose, serum albumin,

aspartate aminotransferase (ALT), alanine aminotransferase

(AST), creatinine, blood urea, uric acid, calcium, triglyceride,

total cholesterol, low-density lipoprotein cholesterol (LDL-

C), and high-density lipoprotein cholesterol (HDL-C). The

laboratory testing was performed within 7 h after symptom

onset. Demographic information, medical history, and clinical

and laboratory data were compared between HE and non-HE

groups. The clinical model was constructed by incorporating

significant variables into a stepwise logistic regression analysis

using the AIC and LRT criteria.

Clinical-radiological model construction

The clinical-radiological model was formed by

incorporating the significant clinical and radiological risk

factors into the stepwise logistic regression analysis. The

AIC and LRT were also employed as terminal rule during

model building.

Combined model construction

Based on their R-scores, the significant radiological and

clinical risk factors were further incorporated into the stepwise

logistic regression analysis to form the combined model. The
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AIC and the LRT were also employed as terminal rule during

model building.

Evaluation of model performance and
establishment of nomogram

AIC and LRT were used to compare the goodness of fit

of the five models, and receiver operating characteristic (ROC)

curve analysis was used to compare their abilities to discriminate

HE risk. The AUC of <0.6, 0.6–0.75, and >0.75 indicated

poor, acceptable, and satisfactory performances, respectively.

The ROC curve analysis was also performed to determine

the optimal cut-off value that maximized Youden’s index. A

number of confusion matrix-related metrics were used to assess

the accuracy of the optimal cut-off in each model, including

sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV). To check the multicollinearity,

we calculated the variance inflation factor (VIF) of each trait in

each model, where a VIF>5 indicated that multicollinearity was

present (32). Based on the most accurate model, a nomogram

was developed. Calibration was tested using a calibration

plot with bootstraps of 1,000 resamples, which described the

degree of fit between actual and nomogram-predicted mortality.

Decision curve analysis was used to assess the benefits of the

nomogram-assisted decision in a clinical context. Details of the

decision curve analysis have been previously reported (33). In

addition, we evaluated the performance of the nomogram in

predicting in-hospital mortality in the training and test cohorts

using ROC curve analysis.

Statistical analyses

Statistical analysis was performed on R software (version

3.6.3, https://www.r-project.org) and Stata software (version

16.0, STATA Corporation, College Station). Continuous

variables were summarized as mean (standard deviation, SD) or

median (interquartile range, IQR), and categorical variables as

number (percentage). In the univariate analysis, independent

t-test, Chi-square test, Fisher’s exact test, or the Mann–Whitney

U-test was used. The significant predictors identified in the

univariate analysis were tested in the stepwise logistic regression

analysis for their relation to HE. AUC values were compared

using the DeLong nonparametric method. A two-sided p <

0.05 was considered statistically significant. To assess the inter-

observer agreement, 50 patients were randomly selected from

the entire cohort using stratified sampling and were re-evaluated

by the other radiologist using the same method, and then the

intraclass correlation coefficient (ICC) was calculated. Good

consistency was defined as ICC of 0.75–1, fair consistency as

ICC of 0.4–0.75, and poor consistency as ICC < 0.4.

Results

Baseline characteristics

In total, 388 patients were analyzed, including 235 in the

training cohort and 153 in the test cohort. Table 1 presents the

demographic characteristics compared between patients with

and without HE. Age and sex did not differ significantly between

patients with and without HE in any cohort or between cohorts

(all p > 0.05). The incidence of HE was 26.4% (62 of 235) in

the training cohort and 26.8% (41 of 153) in the test cohort,

without a significant difference between the two cohorts (p =

0.928). Patients in the training cohort had higher systolic blood

pressure (SBP) (165.23± 23.55 vs. 160.13± 22.4; p= 0.035) and

higher diastolic blood pressure (DBP) (95.82± 17.07 vs. 91.62±

15.13; p= 0.014) than those in the test cohort.

Clinical model

Tables 1, 2 illustrate the clinical data and laboratory tests

compared between patients with and without HE. In the training

cohort, the following variables were significantly associated with

HE: baseline GCS (p < 0.001), time to initial NCCT (p < 0.001),

leukocyte count (p < 0.001), neutrophil count (p < 0.001),

lymphocyte count (p= 0.020), NLR (p< 0.001), platelet count (p

= 0.049), total cholesterol (p = 0.017), and LDL-C (p = 0.006).

In the multivariate analysis, three clinical factors independently

associated with HE were used to construct the clinical model,

consisting of baseline GCS score (OR = 0.80; 95% CI = 0.70–

0.91; p = 0.001), NLR (OR = 1.07; 95% CI = 1.03–1.12, p =

0.001), and time to initial NCCT (≤3 vs. >3 h; OR = 3.28; 95%

CI= 1.50–7.19, p= 0.003).

Radiological model

The univariate analysis of the training cohort revealed

significant predictors of HE (Table 3): diameter-2D (p < 0.001),

midline shift (p < 0.001), baseline ICH volume (p < 0.001),

irregular shape (p = 0.004), heterogeneous density (p < 0.001),

swirl sign (p < 0.001), blend sign (p = 0.003), black hole sign

(p = 0.007), hypodensity (p < 0.001), island sign (p = 0.030),

and satellite sign (p = 0.002). Through the stepwise logistic

regression analysis, three radiological risk factors independently

associated with HE were filtered out to construct the radiological

model, consisting of blend sign (OR= 3.85; 95%CI= 1.73–8.53,

p = 0.001), hypodensity (OR = 4.59; 95% CI = 2.35–8.95; p <

0.001), and midline shift (OR = 1.26; 95% CI = 1.08–1.46; p =

0.003) (Table 4).
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TABLE 1 Demographic and clinical characteristics of patients with and without HE.

Variable Training cohort Test cohort

HE

(n = 62)

Non-HE

(n = 173)

P-value HE

(n = 41)

Non-HE

(n = 112)

P-valueP-value†

Age, year, mean (SD) 61.50 (13.77) 58.51 (12.09) 0.109 59.68 (12.87) 58.87 (12.44) 0.722 0.871

Male, n (%) 47 (75.81) 119(68.79) 0.298 30 (73.17) 67 (59.82) 0.129 0.136

Medical history

Hypertension, n (%) 60 (96.77) 163 (94.22) 0.737 37 (90.24) 103 (91.96) 0.748 0.184

Diabetes mellitus, n (%) 15 (24.19) 26 (15.03) 0.103 6 (14.63) 21 (18.75) 0.554 0.960

AF, n (%) 5 (8.06) 4 (2.31) 0.057 3 (7.32) 3 (2.68) 0.190 0.963

Coronary heart disease, n (%) 10 (16.13) 20 (11.56) 0.355 5 (12.20) 12 (10.71) 0.777 0.625

Renal insufficiency, n(%) 3 (4.84) 7 (4.05) 0.726 2 (4.88) 6 (5.36) 1.000 0.792

Hepatic insufficiency, n (%) 2(3.23) 4 (2.31) 0.656 2 (4.88) 3 (2.68) 0.611 0.758

Smoking, n (%) 21 (33.87) 51 (29.48) 0.520 13 (31.71) 26 (23.21) 0.286 0.273

Alcohol consumption, n (%) 11 (17.74) 18 (10.40) 0.132 7 (11.11) 10 (8.93) 0.156 0.714

Prior ICH, n (%) 2 (3.23) 6 (3.47) 1.000 3 (7.32) 4 (3.57) 0.386 0.559

Prior ischemic stroke, n (%) 2 (3.23) 3 (1.73) 0.609 1 (2.44) 4 (3.57) 1.000 0.524

Antiplatelet drugs use, n (%) 8 (12.90) 13 (7.51) 0.202 5 (12.20) 13 (11.61) 1.000 0.365

Anticoagulant use, n (%) 4 (6.45) 3 (1.73) 0.081 3 (7.32) 3 (2.68) 0.343 0.461

Baseline GCS score, median [IQR] 12 [9, 13] 13 [12, 14] <0.001 12 [9, 13] 13 [12, 14] <0.001 0.229

Baseline GCS score ≤8, n (%) 12 (19.35) 8 (4.62) <0.001 9 (21.95) 6(5.36) 0.005 0.664

SBP, mm Hg, mean (SD) 166.56 (23.94) 164.75 (23.46) 0.604 164.73 (21.75) 158.44 (22.69) 0.127 0.035

DBP, mm Hg, mean (SD) 94.26 (19.33) 96.38 (16.21) 0.443 91.98 (15.65) 91.49 (15.01) 0.864 0.014

Blood-pressure-lowering treatment, n (%) 20 (32.26) 49 (28.32) 0.559 12 (29.27) 21 (18.75) 0.161 0.088

Time to initial NCCT, hour, median [IQR] 1.44 [1.08, 2.56] 2.54 [1.65, 4.49] <0.001 1.49 [0.97, 2.14] 2.51 [1.66, 4.48] <0.001 0.679

Time to initial NCCT ≤3 h, n (%) 51(82.26) 97(56.07) <0.001 36 (87.80) 63 (56.25) <0.001 0.730

Death within the hospital 8(12.90) 1(0.58) <0.001 5(12.20) 0(0.00) 0.001 0.772

†Comparison between the training cohort and test cohort. AF, Atrial fibrillation; DBP, diastolic blood pressure; GCS, Glasgow Coma Scale; HE, hematoma expansion; IQR, interquartile

range; NCCT, non-contrast computed tomography; SBP, systolic blood pressure.

Clinical-radiological model

Based on the stepwise logistic regression analysis of clinical

and radiological risk factors, four independent risk factors

associated with HE were used to construct the clinical-

radiological model (Table 4), including time to initial NCCT (≤3

vs. >3 h; OR = 3.79; 95% CI = 1.68–8.53; p = 0.001), NLR (OR

= 1.08; 95% CI = 1.04–1.13, p < 0.001), hypodensity (OR =

4.56; 95% CI = 2.27–9.17, p < 0.001), and blend sign (OR =

4.86; 95% CI= 2.09–11.29, p < 0.001).

R-score and radiomics model

The R-score was derived by selecting three features after

dimension reduction using the LASSO algorithm (Figure 2).

The calculation formula was as follows: R-score = 1.8476

+ 0.0003∗ Original_GLRLM_GrayLevelNonUniformity-

5.178∗ Wavelet-LLL_GLRLM_ShortRunEmphasis–

7.895∗Wavelet-LLL_NGTDM_Contrast. Figure 3 shows

the distributions of the selected features in patients with HE and

non-HE (all p < 0.001). Patients with HE had a higher R-score

than patients with non-HE (p < 0.001). R-score (OR = 7.62;

95% CI= 3.94–14.73; p < 0.001) was significantly related to HE

(Table 4).

Combined model

Based on the stepwise logistic regression analysis of clinical

and radiological risk factors and R-score, five independent risk

factors associated with HE were used to construct the combined

model (Table 4), including time to initial NCCT (≤3 vs. >3 h;

OR = 3.56; 95% CI = 1.56–8.13; p = 0.003), NLR (OR = 1.06;

95% CI = 1.01–1.11, p = 0.011), hypodensity (OR = 2.93; 95%

CI = 1.39–6.20, p = 0.005), blend sign (OR = 3.64; 95% CI

= 1.56–8.50, p = 0.003), and R-score (OR = 3.72; 95% CI =

1.72–8.06; p = 0.001). The mean variance inflation factor for

the five predictors was 1.19 (range 1.02–1.47), which suggested

no multicollinearity.
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TABLE 2 Comparisons of laboratory tests between patients with and without HE.

Variable Training cohort Test cohort

HE Non-HE P-value HE Non-HE P-valueP-value†

(n = 62) (n = 173) (n = 41) (n = 112)

Leukocyte, *10∧9/L, median [IQR] 9.80 [8.22, 13.39] 8.30 [6.19, 10.23] <0.001 9.84 [7.80, 12.94] 7.91 [6.26, 9.52] <0.001 0.376

Neutrophil count, *10∧9/L, median [IQR] 8.09 [6.48, 10.84] 6.34 [4.20, 8.38] <0.001 8.15 [6.23, 10.79] 5.81 [4.27, 7.76] <0.001 0.366

Lymphocyte count, *10∧9/L, median [IQR] 1.04 [0.55, 1.65] 1.27 [0.93, 1.57] 0.020 0.84 [0.54, 1.35] 1.35 [0.95, 1.69] <0.001 0.656

NLR, median [IQR] 10.10 [6.64, 16.21] 4.72 [3.11, 7.68] <0.001 9.91 [6.33, 18.27] 4.26 [2.64, 7.42] <0.001 0.385

Platelet count, *10∧9/L, median [IQR] 182.50 [146.00, 231.00] 197.00 [169.00, 238.00] 0.049 206.00 [154.00, 232.00] 200.50 [167.50, 233.00] 0.709 0.511

PT, s, median [IQR] 10.70 [10.30, 11.60] 10.80 [10.30, 11.40] 0.769 10.90 [10.60, 12.20] 10.70 [10.30, 11.30] 0.084 0.947

APTT, s, median [IQR] 26.20 [23.40, 29.60] 26.00 [23.80, 28.40] 0.553 26.80 [24.20, 29.80] 26.14 [23.95, 28.35] 0.249 0.653

INR, median [IQR] 1.00 [0.92, 1.04] 1.00 [0.92, 1.03] 0.850 1.00 [0.96, 1.07] 1.00 [0.93, 1.01] 0.083 0.885

Fibrinogen, g/L, median [IQR] 2.66 [2.24, 3.50] 2.70 [2.24, 3.20] 0.931 2.60 [2.18, 3.10] 2.70 [2.34, 3.30] 0.231 0.741

Baseline glucose level, mmol/L, median [IQR] 6.55 [5.90, 8.20] 6.70 [5.70, 7.60] 0.531 6.00 [5.20, 7.80] 6.85 [5.90, 7.85] 0.055 0.914

Serum albumin level, g/L, mean (SD) 42.76 (4.22) 43.26 (4.51) 0.421 42.73 (4.75) 43.52 (3.58) 0.334 0.676

ALT, U/L, median [IQR] 20.50 [16.00, 33.00] 19.00 [14.00, 30.00] 0.165 21.00 [15.00, 35.00] 20.00 [15.00, 29.50] 0.584 0.625

AST, U/L, median [IQR] 25.00 [20.00, 32.00] 25.00 [21.00, 29.90] 0.913 25.00 [21.00, 30.91] 25.00 [21.50, 31.00] 0.490 0.621

Creatinine, µmol/L, median [IQR], 72.50 [61.00, 92.00] 73.00 [59.00, 87.00] 0.795 72.00 [60.00, 95.00] 67.00 [55.00, 80.00] 0.143 0.067

Blood urea nitrogen, mmol/L, median [IQR] 5.32 [4.33, 6.89] 5.62 [4.52, 6.58] 0.509 5.48 [4.87, 6.12] 5.56 [4.50, 6.44] 0.856 0.750

Blood uric acid, µmol/L, median [IQR] 348.50 [276.00, 414.00] 330.00 [260.00, 399.00] 0.108 310.00 [264.00, 386.00] 330.00 [257.00, 387.50] 0.926 0.244

Calcium, mmol/L, mean(SD) 2.31 (0.13) 2.33 (0.12) 0.3312 2.30 (0.13) 2.34 (0.12) 0.089 0.838

Total cholesterol, mmol/L, mean (SD) 4.31 (0.98) 4.64 (0.91) 0.017 4.31 (0.87) 4.61 (0.95) 0.079 0.838

Triglyceride, mmol/L, median [IQR] 1.32 [0.97, 2.59] 1.49 [1.00, 2.42] 0.876 1.16 [0.86, 1.81] 1.39 [1.00, 1.96] 0.145 0.218

LDL-C, mmol/L, mean (SD) 2.39 (0.75) 2.71 (0.78) 0.006 2.37 (0.71) 2.65 (0.79) 0.048 0.538

HDL-C, mmol/L, mean (SD) 1.15 (0.36) 1.23 (0.36) 0.135 1.24 (0.43) 1.27 (0.34) 0.654 0.182

†Comparison between the training cohort and test cohort. HE, hematoma expansion. IQR, interquartile range; PT, prothrombin time; APTT, activated partial thromboplastin time; INR,

international normalized ratio; ALT, aspartate aminotransferase; AST, alanine aminotransferase; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

Between-model comparison and
nomogram establishment

As shown in Table 4, the combined model (AIC = 202.599,

χ2 = 80.6) achieved the lowest AIC and the highest LRT

chi-square value, compared to the clinical model (AIC =

232.263, χ2 = 46.940), radiological model (AIC = 227.932,

χ2 = 51.270), clinical-radiological model (AIC = 212.711,

χ2 = 55.490), and radiomics model (AIC = 217.647, χ2 =

57.550). Therefore, this combined model was determined to

be the best fitting model. The performances of five models in

training and test cohorts are shown in Table 5 and Figure 4.

The combined model demonstrated a satisfactory ability in

discriminating HE, with an AUC of 0.90 (95%CI: 0.86–0.94)

in the training cohort, and an AUC of 0.85 (95%CI: 0.77–

0.92) in the test cohort. Conversely, in both cohorts, the

clinical, radiological, and clinical-radiological models showed

lower discrimination ability for HE as compared with the

combined model (P < 0.05). With the optimal cut-off,

the combined model’s sensitivity, specificity, PPV, and NPV

were 83.87%, 82.66%, 63.42%, and 93.46% in the training

cohort, and 80.10%, 89.29%, 73.25%, and 92.46% in the test

cohort, respectively.

Based on the combined model, a nomogram (Figure 5)

was constructed to visualize the risk of HE. The calibration

curves demonstrated favorable agreement between the results

predicted by the nomogram and observed in the real setting

in either the training or the test cohort (Figure 6). In the

decision curve analysis, the net benefit of a model can be

evaluated by comparing the true-and false-positive results. Here,

we performed a decision curve analysis to assess whether the

nomogram-assisted decision can improve patient outcomes. As

shown in Figure 7, when the threshold probability was 2.0–

72.0% in the training cohort, and 2.0–74.0% in the test cohort,

the nomogram provided greater net benefits than the “treat all”

or “treat none” strategies, which indicates the clinical usefulness

of the nomogram. For example, if the threshold probability of

a patient was 40% (the patient would opt for treatment if the

probability of HE was > 40%), then the net benefit would be

0.111 in the training cohort and 0.129 in the test cohort. Figure 8

demonstrated three cases of using this nomogram for the risk

evaluation of HE.
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TABLE 3 Comparison of radiological characteristics and R-score between patients with and without HE.

Variable Training cohort Test cohort

HE Non-HE P-value HE Non-HE P-value P-value†

(n = 62) (n = 173) (n = 41) (n = 112)

Diameter-2D, cm, median [IQR] 4.62 [3.31, 5.74] 3.59 [2.83, 4.60] <0.001 4.30 [2.73, 5.51] 3.37 [2.72, 4.46] 0.023 0.137

Middle shift, mm, median [IQR] 0 [0, 3.89] 0 [0, 0) <0.001 0 [0, 3.40] 0 [0, 0] 0.003 0.996

Baseline ICH volume, ml, median [IQR] 17.60 [9.51, 26.92] 8.30 [4.79, 15.88] <0.001 16.18 [7.36, 26.92] 7.24 [3.74, 14.54] 0.001 0.099

Baseline ICH volume, n (%) <0.001 0.001 0.561

≤15 26 (41.94) 123 (71.10) 19 (46.34) 86 (76.79)

16–29 24 (38.71) 41 (23.70) 15 (36.59) 22 (19.64)

≥30 12 (19.35) 9 (5.20) 7 (17.07) 4 (3.57)

Irregular shape, n (%) 33 (53.23) 56 (32.37) 0.004 18 (43.90) 32 (28.57) 0.073 0.297

Heterogeneous, n (%) 39 (62.90) 47 (27.17) <0.001 23 (56.10) 32 (28.57) 0.002 0.897

Swirl sign, n (%) 36 (58.06) 44 (25.43) <0.001 22 (53.66) 25 (22.32) <0.001 0.495

Blend sign, n (%) 16 (25.81) 18 (10.40) 0.003 10 (24.39) 8 (7.14) 0.008 0.445

Black hole sign, n (%) 19 (30.65) 26 (15.03) 0.007 12 (29.27) 10 (8.93) 0.001 0.224

Hypodensity, n (%) 41 (66.13) 50 (28.90) <0.001 23 (56.10) 28 (25.00) <0.001 0.281

Island sign, n (%) 9 (14.52) 10 (5.78) 0.03 6 (14.63) 6 (5.36) 0.086 0.932

Satellite sign, n (%) 30 (48.39) 47 (27.17) 0.002 16 (39.02) 31 (27.68) 0.178 0.673

R-score, median (IQR) −0.68 [−1.12,−0.32] −1.28 [−1.58,−0.95] <0.001 −0.84 [−1.29,−0.26] −1.34 [−1.62,−1.12] <0.001 0.1651

†Comparison between the training cohort and test cohort. HE, hematoma expansion. IQR, interquartile range. Diameter-2D was the maximal dimension measured on the largest

cross-section of the hematoma. Midline shift was measured at the level of the septum pellucidum. ICH volume was calculated by the formula A* B* C/2.

TABLE 4 Construction and comparison of five HE prediction models in the training cohort.

Adjusted OR (95% CI) P Value AIC LRT (χ2) VIF

Clinical model 232.263 46.940

GCS score 0.80 (0.70–0.91) 0.001 1.15

NLR 1.07 (1.03–1.12) 0.001 1.11

Time to baseline NCCT (≤3 vs. >3 h) 3.28 (1.50–7.19) 0.003 1.04

Radiological model 227.932 51.270

Blend sign 3.85 (1.73–8.53) 0.001 1.05

Hypodensity 4.59 (2.35–8.95) <0.001 1.03

Middle shift 1.26 (1.08–1.46) 0.003 1.08

Clinical-radiological model 212.711 55.490

Time to baseline NCCT (≤3 vs. >3 h) 3.79 (1.68–8.53) 0.001 1.01

NLR 1.08 (1.04–1.13) <0.001 1.05

Hypodensity 4.56 (2.27–9.17) <0.001 1.04

Blend sign 4.86 (2.09–11.29) <0.001 1.02

Radiomics model 217.647 57.550

R-score 7.62 (3.94–14.73) <0.001

Combined model 202.599 80.600

Time to baseline NCCT (≤3 vs. >3 h) 3.56 (1.56–8.13) 0.003 1.02

NLR 1.06 (1.01–1.11) 0.011 1.18

Hypodensity 2.93 (1.39–6.20) 0.005 1.22

Blend sign 3.64 (1.56–8.50) 0.003 1.07

R-score 3.72 (1.72–8.06) 0.001 1.47

AIC, Akaike information criterion; CI, confidence interval; GCS, Glasgow Coma Scale; LRT, likelihood ratio test; NLR, neutrophil to lymphocyte ratio; OR odds ratio; NCCT, non-contrast

computed tomography, and VIF, variance inflation factor. Predictive model with a lower AIC value and a higher LRT χ2 values represented the better model with better goodness of fit

and relative strength.
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FIGURE 2

Radiomics features selection with LASSO. This method minimized the sum of residues, with the sum of the absolute values of the selected

features coe�cients being not more than a tuning parameter (λ). (A) Tuning parameter (λ) selection in the LASSO model used 10-fold

cross-validation via maximum criteria. The area under the curves (AUC) was plotted vs. log(λ). The dotted vertical lines were drawn at the

optimal values using maximum and 1-SE criteria. A log(λ) value of −2.59 was opted (maximum criteria). (B) LASSO coe�cient profiles (y-axis) of

the features. Each colored line represents the coe�cient of each feature. The upper and lower x-axis represented the features number and the

log(λ), respectively. The dashed vertical line was drawn at the value chosen using 10-fold cross-validation in the log(λ) sequence, and three

features with nonzero coe�cients were indicated. LASSO, least absolute shrinkage and selection operator; SE, standard error.

The performance of the nomogram for
predicting in-hospital mortality

Nine patients in the training cohort (3.83%) and five

patients in the test cohort (3.27%) died in the hospital

(Table 1). The nomogram demonstrated a satisfactory

ability in predicting in-hospital mortality, with an AUC

of 0.91 (95%CI: 0.85–0.98) in the training cohort, and

an AUC of 0.95 (95%CI: 0.89–1.00) in the test cohort

(Figure 9).

Reproducibility

The reproducibility analysis revealed that 1,221 of

1,409 (86.7%) radiomic features had good consistency (ICC

≥ 0.75). The numbers of features with fair consistency

(0.75 > ICC ≥ 0.4) and with poor consistency (ICC <

0.4) were 140 (9.9%) and 48 (3.4%), respectively. For the

three selected features, the ICC values were 0.95 (95%

CI: 0.91–0.97), 0.97 (95% CI: 0.93–0.98), and 0.93 (95%

CI: 0.88–0.96), respectively (Supplementary Table S2). The

ICC value was 0.85 (95% CI: 0.75–0.91) for blend sign

and 0.88 (95% CI: 0.80–0.93) for hypodensity, indicating

satisfactory consistency.

Discussion

In this retrospective study, we built five models (clinical

model, radiological model, clinical-radiological model,

radiomics model, and combined model) and compared

their performances in predicting HE risk. The NCCT model

combining clinical characteristics, radiological signs, and

radiomics features showed the best performance. The

nomogram derived from the combined model was able

to predict the risk of HE with good discrimination and

calibration. This tool may provide a more individualized

strategy for discriminating early HE, particularly for patients

with contraindications, such as contrast reaction or renal

impairment, or in institutions where CTA is not available.

In our study, time to initial NCCT, NLR, hypodensity,

and blend sign were independent risk factors of HE, which is

in accordance with the findings previously reported. Several

studies have demonstrated that the time from onset to initial

NCCT is a strong predictor of HE (8, 9, 11). As a dynamic

process, HE represents an intermediate state between initial and

final (stabilized) hematoma (34). If admitted earlier after ICH,

the patients are more likely to exhibit an unstable hematoma

on initial CT, thus leaving a greater chance of detecting HE

by follow-up imaging. In addition, our study revealed that

NLR, which can be easily and cost-effectively detected, was an
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FIGURE 3

Boxplots for the selected features [(A) Original_GLRLM_GrayLevelNonUniformity, (B) Wavelet-LLL_GLRLM_ShortRunEmphasis, and (C)

Wavelet-LLL_NGTDM_Contrast] and the constructed R-score (D) between HE and non-HE groups. *** significant at p < 0.001. HE, hematoma

expansion.

independent risk factor of HE. Increasing evidence suggests

that inflammatory responses and damage to microvascular

integrity are implicated in the pathophysiology of brain injury

following ICH (35). Reflecting the balance between neutrophils

and lymphocytes, NLR is regarded as an efficient biomarker for

systemic inflammation. Alimohammadi et al. (36) have found

that NLR is a key predictor of HE in patients with ICH, which is

in accordance with our findings.

Several NCCT markers, rather than spot sign which is

dependent on CTA, have demonstrated abilities to predict HE.

These markers may reflect a similar pathophysiological process,

which is manifested as active hemorrhage secondary to vessel

rupture at different time points (37). Blend sign (30, 38) and

hypodensity (31) have been identified as independent predictors

of HE, which is consistent with our results. In previous studies,

however, a single sign displayed limitations in predicting HE

in clinical settings, as shown by that the blend sign had a low

sensitivity, and hypodensity had a low specificity (27, 39).

In this study, three radiomics features were selected from

1,409 candidate features to construct the radiomics model

strictly, one of which was extracted from the original image

and the other two from wavelet-filtered images. Details of the

three selected features are shown in Supplementary Table S2.

In accordance with previous literature, these features were

associated with variations in morphology and intensity of

hematoma (28). These variations may indicate active or

multifocal bleeding, both of which are thought to be the primary

mechanism underlying HE.

Several prediction systems, independent of CTA spot sign,

have been published for predicting HE (11, 12, 22, 24, 37,

40–44) (Supplementary Table S3). However, none has actually

improved clinical or research decision-making. Possible factors

may explain this situation. First, these systems vary in the

definition of HE, the time from onset to initial NCCT, the time

of follow-up CT, the location of ICH, thereby making each only

suitable for a certain patient population. Second, only a few

systems have been validated in external prospective trials, and

their accuracy needs to be further investigated. Third, most of

these systems were based on the data retrospectively collected

from small-sized cohorts in a single center, which increases the
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FIGURE 4

Receiver operating characteristic (ROC) curve analyses of the five models on HE in the training cohort (A) and test cohort (B). HE, hematoma

expansion; AUC, area under the curve; CI, confidence interval.

TABLE 5 Performance comparison of five models in the training and test cohorts.

Cut-off† AUC(95%CI) Sensitivity Specificity Accuracy PPV NPV

Training cohort

Clinical model 0.21 0.70 (0.63–0.77) ** 75.81% 61.27% 65.11% 41.23% 87.60%

Radiological model 0.29 0.76 (0.70–0.83) ** 67.74% 79.77% 76.60% 54.55% 87.34%

Clinical-radiological model 0.18 0.80 (0.74–0.86)** 78.94% 80.01% 79.73% 58.60% 91.38%

Radiomics model 0.22 0.82 (0.77–0.88) ** 80.65% 69.94% 72.77% 49.02% 90.98%

Combined model 0.30 0.90 (0.86–0.94) 83.87% 82.66% 82.98% 63.42% 93.46%

Test cohort

Clinical model 0.20 0.71(0.61–0.81) * 68.29% 66.07% 66.67% 42.42% 85.06%

Radiological model 0.17 0.75 (0.67–0.84) ** 70.73% 67.86% 68.63% 44.62% 86.36%

Clinical-radiological model 0.37 0.79 (0.70–0.88)* 73.41% 76.61% 75.75% 53.47% 88.73%

Radiomics model 0.22 0.79 (0.71–0.88) 78.05% 75.00% 75.82% 53.33% 90.32%

Combined model 0.31 0.85 (0.77–0.92) 80.10% 89.29% 86.83% 73.25% 92.46%

AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value. *p < 0.05 and **p < 0.01 vs. combined model. †Determined by

maximizing the Youden’s Index (Sensitivity+Specificity-1).

risk of selection bias. Fourth, the clinical parameters of some

systems were not reported, such as sensitivity and specificity.

The nomogram established in our study, which integrated

the clinical characteristics, radiology signs, and radiomics

features, showed satisfactory performance in discriminating HE

(AUC = 0.900, sensitivity = 83.87% in training cohort; AUC

= 0.850, sensitivity = 80.10% in test cohort, respectively).

Additionally, we enrolled patients with acute ICH located in

the deep basal ganglia region, a site that is mostly frequented

by hemorrhage, which reduced the bias arising from etiology.

Several studies have demonstrated that patients with deep

ICH are more susceptible to HE than those with lobar

ICH (45–47). Deep ICH is caused primarily by hypertensive

vasculopathy, while lobar ICH is more relevant to cerebral

amyloid angiopathy (48). Derived from the data of only patients

with deep basal ganglia ICH, our nomogram is more applicable

and targeted.

This study has some limitations. First, this is a retrospective

study with its natural drawbacks. Second, the established

nomogram lacks external validation in broader populations

outside China. Third, as a single-center study with relatively

small sample size, a possible selection bias is not possible to
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FIGURE 5

Nomogram for predicting the probability of HE was developed based on the combined model. Points were assigned for hypodensity, blend sign,

time to initial NCCT, NLR, and R-score by drawing a line upward from the corresponding values to the “points line.” The “total points” are

calculated as the sum of the individual score of each of the five variables included in the nomogram. The risk of HE was determined by drawing

a vertical line from the total point axis to the lowest line of the nomogram. NCCT, non-contrast computed tomography; NLR, Neutrophil to

lymphocyte ratio; HE, hematoma expansion.

FIGURE 6

Calibration plot of the nomogram in the training (A) and test cohort (B). The dotted line represents the performance of the nomogram, whereas

the solid line corrects for any bias in the nomogram. The dashed line represents the reference line where an ideal nomogram would lie.
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FIGURE 7

Decision curve analysis of the nomogram in the training (A) and test cohort (B). The x-axis indicates the threshold probability. The y-axis

measures the net benefit. The blue line displays the net benefit of the strategy of treating all patients. The orange line illustrates the net benefit of

the strategy of treating no patients. The red line indicates the nomogram. Decision curve analysis is a specific method developed for evaluating

the prognostic value of nomogram strategies.

FIGURE 8

Examples of using the nomogram to predict the risk of HE. Case 1: (A) a patient who underwent cranial NCCT within 1.5 h of onset presented

with a hematoma (6.1ml) in the basal ganglia. The risk of HE estimated by nomogram was approximately 71.36% (blend sign = present,

hypodensities = absent, NLR = 10.22, time to initial NCCT < 3h, R-score = −0.21, total points = 134, and estimated HE risk = 71.36%). A blend

sign (white arrow) can be seen. (B) The hematoma volume was enlarged to about 11.8ml on the follow-up CT at 8 hours. Case 2: (C) a patient

who underwent cranial NCCT within 2.5 h of onset presented with a hematoma (10.1ml) in the basal ganglia. The risk of HE estimated by

nomogram was approximately 70.78% (blend sign = absent, hypodensities = present, NLR = 13.03, time to initial NCCT<3h, R-score = −0.19,

total points = 131, and estimated HE risk = 70.78%). A hypodensity sign (black arrow) can be seen. (D) The hematoma volume was enlarged to

about 24.8ml on the follow-up CT at 10 Hours. Case 3: (E) using this nomogram, the hematoma (4.8ml) on the initial NCCT showed a low

expansion risk (blend sign = absent, hypodensities = absent, NLR = 2.52, time to initial NCCT>3h, R-score = −1.59, total points = 30, and

estimated HE risk = 1.99%). (F) At 22.5 h after onset, the follow-up CT detected a hematoma of similar size (5.2ml). NCCT, noncontrast

computed tomography. HE, hematoma expansion.
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FIGURE 9

Receiver operating characteristic (ROC) curves of the

nomogram for predicting in-hospital mortality in the training

and test cohorts. AUC, area under the curve; CI, confidence

interval.

be ruled out. Fourth, several patients with ICH were excluded

from the study due to surgical intervention prior to follow-

up CT scans, which decreases the proportion of HE. Finally,

a relatively large proportion of patients were excluded due to

a lack of repeat CT heads, possibly because they remained

well or had deteriorated significantly enough to warrant a “do

not resuscitate” status. This could represent a relatively stable

or significant expansion of the underlying ICH. Despite these

limitations, our study has a few strengths, such as blind imaging

assessment, systematic assessment of clinical and laboratory

characteristics, and easily and quickly obtained predictive factors

included in the nomogram.

Conclusion

An NCCT-derived model combining radiomics, clinical,

and radiological features show a satisfactory performance in

predicting HE. The nomogram derived from the combined

model can individualize the risk of HE, and its high sensitivity

and calibration may help clinicians to screen out patients with

ICH appropriate for anti-expansion therapy.
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