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Objective: We previously identified the independent predictors of recurrent

relapse in neuromyelitis optica spectrum disorder (NMOSD) with anti-

aquaporin-4 antibody (AQP4-ab) and designed a nomogram to estimate the 1-

and 2-year relapse-free probability, using the Cox proportional hazard (Cox-

PH)model, assuming that the risk of relapse had a linear correlationwith clinical

variables. However, whether the linear assumption fits real disease tragedy is

unknown.We aimed to employ deep learning andmachine learning to develop

a novel prediction model of relapse in patients with NMOSD and compare the

performance with the conventional Cox-PH model.

Methods: This retrospective cohort study included patients with NMOSD with

AQP4-ab in 10 study centers. In this study, 1,135 treatment episodes from

358 patients in Huashan Hospital were employed as the training set while

213 treatment episodes from 92 patients in nine other research centers as

the validation set. We compared five models with added variables of gender,
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AQP4-ab titer, previous attack under the same therapy, EDSS score at

treatment initiation, maintenance therapy, age at treatment initiation, disease

duration, the phenotype of the most recent attack, and annualized relapse rate

(ARR) of the most recent year by concordance index (C-index): conventional

Cox-PH, random survival forest (RSF), LogisticHazard, DeepHit, and DeepSurv.

Results: When including all variables, RSF outperformed the C-index in

the training set (0.739), followed by DeepHit (0.737), LogisticHazard (0.722),

DeepSurv (0.698), and Cox-PH (0.679) models. As for the validation set, the C-

index of LogisticHazard outperformed the other models (0.718), followed by

DeepHit (0.704), DeepSurv (0.698), RSF (0.685), and Cox-PH (0.651) models.

Maintenance therapy was calculated to be the most important variable for

relapse prediction.

Conclusion: This study confirmed the superiority of deep learning to design

a prediction model of relapse in patients with AQP4-ab-positive NMOSD, with

the LogisticHazard model showing the best predictive power in validation.

KEYWORDS

neuromyelitis optica spectrum disorder, anti-aquaporin-4 antibody, machine

learning, deep learning, relapse prediction

Introduction

Neuromyelitis optica spectrum disorder (NMOSD) is an

inflammatory disease of the central nervous system, mainly

manifesting as relapsing optic neuritis (ON) and transverse

myelitis (TM), resulting in visual and motor disability (1).

The majority of patients with NMOSD harbor pathogenic

autoantibodies targeting aquaporin 4 (AQP4) water channels

in the serum. Disability accumulation in NMOSD is relapse-

dependent, thus preventing or delaying relapses is the

primary goal in NMOSD management (2). Traditional first-line

immunosuppressants used as maintenance therapy in NMOSD

include azathioprine (AZA), mycophenolate mofetil (MMF),

and rituximab (RTX), while novel monoclonal antibodies

such as satralizumab, eculizumab, and inebilizumab have

exhibited powerful efficacy in controlling relapses recently (3–

7). Recognizing the risk factors of relapse and establishing a

suitable prediction model are of utmost importance to inform

individualized therapy for NMOSD.

Survival analysis (also called time-to-event analysis) has

been widely used to estimate the probability of prognostic

outcomes such as death or disease recurrence. The Cox

proportional hazard (Cox-PH) model is the most well-known

approach for determining the association between a predictive

variable of clinical characteristics and the risk of an event such

as death (8). Nomogram is a feasible prediction model using

risk factors to estimate the probability of a certain event. We

previously identified the independent predictors of recurrent

relapse in NMOSD, including gender, anti-AQP4 antibody

(AQP4-ab) titer, previous attack under the same therapy, EDSS

score at treatment initiation, and maintenance therapy, and

designed a nomogram to estimate the 1- and 2-year relapse-

free probability (9). However, this model was based on the

assumption that the risk of a certain event had a linear

combination with the variables, which could be too simplistic

to fit the actual disease trajectory.

Machine learning is one branch of artificial intelligence and

has a wide range of applications, such as predicting carcinoma

development and cardiovascular events (10, 11). Compared with

the conventional Cox-PH model, machine learning has several

advantages, including the ability to continually incorporate new

data to optimize algorithms and identify clinically important

risks with some marginal variables (12). Deep learning, a novel

form of machine learning, employs improved computer power

and big data to outperform other machine-learning techniques

(13). It has also been used in imaging diagnosis, disease staging,

and prognosis and has proved to improve outcome prediction

(14–16). The aim of the current investigation was to employ

deep learning and machine learning to design a novel prediction

model of relapse in patients with NMOSD with AQP4-ab and

compare its performance with that of the conventional Cox-

PH model.

Methods

Study design and participants

This retrospective cohort study included a cohort of patients

with NMOSD with AQP4-ab, based on which an outcome
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prediction model of NMOSD relapse under certain treatment

was published by our group (9).We divided NMOSD treatments

during follow-up into censored (relapse-free) or failed (disease

relapse) treatment episodes. The exclusion criteria were as

follows: (1) less than 15 episodes of a certain treatment; (2)

lasting for <3 months; (3) without definite start or stop

dates; and (4) receiving double/overlapping medications. The

effectiveness duration from the last administration time of each

medication referred to the study by Stellmann et al. (17).

Among them, 1,135 treatment episodes from 358 patients

in Huashan Hospital were employed as the training set while

213 treatment episodes from 92 patients in nine other research

centers as the validation set. Each treatment episode was

regarded as one independent individual. Demographic and

clinical characteristics were collected, including gender, age at

treatment initiation, disease duration, AQP4-ab titer, annualized

relapse rate (ARR) of the most recent year, Expanded Disability

Status Scale (EDSS) score at treatment initiation, the previous

attack under same therapy, phenotype of the most recent attack,

and maintenance therapy.

All patients from the above research centers received

serum AQP4-ab and MOG-ab detection using fixed cell-based

indirect immune-fluorescence tests. HEK293 cells transfected

with AQP4 M1 isoform or full-length human MOG were

employed. AQP4-ab titer ≥1:100 was identified as a high level.

MOG-ab was not found in all AQP4 ab-positive patients.

Statistical analyses

Data analysis and graphing were performed using SPSS

version 22.0 (SPSS Inc., Chicago IL, USA), GraphPad Prism

6 (GraphPad Software Inc., La Jolla CA, USA), the rms,

survival, and survminer packages of R (version 4.1.3, http://

www.r-project.org/). Discrete variables were expressed as count

and percentage, while continuous variables were presented

as means ± 1 standard deviation or medians with four

quantile ranges. Kaplan–Meier survival analysis was used for

the relapse curves of the training and validation sets, as

well as the training set with various maintenance therapies.

Harrell’s concordance index (C-index) was deemed as the

most suitable and accurate approach for estimating prediction

error, which measured the concordance between the predicted

and actual probability (18). A Harrell’s C-index of 0.5 reveals

no predictive discrimination, >0.7 reveals a good model,

and > 0.8 reveals a strong model (19). We compared

five models with added variables of gender, AQP4-ab titer,

previous attack under the same therapy, EDSS score at

treatment initiation, maintenance therapy, age at treatment

initiation, disease duration, the phenotype of the most

recent attack, and ARR of the most recent year by C-

index: conventional Cox-PH, random survival forest (RSF),

LogisticHazard, DeepHit, and DeepSurv. Statistical significance

was set at p < 0.05.

Random survival forest

Building the RSF model and graphing were conducted

with RandomForestSRC, ggRandomForests, and ggplot2

packages of R (version 4.1.3, http://www.r-project.org/).

It is a nonparametric model that builds hundreds of trees

and outputs results in the form of voting (20). This model

reduces variance and bias by employing all variables collected

and automatically evaluating complex interactions and

TABLE 1 The demographic and clinical characteristics of AQP4-ab

positive NMOSD patients in the training and validation set.

Patient

characteristics

Training set

(n= 1,135)

Validation

set

(n= 213)

Female gender, n (%) 1,055 (93.0) 198 (93.0)

Age at treatment

initiation, years

35.7 (26.2–47.8) 47.5 (34–54.9)

Disease duration,

months

18.3 (1.1–49.7) 9.7 (1–29.3)

High AQP4-ab titer

(≥1:100), n (%)

643 (56.7) 158 (74.2)

ARR of the most recent

year

1 (1–1) 1 (1–2)

EDSS score at treatment

initiation

2 (1–3) 2 (1–3)

Previous attack under

same therapy, n (%)

419 (36.9) 71 (33.3)

Most recent attack, n (%)

ON 422 (37.2) 40 (18.8)

TM 432 (38.1) 121 (56.8)

Brainstem/cerebral 117 (10.3) 8 (3.8)

Mixed 164 (14.4) 44 (20.7)

Maintenance therapy, n (%)

No or prednisone <6

months

612 (53.9) 110 (51.6)

Prednisone (≥6

months)

19 (1.7) 9 (4.2)

AZA 191 (16.8) 42 (19.7)

MMF 164 (14.4) 27 (12.7)

TAC 46 (4.1) 1 (0.5)

RTX 86 (7.6) 16 (7.5)

CTX 17 (1.5) 8 (3.8)

AQP4-ab, aquaporin-4 antibody; ARR, annualized relapse rate; EDSS, Expanded

Disability Status Scale; ON, optic neuritis; TM, transverse myelitis; AZA,

azathioprine; MMF, mycophenolate mofetil; TAC, tacrolimus; RTX, rituximab;

CTX, cyclophosphamide.
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FIGURE 1

The relapse curves. (A) Of the training and validation sets. (B) Of each maintenance therapy in the training set.

nonlinear effects (21). The C-index equals the sum of

consistent logarithms divided by the total number of data

pairs, with a prediction error rate of 1 minus the C-index.

The importance of variables was judged by the minimal depth

and variable importance (VIMP) method. Higher VIMP

or lower minimal depth contributed more to predicting

accuracy (22).

Deep learning

We used three methods of deep learning, which were

implemented in Pytorch with the Python package pycox (version

3.7.0, https://www.python.org/). The parameters in the model

were manually optimized, with dropouts ranging from 0 to

1. LogisticHazard, also called Nnet-survival, parametrizes the

discrete hazards and optimizes the survival likelihood (23).

One of the interpolation schemes, called constant hazard

interpolation (CHI), was deemed as the C-index. DeepHit is a

deep neural network trained by using a loss function, which

exploits both relative risks and survival times, whose form

of the stochastic process and parameters are dependent on

the variables (24). DeepSurv, a multilayer feed-forward neural

network, outputs a negative log partial likelihood, which is

parameterized by the weights of the network (25). The C-

indexes and losses in the training and validation sets were

calculated, respectively.

Results

Baseline characteristics

The demographic and clinical characteristics of patients

with AQP4-ab positive NMOSD in the training and validation

sets are demonstrated in Table 1. We included 1,135 counts

from Huashan Hospital as the training set and 213 counts

from other centers as the validation set. Female patients were

the predominant constituent, while approximately one-third of

them had the previous attack under the same therapy. ON and

TM were the most common recent attacks, with the EDSS score

at treatment initiation ranging from 0 to 8.5. More than one-half

of the counts had no maintenance therapy or prednisone for <6

months, and more than 10% of the counts had AZA and MMF

as their maintenance therapy, respectively.

The relapse curves of the training and validation sets

are indicated in Figure 1A, while the difference was not

statistically significant (p = 0.055). The relapse curves of

each maintenance therapy in the training set are shown

in Figure 1B, and the difference among them was highly

statistically significant (p < 0.001). Pairwise comparisons of

maintenance therapy using a log-rank test are exhibited in

Supplementary Table S1. Among them, compared with no or

prednisone <6 months, maintenance therapy of prednisone

≥6 months, AZA, MMF, tacrolimus (TAC), or RTX could

efficiently control relapse with high statistical significance (all
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FIGURE 2

Concordance indexes (C-indexes) in di�erent prediction models with added variables. (A) Of the training set. (B) Of the validation set.

p < 0.001). Compared with CTX, prednisone ≥6 months,

AZA, MMF, and RTX could reduce relapse with significance

(p = 0.017, 0.026, 0.011, and 0.002, respectively). RTX was

associated with a statistically significant reduction in relapse

when compared with AZA and MMF (p = 0.014 and

0.042, respectively).

Overall comparison

Prediction models of relapse based on Cox-PH, RSF,

LogisticHazard, DeepHit, or DeepSurv patterns were established

with the training set and verified in the validation set. The

overall comparison of C-indexes with different dropouts using
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TABLE 2 Independent predictors of relapse with multivariate Cox-PH

model.

Independent predictors Model

Hazard ratio

(95% CI)

p-Value

Female gender (Reference=male) 1.40 (0.98–1.99) 0.063

AQP4-ab titer (Reference=

<1:100)

1.29 (1.09–1.53) 0.003**

Previous attack under same

therapy (Reference= no)

1.26 (1.02–1.56) 0.033*

EDSS score at treatment initiation

(Reference= <2.5)

0.90 (0.84–0.97) 0.003**

Maintenance therapy (Reference = no or prednisone <6 months)

Prednisone (≥6 months) 0.28 (0.11–0.68) 0.005**

AZA 0.39 (0.29–0.53) < 0.001***

MMF 0.33 (0.23–0.48) < 0.001***

TAC 0.34 (0.19–0.61) < 0.001***

RTX 0.18 (0.10–0.33) < 0.001***

CTX 0.94 (0.38–2.29) 0.89

Age at treatment initiation, years 1.01 (1.00–1.01) 0.11

Disease duration, months 1.00 (1.00–1.00) 0.08

Phenotype of the most recent attack (Reference = brainstem/cerebral)

ON 0.86 (0.65–1.14) 0.30

TM 0.94 (0.71–1.25) 0.69

Mixed 1.00 (0.72–1.39) 1.00

ARR of the most recent year 1.20 (1.02–1.41) 0.026*

AQP4-ab, aquaporin-4 antibody; EDSS, Expanded Disability Status Scale; AZA,

azathioprine; MMF, mycophenolate mofetil; TAC, tacrolimus; RTX, rituximab; CTX,

cyclophosphamide; ON, optic neuritis; TM, transverse myelitis; ARR, annualized

relapse rate.

*p < 0.05.

**p < 0.01.

***p < 0.001.

deep learning models in the training set could be seen in

Supplementary Figure S1, and the dropout in each model was

set at 0.2 according to the optimization results. C-indexes in

different prediction models with added variables of the training

and validation sets are exhibited in Figures 2A,B.

Initiating with five, the variables were added up to nine

incrementally. The first five variables were gender, AQP4-ab,

previous attack under the same therapy, EDSS score at treatment

initiation, and maintenance therapy, which were statistically

significant in our previous study (9). Then, statistically

insignificant but clinically important variables were successively

included, from age at treatment start, duration of disease, and

phenotype of the most recent attack, to ARR of the most

recent year.

When including all variables, RSF outperformed the training

set (0.739), followed by DeepHit (0.737), LogisticHazard (0.722),

DeepSurv (0.698), and Cox-PH (0.679) models. As for the

validation set, LogisticHazard outperformed the other models

(0.718), followed by DeepHit (0.704), DeepSurv (0.698), RSF

(0.685), and Cox-PH (0.651) models.

Cox-PH model

As the number of variables added up from 5 to 9, the C-index

did not increase gradually as some were statistically insignificant

variables. Finally, the C-index in the training set rose from

0.668 to 0.679 while in the validation set went up from 0.651 to

0.664 and fell back to 0.651. Independent predictors of relapse

with the multivariate Cox-PH model are shown in Table 2, in

which AQP4-ab titer, previous attack under the same therapy,

EDSS score at treatment initiation, maintenance therapy, and

ARR of the most recent year were statistically significant relapse

predictors (p= 0.003, 0.033, 0.003, <0.001, and 0.026).

RSF model

There was a steady increase in the C-index as the number of

variables built in the model expanded. Finally, the C-index in the

training set increased from 0.685 to 0.739 while in the validation

set from 0.656 to 0.685. The error rate of model prediction with

different numbers of survival trees is shown in Figure 3A. The

model generated a total of 500 binary classification trees. It could

be seen that the decreasing trend in the error rate has slowed

down significantly. The error rates in the training and validation

sets were 0.261 and 0.315, respectively. Relapse-free estimate for

patients in the validation set is exhibited in Figure 3B, with the

blue line indicating relapse and the red line indicating censored

data. Predictors calculated with minimal depth and VIMP

from the RSF model are exhibited in Supplementary Table S2.

Considering lower minimal depth or higher VIMP contributed

more to predicting accuracy, maintenance therapy was regarded

as the paramount variable, with a minimal depth of 1.116 and

VIMP of 0.213. A scatter plot of the variables with minimal

depth and the VIMP method is shown in Figure 3C to provide a

comprehensive view of variable rank. A variable interaction plot

of minimal depth for nine variables is exhibited in Figure 3D.

Considering higher values equal lower interactivity, disease

duration seems to have an association with other variables.

LogisticHazard model

There was a steady increase in the C-index as the number of

variables built in the model expanded. Finally, the C-index in the

training set went up from 0.681 to 0.722, while in the validation

set from 0.664 to 0.718, the highest among these models. The

losses in the training and validation sets with the LogisticHazard

model are shown in Figure 4A.
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FIGURE 3

Random survival forest model. (A) The error rate of model prediction with di�erent numbers of survival trees. (B) Relapse-free estimate for

patients in the validation set. The blue line indicates relapse, while the red line indicates censored data. (C) A scatter plot of the variables with

minimal depth and variable importance (VIMP) method. The blue dot indicates positive VIMP, while the red dot indicates negative VIMP. (D)

Variable interaction plot for nine variables. Higher values demonstrate lower interactivity, with the target variable labeled in red.

DeepHit model

As the number of variables added up from 5 to 9, the trend

first increased and then fluctuated in the C-index, reaching 0.737

and 0.704 in the training and validation sets, respectively. The

losses in the training and validation sets with the DeepHit model

are presented in Figure 4B. The loss is the lowest among these

deep learning models.

DeepSurv model

As the number of variables added up from 5 to 9, the

C-index first remained steady and then increased, reaching

0.698 and 0.698 in the training and validation sets, respectively.

The losses in the training and validation sets with the

DeepSurv model are exhibited in Figure 4C. The loss is

much higher in this model than in the other two deep

learning models.

Discussion

Previous studies regarding neurology have employed deep

learning in stroke diagnosis and outcome prediction, as well

as differentiating NMOSD from MS (26, 27). To the best of

our knowledge, this was the first study employing artificial

intelligence to design the prediction model of relapse in

patients with NMOSD with AQP4-ab. It is beneficial for

patients to stratify their risk of relapse and avoid ineffective or

unnecessary treatment. The deep learning models demonstrated

superior predictive power compared with the conventional Cox-

PH model, with the LogisticHazard model showing the best

predictive power in validation.
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FIGURE 4

The losses in the training and validation sets with deep learning models. (A) The losses in the training and validation sets with the LogisticHazard

model. (B) The losses in the training and validation sets with the DeepHit model. (C) The losses in the training and validation sets with the

DeepSurv model.

The above prediction models included nine variables,

namely, gender, AQP4-ab titer, previous attack under the

same therapy, EDSS score at treatment initiation, maintenance

therapy, age at treatment initiation, disease duration, the

phenotype of the most recent attack, and ARR of the most

recent year, all of which were common demographical and

clinical characteristics. Maintenance therapy was calculated to

be the most important variable, which was consistent with the

clinical practice (17, 28, 29). Patients with NMOSD underwent

more potent immunosuppressive treatment that had less rates of

relapse, while those who received disease-modifying treatment

had more rates of relapse (3, 28). It emphasized the importance

of maintenance therapy as well as the correct differential

diagnosis. The previous attack under the same therapy was

another important variable, demonstrating that patients with

repetitive attacks on certain treatment should convert to a more

potent immunosuppressive drug, such as novel monoclonal

antibodies such as satralizumab, eculizumab, and inebilizumab.

Disease duration, age, clinical manifestation, and ARR before

treatment reached statistical significance in other studies and

were regarded clinically important to be included in the

prediction model (3, 17, 29).

The Cox-PH model is a classical approach to survival

analysis and event prediction. However, the model is

semiparametric, assuming that the risk of the event has a

linear association with the variables. The advantage of the

RSF model is that it is not constrained by the assumption

of proportional hazard and log-linearity (21). Meanwhile,

it could prevent the overfitting problem of its algorithm

through two random sampling processes (30). The deep

learning model could learn and infer high-order nonlinear

combinations between patient outcomes and variables in a

fully data-driven manner. Recently, it was demonstrated that

deep neural network outperforms standard survival analysis,

one of whose advantages is the ability to discern relationships

without prior selection of features (25). In this study, the RSF
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model fits best in the training set but not in the validation

set, which may demonstrate some overfitting in this model.

The LogisticHazard model performs best in the validation set

with added variables, indicating its superior performance and

improvements compared with the other models. The loss may

partially explain the relative inferiority of the C-index in the

DeepSurv model.

The primary limitation was the retrospective nature of this

study, with some recall bias. First, the dose of maintenance

therapies was varied and not standardized to the same level.

Second, AQP4-ab titers were not examined at fixed timing after

NMOSD onset. The black-box essence of the deep learning

model limited its clinical utility. Future prospective and large-

sample studies with advanced technology will further prompt to

evolution and visualization of the model.

To conclude, this study confirmed the superiority of deep

learning to design a prediction model of relapse in patients

with AQP4-ab-positive NMOSD, with the LogisticHazardmodel

showing the best predictive power in validation. Based on the

above-optimizedmodel, a personalized treatment recommender

system could be developed tominimize the probability of relapse

in the future.
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