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Machine learning approach for
hemorrhagic transformation
prediction: Capturing predictors’
interaction

Ahmed F. Elsaid 1*, Rasha M. Fahmi 2, Nahed Shehta 2

and Bothina M. Ramadan2

1Department of Public Health and Community Medicine, Zagazig University, Zagazig, Egypt,
2Neurology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt

Background and purpose: Patients with ischemic stroke frequently develop

hemorrhagic transformation (HT), which could potentially worsen the

prognosis. The objectives of the current study were to determine the incidence

and predictors of HT, to evaluate predictor interaction, and to identify the

optimal predicting models.

Methods: A prospective study included 360 patients with ischemic stroke,

of whom 354 successfully continued the study. Patients were subjected to

thorough general and neurological examination and T2 di�usion-weighted

MRI, at admission and 1 week later to determine the incidence of

HT. HT predictors were selected by a filter-based minimum redundancy

maximum relevance (mRMR) algorithm independent of model performance.

Several machine learning algorithms including multivariable logistic regression

classifier (LRC), support vector classifier (SVC), random forest classifier (RFC),

gradient boosting classifier (GBC), and multilayer perceptron classifier (MLPC)

were optimized for HT prediction in a randomly selected half of the sample

(training set) and tested in the other half of the sample (testing set). The model

predictive performance was evaluated using receiver operator characteristic

(ROC) and visualized by observing case distribution relative to the models’

predicted three-dimensional (3D) hypothesis spaces within the testing dataset

true feature space. The interaction between predictors was investigated using

generalized additive modeling (GAM).

Results: The incidence of HT in patients with ischemic stroke was 19.8%.

Infarction size, cerebral microbleeds (CMB), and the National Institute of

Health stroke scale (NIHSS) were identified as the best HT predictors.

RFC (AUC: 0.91, 95% CI: 0.85–0.95) and GBC (AUC: 0.91, 95% CI: 0.86–

0.95) demonstrated significantly superior performance compared to LRC

(AUC: 0.85, 95% CI: 0.79–0.91) and MLPC (AUC: 0.85, 95% CI: 0.78–0.92).

SVC (AUC: 0.90, 95% CI: 0.85–0.94) outperformed LRC and MLPC but did

not reach statistical significance. LRC and MLPC did not show significant

di�erences. The best models’ 3D hypothesis spaces demonstrated non-linear

decision boundaries suggesting an interaction between predictor variables.

GAM analysis demonstrated a linear and non-linear significant interaction

between NIHSS and CMB and between NIHSS and infarction size, respectively.
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Conclusion: Cerebral microbleeds, NIHSS, and infarction size were identified

as HT predictors. The best predicting models were RFC and GBC capable

of capturing nonlinear interaction between predictors. Predictor interaction

suggests a dynamic, rather than, fixed cuto� risk value for any of

these predictors.

KEYWORDS

ischemic stroke, hemorrhagic transformation, machine learning, cerebral

microbleeds, NIHSS, infarction size

Introduction

Patients with ischemic stroke are at risk of developing

hemorrhagic transformation (HT), which could be defined as

bleeding within the infarcted area. HT could be precipitated

spontaneously or secondary to anticoagulant or thrombolytic

reperfusion therapy for ischemic stroke. The reported incidence

of HT in patients with stroke varied widely from 0.6 to 85%

(1). HT could develop asymptomatically, detected only by CT or

MRI, or symptomatically as evident by the associated worsening

of existent neurological/clinical manifestation (2). Reperfusion

injury had been proposed as the major pathophysiologic

mechanism underlying the development of HT. The incidence

of HT in ischemic stroke poses a significant risk of deterioration

because extravasation of blood could exaggerate inflammatory

reactions and promote the progression of brain damage (3,

4). Therefore, detecting susceptibility to HT could facilitate

designing management plans for patients with high-risk.

The interaction among risk factors, metabolic, and signaling

pathways is a determinant factor in the pathogenies of ischemic

stroke, HT, and related complications. The effect of variable

interaction on the outcome could be defined by the variance

of the outcome that cannot be explained by the main effect

of independent factors alone (5). The interaction between

predictors is expected when the slope of the relationship

between one predictor and the outcome is dependent on (or

a function of) another predictor (6). Therefore, describing

the interaction between predictors is important for the proper

prediction of the outcome. Machine learning (ML) algorithms

became increasingly utilized in stroke diagnosis and outcome

prediction (7). ML could be broadly classified into supervised

and unsupervised based on whether the training data have

labeled or unlabeled outcomes, respectively. Supervised ML

could be utilized for classification, whereas unsupervised ML

could be used to identify hidden patterns such as clustering or

abnormal anomaly within the data. Among the most commonly

used supervised ML classifiers are logistic regression classifier

(LRC), support vector classifiers (SVC), random forest classifier

(RFC), decision tree-based gradient boosting classifier (GBC),

and multilayer perceptron classifier (MLPC). Machine learning

algorithms were reported to efficiently analyze complex non-

linear interactions between variables and were utilized to

develop prediction models in a variety of clinical settings (8–10).

The objective of the current study was to determine

the incidence and predictors of HT, to evaluate predictor

interaction, and to identify the best predicting models taking

advantage of the state-of-the-art ML algorithms.

Patients and methods

Problem formulation

Hemorrhagic transformation prediction was modeled as

a supervised learning problem with the incidence of HT

as a binary label and selected patient characteristics as

features. A total of 16 features including patient clinical data,

laboratory findings, and magnetic resonance imaging (MRI)

markers were studied. Feature data were collected at patient

admission, whereas determining labels was performed using

T2 diffusion-weighted MRI conducted at admission and 1

week after.

Patients and study design

The current prospective study originally included a total of

360 patients with ischemic stroke of whom six patients died

before taking the second MRI and 354 completed the study.

Participants were recruited using systemic random technique

(every 3rd admission) from stroke and intensive care units

(ICU), Zagazig University Hospitals, Egypt from January 2018

to February 2020. Participants were subjected to two T2

diffusion-weighted MRIs, at admission and after 1 week to

diagnose HT.

Inclusion criteria

Any patients with ischemic stroke aged ≥18 years old.

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2022.951401
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Elsaid et al. 10.3389/fneur.2022.951401

Exclusion criteria

Any patients who received rtPA or suffered from

subarachnoid hemorrhage, intracerebral bleeding or any

head injuries, hematological disorders, serious liver or

renal impairment, coexistent brain infection, tumor, or

congenital malformations.

Clinical and laboratory features

Thorough general and neurological examinations, including

NIHSS, were performed. Clinical risk factors were defined as

follows: hypertension (receiving medications for hypertension

or blood pressure >140/90 mmHg on repeated measurements),

diabetes mellitus (receiving medications for diabetes mellitus,

fasting blood sugar ≥126 mg/dL or HbA1c ≥6.5%, or a casual

plasma glucose >200 mg/dL), hypercholesterolemia [receiving

cholesterol-reducing agents or an overnight fasting cholesterol

level ≥200 mg/dL, triglycerides ≥200 mg/dL, or low-density

lipoprotein (LDL) cholesterol ≥160 mg/dL], in addition to a

history of previous heart disease. Performed laboratory tests

included blood glucose level, complete blood count (CBC),

platelet count, partial thromboplastin time, liver function tests,

renal function tests, lipid profile, and erythrocyte sedimentation

rate (ESR).

MRI variables/markers and imaging
protocol

Conventional MR, diffusion-weighted image, and

GRET2WI (T2∗WI) were performed using a 1.5 T MR Scanner

(Achieva, Philips Medical System). Images were obtained

with the patient in the supine position, and a scout sagittal

T1-weighted image was used as a localizer; then, multiple

pulse sequences were performed to obtain axial, coronal, and

sagittal images. The conventional MR sequences included the

following: (1) sagittalT1-weighted image as a localizer (TE

8/TR 500ms), (2) axial T1W-weighted image (TR148-597/TE2-

15ms), (3) axial and sagittal T2-weighted images (TR4400-

4800/TE110ms), and (4) axial FLAIR (TR6000/TE120-TI2000).

Section thickness was set at 5mm and a gap of 1mm. We used a

field of view equal to 30mm in coronal images and 240mm in

axial images. T2∗WI parameters included (TR/TE 641/23ms)

a flip angle of 20, matrix 512 × 512, with a field of view of

250 mm.

For diffusion-weighted imaging, we used a multisection

single-shot spin echo planner imaging sequence (TR/TE/NEX:

4.200/140 ms/I) with diffusion sensitivities b-values set at 0

and 1,000 s/mm2 and total acquisition time of 80 s. The

reconstructed images were transferred to the workstation for the

calculation of apparent diffusion coefficient values (11). Analysis

was performed by a radiologist ignorant of the study using the

software DICOM viewer (v3.0 /v7.2.0.1; Philips Medical Systems

Nederland B.V, Best, Netherlands).

Cerebral microbleeds (CMBs) were defined as black (signal

loss) or hypointense rounded areas outside the infarcted areas

and with <10mm in diameter on T2∗Wl (12). The rating

of CMBs was performed using the validated Brain Observer

Microbleed Scale (13). Superficial siderosis was defined as

gyriform hypointensity without corresponding hyperintense

signal on T1-weighted sequences or FLAIR (14). Infarction size

was determined by the largest diameter of the lesion (15).

The location of ischemic stroke was determined according to

Bamford classification as partial anterior circulation (PAC), total

anterior circulation (TAC), lacunar, and posterior circulation

(POCS) (16). Etiological classification was performed according

to the TOAST criteria (Trial of ORG 10172 in Acute Stroke

Treatment) into small, large, cardiac, and undermined (17).

Label

The incidence of HT was defined as any degree of

hyperdensity within the area of low attenuation (18). The type

of HT was determined according to ECASS II classification

(European Cooperative Acute Stroke Study) into hemorrhagic

infarction (HI) and parenchymal hematoma (PH) (19). HI was

further classified into petechiae affecting the infarction margin

(HI1) and confluent petechiae with no mass effect within the

infarct area (HI2). PH was subdivided into PH1 affecting <30%

of the infarct area and PH2 affectingmore than 30% of the infarct

area with mass effect (19).

Ethical conduct and institutional approval

Informed consent was obtained from all participants or their

relatives. Ethical approval was obtained from the local ethics

committee of our hospital.

Statistical analysis

Descriptive analysis and feature selection

Clinical, neurological, laboratory, and imaging data were

introduced at the initiation (admission) and 7 days later.

Continuous and categorical variables were presented as mean

± SD and percentages and were compared using t-test and

chi-square, respectively. The 354 samples were randomly split

(the random seed number was set to 64) into two datasets

(177 subjects each) to be used as training and testing datasets.

Univariate analysis was performed in the training dataset to

describe the frequency distribution of variables among HT

positive and negative cases. Variable selection is an important

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2022.951401
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Elsaid et al. 10.3389/fneur.2022.951401

step in model building to produce a parsimonious model

with reduced data dimensionality, enhanced interpretability,

reduced overfitting, and enhanced generalizability (20, 21). We

performed variable selection using a filter-based technique,

using the minimum redundancy maximum relevance (mRMRe)

algorithm, which is provided by the varrank package in R

(22, 23).

The mRMRe algorithm selects variables based solely on

the characteristics of input data, independent of any model

developing algorithm, and thus is robust to overfitting. In

contrast to linear correlation,mRMRe algorithms couldmeasure

non-linear relationships and remain invariant under variable

inevitable transformations (24).

Model development, optimization, and
comparison

Logistic regression classifier, SVC, RFC, GBC, and MLPC

models were developed using the identified predictors,

optimized in the training dataset, and used to predict HT

incidence in the testing dataset. Grid search was utilized for

hyperparameter tuning for GBC, SVC, MLPC, and LRC,

whereas automated Bayesian hyperparameter tuning was

utilized for RFC. Models were optimized via minimizing loss

function to reduce misclassification errors in the training

dataset (25). SKlearn built-in log-loss function was used

for training GBC, LRC, and MLPC, the squared hinge

function was used for training SVC, whereas the Gini

function was used for RFC. The log-loss function is defined

as Llog
(

y, p
)

= −
(

ylog
(

p
)

+
(

1− y
)

log
(

1− p
))

, where

Llog is the log loss, y is the true label, and p is the probability

estimate that y = 1. The log-loss function will be reduced to

− log
(

1− p
)

if y = 0, and − log
(

p
)

if y = 1. The squared

hinge loss is defined as

L
(

y, ŷ
)

=
∑N

i=0
(max(0, 1− yi · ŷ)2,

where y and ŷ are the true and predicted labels, respectively.

Random forest classifier was optimized using automated

Bayesian hyperparameter tuning provided by the open-source

hyperopt Python library in the Python environment (26).

Hyperopt utilizes a Tree Parzen Estimator (TPE) algorithm,

which is Bayesian optimization algorithm that instead of

modeling p(y|x) directly, it models p(x|y) and p(y), such that

p
(

x
∣

∣y
)

=

{

lx if y < y∗

gx if y ≥ y∗,

where l(x) is the density formed by using the observations {x(i)}

such that the corresponding loss f (x(i) ) is less than y∗ and

g(x) is the density formed by using the remaining observations

(27). Supplementary Table 1 lists the tuned hyperparameters of

different models.

The area under the ROC curve (AUC) was used for the

evaluation and comparison betweenmodels using Delong’s non-

parametric method (28, 29). AUC is equivalent to the probability

of a classifier to correctly discriminating and ranking positive

instances higher than negative instances in a randomly chosen

sample, which renders it equivalent to theWilcoxon test of ranks

(28). AUC is a prevalence- and threshold-independent metric

that was reported to be more robust to data imbalance than

accuracy (30). To guard against overfitting, the Youden index

identified in the training dataset was used as the classification

threshold for ROC analysis in the testing dataset. The model

predictive performance metrics were calculated as follows:

sensitivity (TP/TP + FN), specificity (TN/TN + FP), predictive

positive value (TP/TP + FP), and predictive negative value

(TN/TN+ FN).

To better understand the relationship between predictor

variables and HT incidence, the model 3D hypothesis spaces

within the true feature space were plotted. The distribution of

HT positive and negative cases relative to the 3D hypothesis

space was examined. The interaction of predictors was

investigated by fitting a series of the generalized additive model

(GAM) with interaction terms, smooth plate regression splines,

and tensor product splines using the generalized additive model

provided by the mgcv package in the R environment (23, 31).

The Python scikit-learn library, version 0.23.2, was utilized to

train and test machine learning models using Jupyter Notebook

(32, 33). Predicted hypothesis spaces were produced using plotly

functions within the Python environment, version 4.10 (34).

Sample size

The incidence of HT in patients with ischemic stroke was

reported to be around 8.7–12.3% (18, 35). A sample of 126 was

estimated to detect the incidence of 9± 5% precision with a 95%

confidence level and power of 80%. Because we intended to split

the sample into training and testing datasets and to compensate

for any lost cases, we enrolled 360 participants, of whom 354

continued the study.

Results

Patient characteristics, HT incidence, and
predictors

Fifty-seven patients were excluded from participation. The

main causes were refusal to participate (11), received rtPA

(14), head injuries (6), and hematological/liver disorders (26).

The clinical and laboratory characteristics of the 354 patients

with ischemic stroke who completed the study are presented

in Table 1. There was no significant difference between the

training and testing datasets except for the NIHSS and PTT. The

training dataset demonstrated lower average NIHSS scores and
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TABLE 1 Baseline characteristics of patients with ischemic stroke in the total sample and the randomly divided subgroups, the training and testing

datasets.

Characteristic Total sample

(N = 354)

Training dataset

(N = 177)

Testing dataset

(N = 177)

Age 62.8 (±10.5) 62 (±11) 63 (±10)

Gender (male) 199 (56.2%) 98 (55.4%) 101 (57.1%)

Hypertension 201 (56.8%) 102(57.6%) 99 (55.9%)

Diabetes mellitus 134 (37.9%) 72 (40.7%) 61 (34.5%)

Smoking 70 (19.8%) 33 (18.6%) 37 (20.9%)

Dyslipidemia 135 (38.1%) 70 (39.5%) 65 (36.7%)

IHD 113 (31.9%) 62 (35.0%) 51 (28.8%)

Platelets 242.89 (±68.9) 241.8 (±71.2) 243.9 (±66.6)

PTT 30.6(±5.5) 31.3 (±6.1)* 29.9 (±4.6)

Creatinine 0.73 (±0.2) 0.75(±0.2) 0.72 (±0.2)

Previous stroke/TIA 49 (13.8%) 23 (13.0%) 26 (14.7%)

Antiplatelet 97 (27.4%) 55 (31.1%) 38 (21.5%)

Infarction size 2.47 (±1.8) 2.43(±1.8) 2.5 (1.9)

NIHSS 13.16 (±6.1) 11.7 (±5.4) 13.6 (±6.2)±

CMB 2.97 (±4.7) 3.2(±4.9) 2.8 (±4.5)

Superficial siderosis 54 (15.3%) 33 (18.6%) 21 (11.9%)

Duration form symptoms to presentation (hours) 7.7 (2.08) 7.8 (2.11) 7.5 (2.05)

TOAST Small 91 (25.7%) 48 (27.1%) 43 (24.3%)

Large 125 (35.3%) 59 (33.3%) 66(37.3%)

Cardiac 104 (29.4%) 54 (30.5%) 50 (28.2%)

Undetermined 34 (9.6%) 16 (9.0%) 18 (10.2%)

Location PACS 139 (39.3%) 65 (36.7%) 74 (41.8%)

TACS 62 (17.5%) 32 (18.1%) 30 (16.9%)

Lacunar 89 (25.1%) 45 (25.4%) 44 (24.9%)

POCS 64 (18.1%) 35 (19.8%) 29 (16.4%)

HT incidence 70 (19.8%) 40 (22.6%) 30 (16.9%)

ECASS II HI1 20 (5.6%) 13 (7.3%) 7 (4.0%)

HI2 27 (7.6%) 15 (8.5%) 12 (6.8%)

PH1 15 (4.2%) 8 (4.5%) 7 (4.0%)

PH2 8 (2.3%) 4 (2.3%) 4 (2.3%)

*Significantly larger than that of testing dataset.
±Significantly larger than that of training dataset.

Table numbers represent frequencies (%) ormeans (± SD), which were compared using chi-square and two-sided t-test, respectively. The training and testing datasets were not significantly

different except for PTT and NIHSS. This difference did not influence variable selection from the training dataset as evidenced by mRMR selection of the lower NIHSS and not the higher

level PTT as the informative predictor of HT incidence.

IHD, ischemic heart diseases; PTT, partial thromboplastin time; NIHSS, National Institutes of Health Stroke Scale; CMB, cerebral microbleeds; TOAST, Trial of ORG 10172 in Acute Stroke

Treatment; PACA, partial anterior circulation syndrome; TACS, total anterior circulation syndrome; POCS, posterior circulation syndrome; ECASS, European Cooperative Acute Stroke

Study for hemorrhagic transformation classification; HI1, hemorrhagic infarction 1; HI2, hemorrhagic infarction 2; PH1, parenchymal hematoma 1; PH2, parenchymal hematoma 2.

higher average PTT levels compared to the testing dataset. This

difference did not influence variable selection because NIHSS,

which was lower in the training dataset, was selected and not the

higher level PTT. There was no significant difference between

the training and testing datasets regarding stroke etiology and

location. The percentages of small vessels, large vessels, cardiac,

and undermined lesions were 27.1, 33.3, 30.5, and 9.0% in

the training dataset and 24.3, 37.3, 28.2, and 10.2% in the

testing dataset, respectively. The percentages of lesion PAC,

TAC, lacunar, and POCS were 36.7, 18.1, 25.4, and 19.8% in the

training dataset and 41.8, 16.9, 24.9, and 16.4% in the testing

dataset, respectively. The average duration between stroke onset

and ICU presentation was 7.8 (±2.11) in the training dataset,

which was not significantly different from that in the testing

dataset 7.5 (±2.05).

The incidence of HT in our ischemic stroke cohort was

19.8% (70 out of 354 patients). No significant difference between

the training and testing datasets was observed regarding HT
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type. The percentages of HI1, HI2, PH1, and PH2 were 7.3, 8.5,

4.5, and 2.3% in the training dataset and 4.0, 6.8, 4.0, and 2.3%

in the testing dataset, respectively.

Using the mRMR variable selection algorithm in the training

dataset, it was possible to identify CMB, NIHSS, and infarction

size as the most informative variables (Figure 1), and they were

used to build HT predictionmodels. Univariate analysis between

HT positive and negative cases in the training dataset confirmed

the results obtained by mRMR (Supplementary Table 2). The

only significant difference was observed for CMB, NIHSS, and

infarction size.

Comparison of HT predicting models

The learning curves of different models are presented

in Supplementary Figure 1. Learning curves present mean

accuracy scores (±1 SD) as a function of the sample size

used for cross-validation. The learning curve of GBC exhibited

an overfitting pattern to the training dataset. However, the

performance of GBC in the testing dataset was satisfactory. For

RFC and SVC, the learning curves were not significantly lower in

the testing dataset compared to the training dataset. For sample

sizes >80, RFC and SVC did not exhibit major signs of bias or

overfitting as suggested by the difference between the training

and testing datasets. The learning curves of LRC and MLPC

seem to get closer to accuracies lower than RFC, GBC, and

SVC. Also, LRC and MLPC curves exhibited higher variability

as suggested by the apparently larger±SD intervals and crossing

of training and testing curves, which may explain their low

AUC metrics.

Table 2 summarizes the performance metrics in the testing

dataset. RFC (AUC: 0.91, 95% confidence interval (95%

CI): 0.85–0.95) and GBC (AUC: 0.91, 95% CI: 0.86–0.95)

demonstrated significantly superior performance compared to

LRC (AUC: 0.85, 95% CI: 0.79–0.91) and MLPC (AUC: 0.85,

95% CI: 0.78–0.92). Although SVC (AUC: 0.90, 95% CI:

0.85–0.94) outperformed LRC and MLPC, it did not reach

FIGURE 1

Score matrix of all studied variables assessed by the mRMRe (minimum redundancy maximum relevance) algorithm provided by the varrank R

package. The first column represents the relevance scores of di�erent variables assessed by the mutual information algorithm relative to the HT

incidence and ranked in a descending manner. Subsequent columns represent the di�erence between the relevance and redundancy scores of

each variable after adding it to the previously selected variable. Positive scores indicate higher relevance than redundancy scores and were

color-coded by a scale from yellow to red, whereas negative scores indicate higher redundancy than relevance scores and were color-coded by

a scale from aqua to deep blue. Zero scores were colored green.
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statistical significance. LRC and MLPC did not show significant

differences. Figure 2 demonstrates the overall performance

of different models in the training and testing datasets as

represented by ROC curves. Using classification thresholds

determined by the Youden indices identified in the training

dataset, the observed classification accuracy in the testing dataset

was 0.78 for FRC, 0.76 for GBC, 0.80 for SVC, 0.80 for LRC, and

0.84 for MLPC.

To examine whether adding more predictors of HT

incidence could improve model performance, we compared the

AUC of models developed by all the studied 16 variables to

models developed by the mRMR selected three variables. Except

for the three-variable SVC model (AUC: 0.90, 95% CI: 0.85–

0.94), which significantly surpassed that of the 16-variable model

(AUC: 0.82, 95% CI: 0.73–0.90), the AUC of the 16-variable RFC

(0.91, 95% CI: 0.87–0.96), GBC (0.91, 95% CI: 0.86–0.95), LRC

(0.84, 95% CI: 0.77–0.91), and MLPC (0.85, 95% CI: 0.78–0.92)

were not significantly different from those of the three-variable

models (Supplementary Figure 2).

The best performing models 3D
predicted spaces suggest the interaction
between predictors

Figure 3 shows the 3D predictive space of different models

relative to the true feature space. The prediction space of

the superior models, RFC, and GBC clearly demonstrated a

non-linear relationship and plausible interaction between the

predictor variables. In contrast, the lower performance, LRC,

and 3D predicted space demonstrated a linear relationship

between predictors. This result suggested that failure to detect

a non-linear relationship between variables was associated with

lower model performance.

Non-linear interaction of NIHSS with
CMB and infarction size

To further investigate the suggested non-linear interaction

between HT predictors, we fitted several generalized additive

models, all with logit link function, with interaction terms,

smooth plate regression splines, and tensor products to the

whole dataset. Table 3 demonstrates that adding interaction

terms significantly (χ2 = <0.001) improved the performance

and resulted in 21 unit reduction of the Akaike information

criterion (AIC) score compared to the single-term model. All

the coefficients of single and interaction terms were significant.

Fitting thin plate regression splines instead of interaction

terms has significantly improved model fitting (χ2 = <0.001)

and resulted in 16 unit reduction of AIC compared to the

interaction term model. Because non-linearity could lead to

TABLE 2 Predictive performance metrics of di�erent models in the

testing dataset.

Model Sensitivity Specificity PPV NPV AUC (95%CI)#

RFC 0.97 0.74 0.43 0.99 0.91 (0.85–0.95)*

GBC 0.97 0.72 0.41 0.99 0.91 (0.86–0.95)§

SVC 0.83 0.79 0.45 0.96 0.90 (0.85–0.94)U

LRC 0.70 0.82 0.45 0.93 0.85 (0.79–0.91)+

MLPC 0.57 0.89 0.52 0.91 0.85 (0.78–0.92)+

#AUC was the metric used for the evaluation and comparison of models performance

because it is less sensitive to data imbalance.
*Significantly higher than LRC (p-value = 0.021) and MLPC (p-value = 0.007) but not

GBC (p-value= 0.786) and SVC (p-value= 0.286).
§Significantly higher than LRC (p-value = 0.021) and MLPC (p-value = 0.012) but not

SVC (p-value= 0.270).
UNot significantly higher than LRC (p-value= 0.054) and MLPC (p-value= 0.056).
+Was not significantly different from each other (p-value= 1).

TheMLPC demonstrated very low sensitivity and consequently limited clinical utility and

was not considered for 3D model prediction analysis. The classification threshold could

be adjusted to modify the misclassification rates (false positive and negative rates) and

performance metrics according to the clinical need.

SVC, support vector classifier; GBC, gradient boosting classifier; LRC, logistic regression

classifier; RFC, random forest classifier; MLPC, multilayer perceptron classifier; PPV,

positive predictive value; NPV, negative predictive value.

spurious variable interaction, we fitted models with smoothed

predictor and tensor interaction (ti) terms that could delineate

the interaction component from the main effect. Fitting product

spline significantly improved model performance (χ2 = <0.02)

and induced around 3 unit reduction of AIC score compared

to models with smoothed splines only. The model revealed the

existence of significant non-linear interaction between NIHSS

and CMB and between NIHSS and infarction size with effective

degrees of freedom (EDF) of 4.6 and 3.1, respectively. Figure 4

shows the partial probability of HT incidence as a function of

infarction size and conditioned on NIHSS score (scores of 2, 8,

and 17) and CMB (3, 10, and 15). As illustrated in Figure 4A the

traditional LR model with single terms produced monotonous

NIHSS curves that demonstrate similar parametric functions

with infarction size at different CMB levels except for an absolute

effect representing different intercepts. This pattern suggests a

failure to detect any predictor interaction. In contrast, the model

fitted with tensor products, Figure 4B, demonstrated non-linear

HT prediction probabilities as reflected by NIHSS curves across

different levels of CMB and infarction size. For example, at a

CMB level of 3, patients with a low NIHSS score of 2 started

to respond at an infarction size of around 3.5 and exhibited

sharp dependency on infarction size in contrast to patients with

an NIHSS of 17, which started to respond at an infarction

size of zero but with less dependency on infarction size. At

CMB 15, the curve of the NIHSS score of 2 almost reached

saturation, whereas the curve of the NIHSS score of 17 almost

becomes linear with a low slope demonstrating less dependency

on infarction size. The results presented in Table 3 and Figure 4

lend support to the suggested predictor interaction presented in

Figure 3.
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FIGURE 2

Comparison of the utilized machine learning models’ overall performance using the AUC ± 95% CI metric. Youden indices were estimated using

the maximum sensitivity plus specificity. The RFC and GBC models demonstrated significantly larger AUC compared to LRC and MLPC but with

no statistical di�erence between each other and SVC. AUC, area under curve; CI, confidence interval; SVC, support vector classifier; GBC,

gradient boosting classifier; LRC, logistic regression classifier; RFC, random forest classifier; MLPC, multilayer perceptron classifier.

Discussion

The objective of the current prospective study was to

determine the incidence and predictors of HT, investigate

the interaction between predictors, and identify the optimal

predicting models. HT incidence in our study was 19.8%, which

was in agreement with other studies (35, 36). To produce a

parsimonious model with enhanced interpretability, improved

accuracy, and enhanced generalizability, we utilized an mRMR

algorithm capable of measuring the amount of information

between variables (37). It was possible to identify three risk

factors namely NIHSS, CMB, and infarction size as potential HT

predictors in the training dataset. Detecting the small number of

risk factors associated with HT is not unusual. Terruso et al. (38)

reported that infarction size was the only significant risk factor

associated with HT in their study. Tan et al. (35) found that only

infarction size and atrial fibrillation were significantly associated

with HT. We could not find sufficient mutual information

between HT and age, sex, DM, hypertension, dyslipidemia,

platelet count, previous use of antiplatelet, and previous stroke

attacks. This finding echoed the results from previous studies

(15, 36, 38, 39).

Random forest classifier, GBC, SVC, LRC, and MLPC

models were developed using the three identified predictors.

The validity of NIHSS, CMB, and infarction size to predict HT

incidence was verified by comparison with models developed

with all the studied variables. The predictive performance

of RFC and GBC models significantly outperformed LRC

and MLPC as assessed by the AUC difference. The superior

predictive performance of GBC models over classical regression

was previously documented in a large study conducted to

predict severe complications after acute ischemic stroke (8).

In general, the performance metrics of the best ML models in

our study were either better or comparable to previous models

developed to predict HT incidence in previous studies taking

into consideration differences in the utilized HT definition,

study design, ethnicity, and sample size of the study group

(40, 41).

Infarction size andNIHSS were themost frequently reported

risk factors associated with HT either in retrospective or

prospective studies (15, 38, 42). Either or both risk factors were

commonly included in the previous HT prediction scales in

addition to other variables (40–42). CMB was shown by some

recent prospective studies to predict the incidence of future

hemorrhagic transformation and intracerebral hemorrhage (43,

44). Investigating the optimized model predicted spaces within

the true feature/variable space suggested the interaction between

predictors as reflected by the non-linear surface as a function

of more than one variable. The interaction between predictors

was investigated using generalized regression models fitted with

smooth splines and tensor products. The results demonstrated

the existence of non-linear interaction between predictors and

resulted in significant improvement in explaining HT variance

compared with models with no interaction terms. This result
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FIGURE 3

3D figure shows the predicted spaces of each ML model within the true feature space. The green area represents the positive HT prediction,

while the non-colored area represents the negative prediction. The blue and red dots represent the observed positive and negative HT cases,

respectively (the points inside the green predicted space are not visible). The blue dots within the green and clear areas represent true positive

and false negative predictions, respectively. The red dots within the green and clear areas represent false positive and true negative predictions,

respectively. The best performing models, RFC, GBC, and SVC reveal non-linear decision boundaries indicative of the interaction between the

three predictors. At a particular value of NIHSS, observe the reduction of infarction size needed for HT prediction to be green (positive) as the

number of CMB increases. Similarly, at a particular value of CMB, observe the reduction of infarction size needed for HT prediction to be green

as the NIHSS score increases. LRC did not capture the non-linear relationships and as such, it failed to model the interaction between

predictors. The MLPC was not considered for 3D model presentation because of its very low sensitivity. SVC, support vector classifier; GBC,

gradient boosting classifier; LRC, logistic regression classifier; RFC, random forest classifier; MLPC, multilayer perceptron classifier.

suggests that there is no fixed cutoff value for any of these

predictors after which the risk of hemorrhagic transformation

would increase. As shown in Figure 4B, the significance of any

of these risk factors to hemorrhagic transformation is changing

depending on the values of other risk factors. For example, at a

particular value of NIHSS, the value of infarction size needed

to increase the risk of HT is reduced if the number of CMB

increases. Therefore, the best HT predicting models were those

capable of capturing the non-linear relations by algorithms such

as RFC and GBC compared to classical LRC.

The interaction implies that NIHSS, CMB, and infarction

size could be integrating both similar and distinct upstream

pathophysiological mechanisms that collectively could enhance

HT incidence. For example, CMB was reported to be

significantly associated with advanced age and cerebral small

vessel impairment/diseases that occur in hypertension, cerebral

amyloid angiopathy, and chronic kidney disease (45–48). The

clinical syndromes that have been associated with CMB, such as

cognitive impairment, dementia, and recurrent ischemic stroke,

further reflect the underlying functional impairment of cerebral

small vessels (49). Severe NIHSS score, on the other hand, could

integrate risk factors such as old age, female gender, small vessel

diseases, and mental and psychological stress of social isolation,

and cardiac diseases such as AF, low ejection fraction, heart

failure, and cardioembolism. All those risk factors were reported

to be significantly associated with NIHSS (48, 50–52).
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FIGURE 4

Partial probability of HT incidence as a function of infarction size and conditioned on NIHSS score and CMB count. (A,B) show logistic

regression fitted with single terms and a generalized additive model fitted with thin plate regression splines with tensor product terms,

respectively. Tensor product terms could delineate the interaction component from the main e�ect. (A) shows monotonous NIHSS curves that

demonstrate similar parametric functions with infarction size at di�erent CMB levels except for an absolute e�ect representing di�erent

intercepts. This logistic regression pattern suggests a failure to detect predictor interaction and hence predictive power. In contrast, (B)

demonstrates non-linear HT predicting functions as reflected by NIHSS curves across di�erent levels of CMB and infarction size. For example, at

a CMB level of 3, patients with a low NIHSS score of 2 started to respond at an infarction size of around 3.5 and exhibited sharp dependency on

infarction size in contrast to patients with an NIHSS of 17, which started to respond at an infarction size of zero but with less dependency on

infarction size. At CMB 15, the curve of the NIHSS score of 2 almost reached saturation, whereas the curve of the NIHSS score of 17 almost

becomes linear with a low slope demonstrating less dependency on infarction size.
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TABLE 3 Fitted GAMmodels to examine predictors linearity and interaction.

Model Coefficient (SE) p-value EDF Adjusted R2 Deviance pχ2 AIC

Single termmodel

HT= β1CMB+ β2NIHSS+ β3 Size β1 = 0.24 (0.03) <0.001 0.33 Reference 239.4

β2 = 0.12 (0.03) <0.001

β3 = 0.48 (0.09) <0.001

Interaction termmodel

HT= CMB+ NIHSS+ Size+

NIHSS*Size+ CMB*NIHSS+

CMB*Size+ CMB*NIHSS*Size

β1 = 0.98 (0.19) <0.001 0.40 29.6± < 0.001± 217.9

β2 = 0.47 (0.10) <0.001

β3 = 1.84 (0.40) <0.001

β4 =−0.04 (0.01) <0.001

β5 =−0.17 (0.06) <0.01

β6 =−0.06 (0.02) <0.01

β7 = 0.007 (0.003) <0.05

Spline fitted model

HT= β1CMB+ β2NIHSS+ β3Size+ β1 = 0.47 (0.2) <0.05 1.6 0.50 56.8± <0.001± 201.5

s(CMB)+ s(NIHSS)+ s(Size) β2 =−0.52 (0.14) <0.001 6.8 27.3§ <0.001§

β3 = 1.14 (0.65) 0.08 2.0

s(CMB) <0.05

s(NIHSS) <0.001

s(Size) 0.09

Tensor product model

HT= s(CMB)+ s(NIHSS)+ s(Size)+ s(CMB) <0.001 2.6 0.52 66.6± <0.001± 197.9

ti(CMB, NIHSS)+ ti(CMB, Size)+ s(NIHSS) <0.001 1.0 37.0§ <0.001§

ti(NIHSS, Size) s(Size) <0.001 1.0 9.7U <0.05U

ti(CMB,NIHSS) <0.01 4.6

ti(CMB,Size) 0.19 1.0

ti(NIHSS,Size) <0.001 3.1

±Compared to single-term model.
§Compared to interaction term model.
UCompared to tensor product model.

Size in the model refers to infarction size. Effective degrees of freedom (EDF) > 1 indicates non-linearity. In the final model, the smooth CMB, the product tensor of CMB and NIHSS, and

the product tensor of NIHSS and infarction size were significantly no-nlinear. Intercept was not included in the table.

Several mechanisms could be envisioned to explain the

observed interaction between CMB, infarction size, and NIHSS

score. One plausible mechanism is via cerebral small vessel

disease, which could increase both the CMB burden and NIHSS

score (48). Cerebral small vessel disease was also reported

to be significantly associated with poor collateral recruitment,

which could be the underlying mechanism of the observed

interaction between CMB, NIHSS, and infarction size. Reduced

perfusion from poor collaterals is a determining factor in

controlling infarction size, stroke risk, and poor functional

outcome (53). Furthermore, cerebral small vessel disease was

also reported to be significantly associated with impaired

cerebral autoregulation. A growing body of evidence links

impaired cerebral autoregulation with the incidence of HT

and acute ischemic stroke (54, 55). Genetic susceptibility and

APOE ε4 genotype have been reported to be significantly

associated with CMB and also with enhanced susceptibility

to cerebrovascular insults and, thus, large infarction size

(45, 56).

The strength of our study stems from utilizing a prospective

study design, using a filter-based, rather than wrapper-based,

variable selection technique independent of any model fitting

process, and utilizing ML models capable of detecting complex

non-linear relationships in a totally naïve testing dataset. In

wrapper-based variable selection methods, variables are selected

iteratively based on the performance of the fitted model, which

could result in models that produce the best performance only

with the utilized dataset.

The limitations of our study include the involvement of

only one academic hospital and one race. Also, our sample

size was relatively small, which could limit the power of our

study to detect other risk factors associated with HT incidence.

Another source of limitation was the exclusion of patients

who received rtPA therapy. Unfortunately, the majority of
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patients fail to present to our emergency room within the

rtPA therapeutic window (57). We thought that the inclusion

of those cases could bias results. The death of six subjects

before taking the second MRI and hence determination of

HT incidence could be a potential source of bias especially if

they represented severe cases. In addition, we did not include

ASPECTS and collateral scores in our analysis because they were

performed for patients on rtPA therapy and not routinely for

any patient. The observed moderate PPV suggests the need to

include further biological and imaging markers to limit false

positive cases. Our results need to be replicated in patients

on rtPA therapy to examine the difference in risk profiles and

predicting models.

Conclusion

National Institute of Health stroke scale, infarction size, and

CMB were the best HT predictors. The observed interaction

between predictors suggests a dynamic, rather than fixed, cutoff

risk value for any of these predictors. The best HT predicting

models were demonstrated by algorithms capable of capturing

non-linear relations such as RFC and GBC compared to the

classical LRC. Prediction of HT susceptibility could facilitate

designing management plans for high-risk patients.
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SUPPLEMENTARY FIGURE 1

Learning curves present mean accuracy scores (±1 SD) as a function of

the sample size used for cross-validation. The learning curve of GBC

exhibited an overfitting pattern to the training dataset. However, the

performance of GBC in the testing dataset was satisfactory. For RFC and

SVC, the learning curves were not significantly lower in the testing

dataset compared to the training dataset. For sample sizes >80, RFC and

SVC did not exhibit major signs of bias or overfitting as suggested by the

di�erence between the training and testing datasets. The learning

curves of LRC and MLPC seem to get closer to accuracies lower than

RFC, GBC, and SVC. Also, LRC and MLPC curves exhibited higher

variability as suggested by the apparently larger ± SD intervals and

crossing of training and testing curves, which may explain their low

AUC metrics.

SUPPLEMENTARY FIGURE 2

Area under the ROC curve (AUC) comparison of the three-variable and

16-variable models. Except for the three-variable SVC, which

significantly surpassed that of the 16-variable model, the AUC of the

16-variable RFC, GBC, LRC, and MLPC was not significantly di�erent

from those of the three-variable models.

SUPPLEMENTARY TABLE 1

Tuned parameters of five models.

SUPPLEMENTARY TABLE 2

Univariate analysis of risk factors associated with HT incidence in the

training datasets.

References

1. Lindley RI, Wardlaw JM, Sandercock PA, Rimdusid P, Lewis SC,
Signorini DF, et al. Frequency and risk factors for spontaneous hemorrhagic
transformation of cerebral infarction. J Stroke Cerebrovasc Dis. (2004) 13:235–
46. doi: 10.1016/j.jstrokecerebrovasdis.2004.03.003

2. Jaillard A, Cornu C, Durieux A, Moulin T, Boutitie F, Lees KR,
Hommel M. Hemorrhagic transformation in acute ischemic stroke. The MAST-
E study. MAST-E Group. Stroke. (1999) 30:1326–32. doi: 10.1161/01.STR.30.
7.1326

Frontiers inNeurology 12 frontiersin.org

https://doi.org/10.3389/fneur.2022.951401
https://www.frontiersin.org/articles/10.3389/fneur.2022.951401/full#supplementary-material
https://doi.org/10.1016/j.jstrokecerebrovasdis.2004.03.003
https://doi.org/10.1161/01.STR.30.7.1326
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Elsaid et al. 10.3389/fneur.2022.951401

3. Lei C, Wu B, Liu M, Chen Y. Asymptomatic hemorrhagic transformation after
acute ischemic stroke: is it clinically innocuous? J Stroke Cerebrovasc Dis. (2014)
23:2767–72. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.024

4. Andrade JBC, Mohr JP, Lima FO, de Carvalho JJF, Barros LCM, Nepomuceno
CR, Ferrer JVCC, Silva GS. The role of hemorrhagic transformation in acute
ischemic stroke upon clinical complications and outcomes. J Stroke Cerebrovasc
Dis. (2020) 29:104898. doi: 10.1016/j.jstrokecerebrovasdis.2020.104898

5. Lengerich B, Tan S, Chang CH, Hooker G, Caruana R. Purifying interaction
effects with the functional anova: An efficient algorithm for recovering identifiable
additivemodels. In: International Conference on Artificial Intelligence and Statistics.
PMLR (2020). p. 2402–12.

6. Gennings C, CarterWH Jr, Carchman RA, Teuschler LK, Simmons JE, Carney
EW, et al. unifying concept for assessing toxicological interactions: changes in
slope. Toxicol Sci. (2005) 88:287–97. doi: 10.1093/toxsci/kfi275

7. Mainali S, Darsie ME, Smetana KS. Machine learning in action:
Stroke diagnosis and outcome prediction. Front Neurol. (2021) 12:734345.
doi: 10.3389/fneur.2021.734345

8. Bonkhoff AK, Rübsamen N, Grefkes C, Rost NS, Berger K, Karch A.
Development and validation of prediction models for severe complications after
acute ischemic stroke: a study based on the stroke Registry of Northwestern
Germany. J Am Heart Assoc. (2022) 11:e023175. doi: 10.1161/JAHA.121.023175

9. Qutrio Baloch Z, Raza SA, Pathak R, Marone L, Ali A. Machine learning
confirms nonlinear relationship between severity of peripheral arterial
disease, functional limitation and symptom severity. Diagnostics. (2020)
10:515. doi: 10.3390/diagnostics10080515

10. Singal AG, Mukherjee A, Elmunzer BJ, Higgins PD, Lok AS, Zhu J,
et al. Machine learning algorithms outperform conventional regression models in
predicting development of hepatocellular carcinoma. Am J Gastroenterol. (2013)
108:1723. doi: 10.1038/ajg.2013.332

11. Tong DC, Adami A, Moseley ME, Marks MP. Relationship between apparent
diffusion coefficient and subsequent hemorrhagic transformation following acute
ischemic stroke. Stroke. (2000) 31:2378–84. doi: 10.1161/01.STR.31.10.2378

12. Yates PA, Villemagne VL, Ellis KA, Desmond PM, Masters CL, Rowe CC.
Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations.
Front Neurol. (2014) 4:205. doi: 10.3389/fneur.2013.00205

13. Cordonnier C, Potter GM, Jackson CA, Doubal F, Keir S, Sudlow CLM,
et al. Improving interrater agreement about brain microbleeds: development
of the Brain Observer MicroBleed Scale (BOMBS). Stroke. (2009) 40:94–
9. doi: 10.1161/STROKEAHA.108.526996

14. Charidimou A, Jäger RH, Fox Z, Peeters A, Vandermeeren Y, Laloux P, et al.
Prevalence and mechanisms of cortical superficial siderosis in cerebral amyloid
angiopathy. Neurology. (2013) 81:626–32. doi: 10.1212/WNL.0b013e3182a08f2c

15. Pan SL, Wu SC, Wu TH, Lee TK, Chen TH. Location and size of infarct on
functional outcome of noncardioembolic ischemic stroke. Disabil Rehabil. (2006)
28:977–83. doi: 10.1080/09638280500404438

16. Bamford J, Sandercock P, Dennis M, Warlow C, Burn JJ. Classification and
natural history of clinically identifiable subtypes of cerebral infarction. Lancet.
(1991) 337:1521–6. doi: 10.1016/0140-6736(91)93206-O

17. Chung JW, Park SH, Kim N, Kim WJ, Park JH, Ko Y, et al. Trial of ORG
10172 in Acute Stroke Treatment (TOAST) classification and vascular territory
of ischemic stroke lesions diagnosed by diffusion-weighted imaging. J Am Heart
Assoc. (2014) 3:e001119. doi: 10.1161/JAHA.114.001119

18. Paciaroni M, Agnelli G, Corea F, Ageno W, Alberti A, Lanari A, et al.
Early hemorrhagic transformation of brain infarction: rate, predictive factors, and
influence on clinical outcome: results of a prospective multicenter study. Stroke.
(2008) 39:2249–56. doi: 10.1161/STROKEAHA.107.510321

19. Larrue V, von Kummer R, Müller A, Bluhmki E. Risk factors
for severe hemorrhagic transformation in ischemic stroke patients treated
with recombinant tissue plasminogen activator: a secondary analysis of the
European-Australasian Acute Stroke Study (ECASS II). Stroke. (2001) 32:438–
41. doi: 10.1161/01.STR.32.2.438

20. Dash M, Liu H. Consistency-based search in feature selection. Artif Intell.
(2003) 151:155–76. doi: 10.1016/S0004-3702(03)00079-1

21. Kumar G, Kumar K. An information theoretic approach for
feature selection. Sec Commun Netw. (2012) 5:178–85. doi: 10.1002/sec.
303

22. Kratzer G, Furrer R. Varrank: An R package for variable ranking based on
mutual information with applications to observed systemic datasets. arXiv preprint
arXiv:1804.07134. (2018). doi: 10.48550/arXiv.1804.07134

23. R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna (2021). Available online at: https://
www.R-project.org/

24. Tourassi GD, Frederick ED, Markey MK, Floyd CE Jr. Application of the
mutual information criterion for feature selection in computer-aided diagnosis.
Med Phys. (2001) 28:2394–402. doi: 10.1118/1.1418724

25. Jung A. Machine Learning: The Basics. Singapore: Springer (2022).
doi: 10.1007/978-981-16-8193-6

26. Bergstra J, Yamins D, Cox D. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures.
In: International Conference on Machine Learning. PMLR (2013). p. 115–23.

27. Bergstra J, Bardenet R, Bengio Y, Kégl B. Algorithms for hyper-parameter
optimization. In: Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira FCN, Weinberger
KQ, editors. NIPS. (2011). p. 2546–54.

28. Bradley AP. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognit. (1997) 30:1145–
59. doi: 10.1016/S0031-3203(96)00142-2

29. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under
two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics. (1988) 44:837–45. doi: 10.2307/2531595

30. Ling CX, Huang J, Zhang H. AUC: a better measure than accuracy
in comparing learning algorithms. In: Conference of the Canadian Society for
Computational Studies of Intelligence. Berlin, Heidelberg: Springer\ (2003). p. 329–
41. Available online at: https://cran.r-project.org/web/packages/mgcv/mgcv.pdf

31. Wood S, Wood MS. Package ‘mgcv’. R package version. (2015) 1:729.

32. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
et al. Scikit-learn: machine learning in Python. J Mach Learn Technol. (2011)
12:2825–30.

33. Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J,
et al. Jupyter Notebooks – a publishing format for reproducible computational
workflows. In: Positioning and Power in Academic Publishing: Players, Agents and
Agendas. Amsterdam: IOS Press (2016). p. 87–90.

34. Plotly Technologies Inc. Plotly Visualization Library. (2015). Available
online at: https://plot.ly

35. Tan S, Wang D, Liu M, Zhang S, Wu B, Liu B. Frequency and
predictors of spontaneous hemorrhagic transformation in ischemic stroke and its
association with prognosis. J Neurol. (2014) 261:905–12. doi: 10.1007/s00415-014-
7297-8

36. Pande SD, Win MM, Khine AA, Zaw EM, Manoharraj N, Lolong L, et al.
Haemorrhagic transformation following ischaemic stroke: a retrospective study.
Sci Rep. (2020) 10:1–9. doi: 10.1038/s41598-020-62230-5

37. Peng H, Long F, Ding C. Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans
Pattern Anal Mach Intell. (2005) 27:1226–38. doi: 10.1109/TPAMI.2005.159

38. Terruso V, D’Amelio M, Di Benedetto N, Lupo I, Saia V, Famoso G,
et al. Frequency and determinants for hemorrhagic transformation of cerebral
infarction. Neuroepidemiology. (2009) 33:261–5. doi: 10.1159/000229781

39. Pundik S, McWilliams-Dunnigan L, Blackham KL, Kirchner
HL, Sundararajan S, Sunshine JL, et al. Older age does not increase
risk of hemorrhagic complications after intravenous and/or intra-
arterial thrombolysis for acute stroke. J Stroke Cerebrovasc Dis. (2008)
17:266–72. doi: 10.1016/j.jstrokecerebrovasdis.2008.03.003

40. Saposnik G, Guzik AK, Reeves M, Ovbiagele B, Johnston SC. Stroke
prognostication using age and NIH Stroke Scale: SPAN-100. Neurology. (2013)
80:21–8. doi: 10.1212/WNL.0b013e31827b1ace

41. KalininMN, Khasanova DR, IbatullinMM. The hemorrhagic transformation
index score: a prediction tool in middle cerebral artery ischemic stroke. BMC
Neurol. (2017) 17:177. doi: 10.1186/s12883-017-0958-3

42. Stone JA, Willey JZ, Keyrouz S, Butera J, McTaggart RA, Cutting S, et al.
Therapies for hemorrhagic transformation in acute ischemic stroke. Curr Treat
Options Neurol. (2017) 19:1. doi: 10.1007/s11940-017-0438-5

43. Charidimou A, Tur G, Oppenheim C, Yan S, Scheitz JF, Erdur H,
et al. Microbleeds, cerebral hemorrhage, and functional outcome after stroke
thrombolysis individual patient data meta-analysis. Stroke. (2017) 48:2084–
90. doi: 10.1161/STROKEAHA.116.012992

44. Dar NZ, Ain QU, Nazir R, Ahmad A. Cerebral microbleeds in an acute
ischemic stroke as a predictor of hemorrhagic transformation. Cureus. (2018)
10:e3308. doi: 10.7759/cureus.3308

45. Poels MM, Vernooij MW, Ikram MA, Hofman A, Krestin
GP, van der Lugt A, et al. Prevalence and risk factors of cerebral
microbleeds: an update of the Rotterdam scan study. Stroke. (2010)
41:S103–6. doi: 10.1161/STROKEAHA.110.595181

46. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne
R, et al. Neuroimaging standards for research into small vessel disease and its

Frontiers inNeurology 13 frontiersin.org

https://doi.org/10.3389/fneur.2022.951401
https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.024
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104898
https://doi.org/10.1093/toxsci/kfi275
https://doi.org/10.3389/fneur.2021.734345
https://doi.org/10.1161/JAHA.121.023175
https://doi.org/10.3390/diagnostics10080515
https://doi.org/10.1038/ajg.2013.332
https://doi.org/10.1161/01.STR.31.10.2378
https://doi.org/10.3389/fneur.2013.00205
https://doi.org/10.1161/STROKEAHA.108.526996
https://doi.org/10.1212/WNL.0b013e3182a08f2c
https://doi.org/10.1080/09638280500404438
https://doi.org/10.1016/0140-6736(91)93206-O
https://doi.org/10.1161/JAHA.114.001119
https://doi.org/10.1161/STROKEAHA.107.510321
https://doi.org/10.1161/01.STR.32.2.438
https://doi.org/10.1016/S0004-3702(03)00079-1
https://doi.org/10.1002/sec.303
https://doi.org/10.48550/arXiv.1804.07134
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1118/1.1418724
https://doi.org/10.1007/978-981-16-8193-6
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.2307/2531595
https://cran.r-project.org/web/packages/mgcv/mgcv.pdf
https://plot.ly
https://doi.org/10.1007/s00415-014-7297-8
https://doi.org/10.1038/s41598-020-62230-5
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1159/000229781
https://doi.org/10.1016/j.jstrokecerebrovasdis.2008.03.003
https://doi.org/10.1212/WNL.0b013e31827b1ace
https://doi.org/10.1186/s12883-017-0958-3
https://doi.org/10.1007/s11940-017-0438-5
https://doi.org/10.1161/STROKEAHA.116.012992
https://doi.org/10.7759/cureus.3308
https://doi.org/10.1161/STROKEAHA.110.595181
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Elsaid et al. 10.3389/fneur.2022.951401

contribution to ageing and neurodegeneration. Lancet Neurol. (2013) 12:822–38.
doi: 10.1016/S1474-4422(13)70124-8

47. Lee J, Sohn EH, Oh E, Lee AY. Characteristics of cerebral microbleeds.
Dement Neurocogn Disord. (2018) 17:73–82. doi: 10.12779/dnd.2018.17.3.73

48. Ryu WS, Jeong SW, Kim DE. Total small vessel disease burden and
functional outcome in patients with ischemic stroke. PLoS ONE. (2020)
15:e0242319. doi: 10.1371/journal.pone.0242319

49. Charidimou A and Werring DJ. Cerebral microbleeds:
detection, mechanisms and clinical challenges. Fut Neurol. (2011)
6:587–611. doi: 10.2217/fnl.11.42

50. Appelros P, Nydevik I, Seiger A, Terént A. Predictors of severe stroke
influence of preexisting dementia and cardiac disorders. Stroke. (2002) 33:2357–
62. doi: 10.1161/01.STR.0000030318.99727.FA

51. Corso G, Bottacchi E, Tosi P, Caligiana L, Lia C, Veronese Morosini M,
et al. Outcome predictors in first-ever ischemic stroke patients: a population-based
study. Int Sch Res Notices. (2014) 2014:904647. doi: 10.1155/2014/904647

52. Lee JY, Sunwoo JS, Kwon KY, Roh H, AhnMY, Lee MH, et al. Left ventricular
ejection fraction predicts post stroke cardiovascular events and mortality in

patients without atrial fibrillation and coronary heart disease. Korean Circ J. (2018)
48:1148–56. doi: 10.4070/kcj.2018.0115

53. Lin L, Chen C, Tian H, Bivard A, Spratt N, Levi CR, et al. Perfusion computed
tomography accurately quantifies collateral flow after acute ischemic stroke. Stroke.
(2020) 51:1006–9. doi: 10.1161/STROKEAHA.119.028284

54. Castro P, Serrador JM, Rocha I, Sorond F, Azevedo E. Efficacy of
cerebral autoregulation in early ischemic stroke predicts smaller infarcts
and better outcome. Front Neurol. (2017) 8:113. doi: 10.3389/fneur.2017.
00113

55. Silverman A, Kodali S, Sheth KN, Petersen NH. Hemodynamics and
hemorrhagic transformation after endovascular therapy for ischemic stroke. Front
Neurol. (2020) 11:728. doi: 10.3389/fneur.2020.00728

56. Ingala S, Mazzai L, Sudre CH, Salvadó G, Brugulat-Serrat A, Wottschel V,
et al. The relation between APOE genotype and cerebral microbleeds in cognitively
unimpaired middle- and old-aged individuals. Neurobiol Aging. (2020) 95:104–
14. doi: 10.1016/j.neurobiolaging.2020.06.015

57. Bahnasy WS, Ragab OA, Elhassanien ME. Stroke onset to needle
delay: Where these golden hours are lost? An Egyptian center experience.
Eneurologicalsci. (2019) 14:68–71. doi: 10.1016/j.ensci.2019.01.003

Frontiers inNeurology 14 frontiersin.org

https://doi.org/10.3389/fneur.2022.951401
https://doi.org/10.1016/S1474-4422(13)70124-8
https://doi.org/10.12779/dnd.2018.17.3.73
https://doi.org/10.1371/journal.pone.0242319
https://doi.org/10.2217/fnl.11.42
https://doi.org/10.1161/01.STR.0000030318.99727.FA
https://doi.org/10.1155/2014/904647
https://doi.org/10.4070/kcj.2018.0115
https://doi.org/10.1161/STROKEAHA.119.028284
https://doi.org/10.3389/fneur.2017.00113
https://doi.org/10.3389/fneur.2020.00728
https://doi.org/10.1016/j.neurobiolaging.2020.06.015
https://doi.org/10.1016/j.ensci.2019.01.003
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Machine learning approach for hemorrhagic transformation prediction: Capturing predictors' interaction
	Introduction
	Patients and methods
	Problem formulation
	Patients and study design
	Inclusion criteria
	Exclusion criteria
	Clinical and laboratory features
	MRI variables/markers and imaging protocol
	Label
	Ethical conduct and institutional approval
	Statistical analysis
	Descriptive analysis and feature selection
	Model development, optimization, and comparison
	Sample size


	Results
	Patient characteristics, HT incidence, and predictors
	Comparison of HT predicting models
	The best performing models 3D predicted spaces suggest the interaction between predictors
	Non-linear interaction of NIHSS with CMB and infarction size

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	Supplementary material
	References


