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Background: Stroke is among the leading causes of disability of worldwide.

Gait dysfunction is common in stroke survivors, and substantial advance is yet

to be made in stroke rehabilitation practice to improve the clinical outcome of

gait recovery. The role of the upper limb in gait recovery has been emphasized

in the literature. Recent studies proposed that four limbs coordinated

interventions, coined the term “interlimb-coordinated interventions,” could

promote gait function by increasing the neural coupling between the arms and

legs. A high-quality review is essential to examine the clinical improvement and

neurophysiological changes following interlimb-coordinated interventions in

patients with stroke.

Methods: Systematic review and meta-analysis will be conducted according

to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA). The literature will be retrieved from the databases of OVID, MEDLINE,

PubMed, Web of Science, EMBASE, and PsycINFO. Studies published in

English over the past 15 years will be included. All of the clinical studies

(e.g., randomized, pseudorandomized and non-randomized controlled trials,

uncontrolled trials, and case series) that employed interlimb intervention and

assessed gait function of patientswith strokewill be included. Clinical functions

of gait, balance, lower limb functions, and neurophysiologic changes are the

outcome measures of interest. Statistical analyses will be performed using the

Comprehensive Meta-Analysis version 3.

Discussion: The findings of this study will provide insight into the clinical

benefits and the neurophysiological adaptations of the nervous system

induced by interlimb-coordinated intervention in patients with stroke. This

would guide clinical decision-making and the future development of targeted

neurorehabilitation protocol in stroke rehabilitation to improve gait and motor
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function in patients with stroke. Increasing neuroplasticity through four-limb

intervention might complement therapeutic rehabilitation strategies in this

patient group. The findings could also be insightful for other cerebral diseases.
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Highlights

- Human locomotion involves the coordination of all

four limbs.

- Interlimb-coordinated intervention is proposed as an

effective way to improve gait in patients with stroke.

- The neurophysiological changes and clinical benefits of

interlimb-coordinated intervention in patients with chronic

stroke remain unclear.

- The findings of this study will offer insight into the

neurophysiological adaptations of the nervous system in

patients with stroke.

Introduction

Stroke remains one of the leading causes of adult disability

worldwide (1), and the demand for stroke rehabilitation service

is likely to continue to grow due to the aging society.

Gait dysfunction is common among patients with stroke (2).

Approximately two-thirds of the patients have mobility deficits

after stroke occurrence (3). A study reported that 1 year

after stroke occurrence, half of the stroke survivors could not

complete a 6-min walk test, and those who did were only able

to perform 40% of the predicted normal distance (4). Gait is

essential to safely conduct daily living activities and improve the

quality of life, but substantial advances are yet to be made in

stroke rehabilitation practice to improve the clinical outcome of

gait recovery (5).

The current regime of gait rehabilitation involves high-

intensity, repetitive, task-specific intervention (6). Gait

rehabilitation may utilize over ground or treadmill with or

without body weight support (7). Other interventions such as

virtual reality (8), robotics (9), muscle strengthening exercise

(10), and electrical stimulations (11) demonstrated various

degrees of success in gait recovery. Despite the reported positive

outcomes, recent literature proposed that a common gait

rehabilitation regime is suboptimal to activate the paretic motor

neuron pools due to the training intensity (12). Thus, the

clinical outcome is below expectation, raising doubts over the

efficacy of traditional gait training in patients with stroke. A new

rehabilitation strategy is urgently needed. While increasing the

intensity through the increase of step number or training speed

may be an appropriate way to improve clinical outcome, it may

increase the likelihood of overuse injury or stress fracture due to

inefficient walking biomechanics (12). It has also been reported

that high-intensity training may only be appropriate for high-

functioning people post-stroke (13). In addition, studies that

investigated high-intensity exercise training in patients with

stroke reported small but non-significant difference in primary

motor cortex excitability (14), and no significant difference in

corticospinal excitability after high-intensity training (15). These

studies casted some uncertainties in the clinical effectiveness of

increase training intensity. Neural imaging studies conducted

in healthy individuals reported stronger activations in multiple

cerebral cortices, including the supplementary motor area

(SMA), premotor area (16), and the cerebellum (17), during

ipsilateral arm and leg movement in the opposite directions

than during ipsilateral arm and leg movement in the same

direction and during single-limb movement. It is, therefore,

reasonable to expect that patients with stroke who received

interlimb-coordinated intervention would have stronger

cortical activation than a simple increase in intensity, which

theoretically correlates with gait function improvement.

The pendula motion of the upper extremities plays a

vital role in gait (18). The role of upper extremities during

walking was demonstrated by the alteration of gait pattern after

upper limb constraining in healthy individuals and in patients

with stroke. These alterations included a reduction in limb

coordination (19), spatial parameters of stride length, stride

frequency, walking velocity (20), and muscle activation (21). A

recent study conducted on healthy participants reported that

lower limb muscle activity was driven by the upper limb muscle

activity during specific gait phases through the subcortical and

cortical pathways to achieve intermuscular coherences of the

upper and lower body segments (22). This evidence supports

the importance of upper and lower limb coordination in

gait recovery. A study on the effectiveness of stationary arm

cycling in patients with chronic stroke reported a significant

improvement in gait (23), confirming the role of the upper

limb in gait function. It was suggested that the cycling motion

shared a common locomotion pattern with walking based on

the reciprocal lower limb muscle coordination (21). The human

gait motion involves specific coordination patterns between

upper and lower body segments and requires the synergistic

contraction of various muscle groups on the bilateral side

(24). Thus, the bipedal human locomotion is built upon the

coordination of quadrupedal that involves the coordination
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of all four limbs (25). The coordination of four limb motion

has been coined “interlimb coordination,” where all four limbs

move in coordination to accomplish a task, and this has been

recently proposed to enhance limb movement control through

an increase in the neural coupling between arms and legs

(22). The reciprocal lower limb muscle coordination during

gait shares some common motor pattern with cycling (26).

This theory is given some support by studies that reported

significant improvement in gait and lower limb motor function

in patients with stroke who underwent arm cycling intervention

(23, 27). Other authors proposed that interlimb-coordinated

intervention could promote gait function by increasing the

neural coupling between the arms and legs (28). This theory

is given support by some preliminary data that demonstrated

favorable outcomes of interlimb-coordinated training over

conventional intervention in patients with chronic stroke (29).

The rhythmic control of gait motion is primarily modulated

by the central pattern generator (CPG) and the peripheral

sensory feedback that provides the basic synchronous

movements of the arms and legs (30). CPG is the functional

network of the spinal neurons that regulates the neural coupling

of the four limbs at the spinal level during rhythmic task,

such as walking and stepping (31). Impairment of the neural

coupling of the upper and lower body segments in patients

with stroke occurs despite the infarction taking place at the

higher cortical level (32). The afferent input processing from

the paretic side is impaired which prevents neural coupling,

whereas the pathways from the unaffected hemisphere to the

unaffected limbs are strengthened after the occurrence of stroke

(33). Thus, the motor paresis of contralateral body side to the

lesioned brain induces an asymmetry between the right and

left limbs, and bimanual coordination required for symmetrical

or asymmetrical task performance is impaired (34). Since the

lesioned hemisphere may not be able to contribute effectively

in voluntarily modifying the motor movement, patients with

stroke exhibit incoordination and asymmetry for bilateral to

quadri-limb performance which also interferes with the motor

and functional recovery (35). The impaired neural coupling also

affects the body coordination of patients with stroke, where the

non-affected side had to slow down to match the movement of

the affected side (36). Other study conducted on patients with

chronic stroke also observed the disrupted neural linkage of the

affected side in force production during coordinated bimanual

task (37). This evidence indicates that despite the primary injury

site of stroke being at the cortical level, functional improvement

at the spinal-level neural circuit also plays a role in the neural

linkage of limbs which contributes to effective gait recovery (23).

The spinal cord itself has central pattern generators and

is able to generate coordinated locomotor electromyography

(EMG) activity (38). It controls rhythmic movements by

producing rhythmic muscle activation without volitional motor

control (39). Thus, the locomotor function may be enhanced

by accessing the interlimb neural linkage at the spinal circuitry

level. The presence of interlimb coupling could be assessed by

EMG activity that records the effects of movement in one limb

on another limb’smuscle activity (40), and also the spinal reflexes

that examine the modulation in neural activity associated with

the interlimb neural coupling (41). Early literature indicated that

arm cycling exercise was able to suppress the hyperexcitability

of the soleus which subsequently contributes to improvement

in gait (42). A study conducted in patients with chronic

stroke reported normalization of cutaneous reflex modulation

and increase in soleus stretch reflex amplitudes after arm

cycling training. Gait improvement was also observed post-arm

cycling training (23). Therefore, enhancing the interlimb neural

connectivity of the CPG may be an effective way to improve gait

function (23).

To date, there seems to be no systematic review

or meta-analysis that investigated the strength of the

evidence on interlimb-coordinated interventions, and the

neurophysiological and clinical changes induced by such

intervention program. A high-quality review examining

the clinical improvements and neurophysiological changes

following interlimb-coordinated interventions may instigate

the establishment of future clinical practice guidelines for

clinicians and practitioners. Thus, we present our protocol to

critically evaluate the evidence on the change in clinical and

neurophysiology measures induced by interlimb-coordinated

interventions in patients with stroke. Our review question

is “What are the clinical benefits and neurophysiological

changes at the cortical and spinal level associated with interlimb

coordinated interventions in patients with stroke?”

Methods and analysis

Search strategy

The systematic review of the literature will follow

the Preferred Reporting Items for Systematic Reviews

and Meta-analyses (PRISMA) guidelines. It is registered

on the International Platform of Registered Systematic

Review and Meta-analysis Protocols (43) (Registration No.:

INPLASYL2021100012) and PROSPERO (44) (Registration

No.: CRD42021277837). The literature will be searched and

retrieved from the following databases: OVID, MEDLINE,

PubMed, Web of Science, EMBASE, and PsycINFO. The

Boolean operators and search string are as follows: (cerebral

vascular accident OR stroke) AND (interlimb coordination

OR interlimb coordinated) AND (gait OR walking OR lower

limb function) AND (Magnetic resonance image OR MRI OR

transcranial magnetic stimulation OR TMS OR neurophys∗

OR reflex OR electromyography OR EMG). Studies published

in English over the past 15 years, from August 2021, will be

considered for inclusion.

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2022.959917
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2022.959917

Type of participants

Participants with chronic stroke (more than 6 months of

stroke onset) (45) who are aged between forty and 80 years old

and able to stand with or without assistance will be the focus of

this study. Furthermore, participants will not be on medication

that affects muscle tone at the time of study enrollment, report

of any cardiovascular, musculoskeletal, respiratory, or other

chronic diseases.

Inclusion criteria

The inclusion criteria are as follows:

• Full-text studies published in english 15 years prior to

August 2021.

• Studies conducted on individuals aged between forty and

eighty with chronic stroke.

• Studies that investigated the neurophysiological changes in

patients with stroke, including peripheral nerve stimulation

to assess the hoffman-reflex pathway, electromyography

to examine the heteronymous and contralateral muscle

activity and reflex amplitudes, and neural imaging to assess

cortical activities.

Exclusion criteria

The exclusion criteria are as follows:

• Studies that included unilateral intervention.

• Studies that did not mention the screening of medications

that might affect muscle tone. previous study reported

spatiotemporal parameters of gait could be improved by

releasing the upper extremity spasticity (46). therefore, the

present study excluded trials that did not specifically screen

the application of spasticity medication in accordance with

a published study.

• Studies that did not exclude participants with

musculoskeletal (29), cardiovascular, respiratory, or

other chronic diseases (47). these exclusion criteria are

in accordance with the published literature to minimize

potential confounding factors that might influence with

clinical outcome of gait.

Outcome measures

Clinical functions of gait, balance, lower limb functions, and

neurophysiologic changes are the outcome measures of interest.

These include one of the following measures: spatial–temporal

parameters of gait, Berg Balance Scale, Fugl-Meyer motor

assessment, H-reflex gain and/or amplitudes elicited via nerve

stimulation, and EMG signals of muscle activities of the

muscle bellies of interest. Neurophysiological data refer to

parameters that reflect the properties of neurons, glia, and

neural network (48). These include neural imaging data that

assess brain network connectivity (e.g., functional magnetic

resonance and transcranial magnetic stimulation imaging),

brain wave signals that assess the cognitive neural process

(e.g., electroencephalogram), and electromyography signals that

assess muscle innervation.

Data management

The retrieved articles will go through a three-stage screening

process. The articles’ titles and abstracts will be reviewed by

two researchers at the first stage to ensure they meet the above

inclusion criteria. The pair of researchers then independently

screen the full text of each article. Any discrepancy of an article

between the two researchers will be resolved by a third reviewer

who will act as an adjudicator. For articles where the full text

is not available in the databases or on the publisher library, the

researchers will attempt to contact the corresponding authors to

obtain the full article. The final step will involve the assessment

of treatment outcome measures. Studies with eligible outcome

measures are to be included in the analysis. A random sample

will be extracted for inspection from two senior raters for quality

assurance. All of the included articles will then be imported to a

reference management system (EndNote 19), and any duplicates

will be removed.

Data extraction

The main data to be extracted and analyzed are the

descriptive information of article title, journal title, authors,

target population, and host institute. The cohort characteristics

of sample size, sex, age, stroke onset duration, and infarction

location will be recorded. The methodological characteristics

of study design, randomization procedures, intervention type,

intervention period, and follow-up will be extracted. The

outcome measures regarding clinical functions of gait, balance,

lower limb motor functions, and neurophysiological assessment

will be recorded and analyzed. A minimum of two independent

reviewers will extract and summarize the data from all of

the studies.

Risk of bias (quality) assessment

The quality of all included articles will be assessed by the

Mixed Methods Appraisal Tool (MMAT) (49). It is a critical

appraisal tool that assesses five different categories of study

designs, including qualitative, randomized controlled trial, non-

randomized controlled trial, quantitative descriptive, and mixed
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methods. Five core criteria of each study design are evaluated by

the responses of “yes,” “no,” and “can’t tell.” This tool is chosen

due to its ability to assess the quality of a range of study design. A

bias assessment will be conducted by two independent reviewers,

and disagreements will be discussed to reach a consensus. A

narrative summary of the bias risk will also be provided.

Strategy for data synthesis

Effect sizes at 95% confidence intervals will be collected to

assess the relationships within the data, as well as Cohen’s d

for estimates of effect size. Quantitative data will be extracted

from each article, and a chi-squared analysis will be used

to determine homogeneity between observed and expected

frequencies. Statistical significance will be set at p < 0.05. A

narrative synthesis will be written if a meta-analysis is not

possible due to the heterogeneity of the studies.

Discussion

This systematic review will be among the first to provide

a comprehensive assessment of the neurophysiological changes

and clinical benefits of interlimb-coordinated interventions in

patients with chronic stroke. Specifically, we aim to explore the

effects of interlimb-coordinated intervention on neural coupling

asmeasured by theH-reflex and EMGmuscle activities. Changes

in cutaneous reflex and muscle activities could be considered

as a proxy of spinal plasticity resulting from interlimb training

(47). Reflex excitability of the paretic lower limb muscles is often

suppressed due to the decreased influence of the corticospinal

tract on reflex excitability (50). Thus, it is possible that interlimb-

coordinated intervention may induce adaptive plasticity of the

interlimb spinal network. The effects of movement in one limb

on another limb’s muscle activity reflect the presence of neural

coupling at the spinal level (40). It was reported that the neural

synchronization may be enhanced by interlimb-coordinated

tasks that involve multiple limb movement (29). This evidence

suggested that improvement of the neural linkage of limbs at the

spinal-level neural circuit may contribute to gait recovery (23).

Another potential underpinning mechanism of

interlimb-coordinated intervention is the increase in neural

activation of cortices. The activations of the supplementary

motor area (SMA), premotor area (16), and cerebellum (17)

were found to be stronger during ipsilateral arm and leg

movement in the opposite direction than ipsilateral arm and

leg movement in the same directions and during single-limb

movement. Thus, it is reasonable to expect that interlimb-

coordinated intervention may also improve cortical activations

which contribute to improvement in gait recovery.

Several studies utilized different functional tasks,

neurophysiological tools, and measurements which provided

insights on the potential clinical benefits of interlimb

coordination (29, 47). However, this may contribute to a

high risk of study heterogeneity. A narrative synthesis will

be formed if heterogeneity proves difficult for the synthesis

of a meta-analysis. The final conclusion regarding the

implications of neuroplasticity and clinical outcome following

interlimb-coordinated intervention in patients with stroke

will be drawn from this systematic review. Limitations

will also be discussed in detail. Researchers will be able

to use the findings of the review to offer insight into the

neurophysiological adaptations of the nervous system in

patients with stroke. In turn, clinical decision-making and the

future development of targeted neurorehabilitation protocols

in stroke rehabilitation to improve motor function would

be guided. Increasing neuroplasticity through interlimb-

coordinated intervention might complement therapeutic

rehabilitation strategies in this patient group, and it

could also be insightful for other cerebral diseases. This

study meets the criteria for waiver of ethics approval of

the hosting institute. We will publish the results of our

study in a peer-reviewed scientific journal regardless of

the outcome.
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