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Purpose: This study aimed to investigate the changes in brain structure

and function in middle-aged patients with type 2 diabetes mellitus (T2DM)

using morphometry and blood oxygen level-dependent functional magnetic

resonance imaging (BOLD-fMRI).

Methods: A total of 44 middle-aged patients with T2DM and 45 matched

healthy controls (HCs) were recruited. Surface-based morphometry (SBM)

was used to evaluate the changes in brain morphology. Degree centrality

(DC) and functional connectivity (FC) were used to evaluate the changes in

brain function.

Results: Compared with HCs, middle-aged patients with T2DM exhibited

cortical thickness reductions in the left pars opercularis, left transverse

temporal, and right superior temporal gyri. Decreased DC values were

observed in the cuneus and precuneus in T2DM. Hub-based FC analysis of

these regions revealed lower connectivity in the bilateral hippocampus and

parahippocampal gyrus, left precuneus, as well as left frontal sup.

Conclusion: Cortical thickness, degree centrality, as well as functional

connectivity were found to have significant changes in middle-aged patients

with T2DM. Our observations provide potential evidence from neuroimaging

for analysis to examine diabetes-related brain damage.

KEYWORDS

type 2 diabetes mellitus, brain, middle age, resting-state fMRI, surface-based

morphometry

Introduction

Type 2 diabetes mellitus (T2DM) accounts for more than 90% of patients with

diabetes. At present, the incidence and prevalence of T2DM continue to rise globally (1).

Patients with T2DM have been reported to have a higher incidence of cognitive decline

and Alzheimer’s Disease (AD) (2–4). T2DM may be associated with an accelerated
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decrease in the speed of processing, executive function, and the

loss of memory (5). Despite a consensus on the effect of T2DM

on brain atrophy in this stage, the association of diabetes-related

brain damage is less well-characterized. Aging is one of the

strongest risk factors for brain atrophy (6). Elderly patients with

T2DMwere examined in most studies (7, 8), while most of them

had developed atrophic brains and cognitive impairment, and

effective interventions are limited at this stage. Therefore, early

attention needs to be paid to middle-aged patients with T2DM

before irreversible brain damage happens (5, 9, 10).

Magnetic resonance imaging (MRI) is a non-invasive

technique to study central nervous system alterations.

Meanwhile, a recent longitudinal study suggested that brain

atrophy might have occurred in middle-aged T2DM patients

(11). The clinical manifestation of brain atrophy in middle age is

not as obvious as that in old age. Studies showed small changes

in brain structure in obese adolescents (12, 13). However,

there is still lacking evidence of brain structural and functional

alterations in middle-aged T2DM patients. It could be of great

clinical implication to prevent and mitigate the progress of

diabetes-related brain damage that changes in the brain can

be found in middle-aged patients with T2DM, and this kind

of neurodegenerative alterations, linked with age, cognitive

performance, and pathogenic changes, can be readily studied

using cortical morphological and functional analysis.

Previous studies showed that T2DM patients had undergone

varying degrees of changes in the structure of the brain (14–

16). Neurodegeneration alterations can be studied using cortical

morphological analysis. Several studies used surface-based

morphometry (SBM) to assess changes in cortical thickness

in AD (17, 18). Simultaneously, several studies used voxel-

based morphometry (VBM) and found that gray matter (GM)

volume is reduced in patients with T2DM (19, 20), suggesting

that GM changes might be a potential biomarker for brain

damage in T2DM early evaluation. SBM is a more advancing

technique illustrating the morphological cortical/GM changes

compared to VBM (21). Only a few SBM studies were conducted

on T2DM (22), especially in the middle-aged group. Resting-

state functional magnetic resonance imaging (rs-fMRI) and

brain network theory have been widely used to understand the

neuropathophysiology of diabetes-related brain damage (23).

Different changes were found in various functional imaging

indexes (24–26). However, the aforementioned studies mainly

Abbreviations: AVLT, Auditory Verbal Learning Test; BMI, body mass

index; DC, degree centrality; DSST, Digit Symbol Substitution Test; FC,

functional connectivity; FBG, fasting blood glucose; FINS, fasting insulin;

FOV, field of view; FWE, Family-wise error; Grooved Pegboard Test; GM,

gray matter; GRF, Gaussian random field; HCs, healthy controls; MMSE,

Mini-Mental State Examination; MNI, Montreal Neurological Institute;

MoCA, Montreal Cognitive function Assessment; SBM, Surface-based

morphometry; T2DM, Type 2 diabetes mellitus; TMT, Trail Making Test;

TR, repetition time; TE, echo time.

aimed at elderly patients with T2DM. Because the damage of

hyperglycemia to the nervous system is a chronic and lasting

process (27, 28), identifying changes in middle-aged patients

with T2DM could lead to a better understanding of diabetes-

related brain damage.

The purpose of this study was to identify diabetes-related

modulations of cortical thickness and neural activity in middle-

aged patients, to reveal diabetes-related brain damage in

neuroimaging. In this study, we used SBM to detect cortical

thickness in middle-aged patients with T2DM. Subsequently,

we used rs-fMRI to reveal spontaneous or internal connections

within and between regions of the brain to further understand

the brain network of middle-aged patients with T2DM.

Materials and methods

Participants

This study was recognized by the ethics committee of the

Guangzhou University of Traditional Chinese Medicine. Each

subject is demanded to sign a medical consent form for medical

procedures. A total of 44 patients with T2DM were recruited

from July 2019 to October 2021, who met the diagnostic criteria

of T2DM published by the American Diabetes Association

in 2014 and were all right-handed. Middle-aged people were

defined as people between the ages of 40 and 60 years. At

the same time, the neurocognitive function of all patients with

T2DM was assessed based on the Montreal Cognitive function

Assessment (MoCA) scale and Mini-mental State Examination

(MMSE) scores. The following characteristics were used to

eliminate participants: other diabetes, organic brain injury (such

as brain trauma, cerebrovascular disease, or tumor), mental

health problems, systemic diseases, drug abuse, and a history

of alcohol and tobacco addiction. During the same period, 45

HCs matched for age, gender, and education were recruited.

The inclusion criteria were as follows: glycosylated hemoglobin

< 6.0% and fasting blood glucose < 7.0 mmol/L. Considering

the low incidence of cognitive impairment in the middle-aged

group (29), we excluded HCs whose MoCA and MMSE scores

were both <26. Other exclusion criteria were the same as for the

T2DM group.

Clinical measurements and cognitive
testing

Without shoes or heavy clothing, the body weight and height

were measured. The body mass index (BMI) was computed

by dividing the weight in kilos by the squared height in

meters. In a sitting position, blood pressure was recorded

two times at a 5-min intervals on the left arm. Glycosylated

hemoglobin, fasting blood glucose (FBG), and fasting insulin
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(FINS) were among the clinical biochemical indicators in

individuals with T2DM. HOMA-IR was calculated using the

method HOMA-IR= FBG×FINS/22.5. The duration of T2DM

was estimated based on the patient’s self-reported initial time.

All individuals were required to complete a series of

neuropsychological tests, including MoCA (30), MMSE (31),

Grooved Pegboard Test (GPT) (32), Auditory Verbal Learning

Test (AVLT) (33), and Digit Symbol Substitution Test

(DSST) (34).

MRI acquisition

A 3.0T Siemens MAGNETOM Prisma clinical MRI scanner

with a 64-channel head coil was used to collect MRI data. During

MRI image acquisition, the participants closed their eyes and

stayed awake. Cushions are used to decrease head movement

and earplugs are used to lessen noise impact. To rule out organic

lesions in the brain (cerebral infarction, hemorrhage, trauma,

and space-occupying lesions), all participants acquired T2WI

and T2-FLAIR sequences.

The echo plane imaging sequence parameters were as

follows: repetition time (TR) = 500ms; echo time (TE) =

30ms; field of view (FOV) = 244mm × 244mm; slices= 35;

thickness= 3.5mm; and voxel size = 3.5mm × 3.5mm ×

3.5mm; 960 volumes were transversely acquired. Structural

images were obtained using magnetization-prepared rapid

gradient echo sequences: TR= 2530ms; TE= 2.98ms; inversion

time (TI)= 1100ms; flip angle= 7◦; FOV= 224mm× 256mm;

slices =192; thickness = 1mm; and voxel size = 1mm ×

1mm× 1 mm.

Image processing and analysis

SBM analysis

The Computational anatomy toolbox (CAT12) (http://www.

neuro.uni-jena.de/cat/) was used to conduct the SBM on

the MATLAB 2016b platform. The projection-based thickness

method was used to estimate the cortical thickness and

central surface of the left and right hemispheres (35). First,

we reviewed and converted the raw DICOM scans into

the Neuroimaging Informatics Technology Initiative (NIFTI)

format (36). The processing pipeline was as follows: Took

each participant’s brain images segmentation into GM, white

matter, and cerebrospinal fluid; and affine registration to

TABLE 1 Demographic and clinical data of all participants.

T2DM (n = 44) HCs (n = 45) Statistics P value

General and clinical data

Age (years) 50.43± 5.12 49.93± 5.85 t= 0.427 0.670

Gender (male/female) 26/18 27/18 χ
2
= 0.008 0.930

Education (years) 12 (9, 15) 12 (9, 12) z =−0.543 0.587

Duration (years) 4.5 (2, 6.75) N/A N/A N/A

HbA1c (%) 8.25 (6.9, 10.8) N/A N/A N/A

FBG (mmol/L) 7.56 (5.92, 9.16) N/A N/A N/A

FINS (µIU/ml) 6.83 (4.61, 15.57) N/A N/A N/A

HOMR-IR 2.57 (1.64, 5.54) N/A N/A N/A

BMI (kg/m2) 24.15± 3.29 23.36± 2.80 t= 1.229 0.222

SBP (mmHg) 126.93± 11.00 125.91± 13.35 t= 0.393 0.695

DBP (mmHg) 83.09± 8.36 82.56± 6.25 t= 0.343 0.733

Cognitive tests

MoCA score 27 (25, 29) 27 (26, 29) z =−0.249 0.803

MMSE score 28.97 (27.4, 29) 28 (27, 29) z =−0.790 0.430

GPT (R) 73 (65, 82.75) 70 (61, 82) z =−0.813 0.416

GPT (L) 79.56 (73.25, 89.75) 82 (73, 95) z =−0.920 0.358

AVLT (immediate) 24 (20, 27.75) 23 (19, 26) z =−1.016 0.310

AVLT (5min) 10 (8, 11) 10 (8, 10) z =−0.941 0.346

AVLT (20min) 9 (7, 11) 9 (8, 11) z =−0.125 0.901

DSST 46.91± 11.07 44.58± 14.34 t= 0.859 0.393

Two-sample t-tests for normalized data, Mann–Whitney tests for non-normalized data, and Chi-Squared tests for gender. N/A, not applicable.

T2DM, type 2 diabetes mellitus; HCs, healthy controls; HbA1c, glycosylated hemoglobin; FBG, fasting blood glucose; FINS, fasting insulin; BMI, body mass index; SBP, systolic blood

pressure; DBP, diastolic blood pressure; MoCA, Montreal Cognitive function Assessment; MMSE, Mini-mental State Examination; GPT, Grooved Pegboard Test; AVLT, Auditory Verbal

Learning Test; DSST, Digit Symbol Substitution Test.

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2022.939318
http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kang et al. 10.3389/fneur.2022.939318

MNI template space, which involved diffeomorphic anatomical

registration using Diffeomorphic Anatomical Registration

Through Exponentiated Lie algebra (DARTEL) to a 1.5-mm

isotropic adult template and subsequent nonlinear deformation.

For subsequent cortical thickness analysis, we chose the option:

“Surface and thickness estimation.” The cortical thickness was

calculated for each participant with default parameter settings.

To check for homogeneity of the images of the cerebral cortex

characteristics, we assessed the homogeneity of SBM data in the

“Check data quality” section in CAT12. High correlation values

mean that data are more similar to each other. All of the images

exhibited a good correlation (>0.85). Finally, a Gaussian kernel

with a full-width-half-maximum (FWHM) of 15mm was used

to smooth the images for cortical thickness.

Preprocessing of resting-state fMRI data

Statistical Parametric Mapping (SPM12) (https://www.fil.

ion.ucl.ac.uk/spm/) and Resting-State fMRI Data Analysis

Toolkit plus V1.2 (RESTplus V1.2) (http://www.restfmri.net/

forum/restplus) were used to preprocess the images on the

MATLAB 2013b platform. To find the volume in steady-state

FIGURE 1

(A,B) Clusters showing significantly changed Cortical thickness in the T2DM group compared to the HCs group. Two-sample t-test, FWE

corrected P < 0.05. T2DM, Type 2 diabetes mellitus; HCs, healthy controls; FWE, Family-wise error; L, left.
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magnetization, the first 10 time points were eliminated.

The remaining 950 images had the head motion adjusted.

Additionally, conducting slice timing during preprocessing was

not necessary for images with lower-echo time (37). Excessive

head motion was defined as more than 2mm translation or

more than 2◦ rotation in either direction. To ensure a more

precise spatial normalization, the 3D-T1WI was utilized to

guide rs-fMRI registration via the unified segment and DARTEL

method. We used the Friston 24-parameter head motion (HM)

model, which included 6 HM parameters, 6 HM parameters

one-time point before, and the 12 corresponding square items

to regress out the head motion effects from realignment (38). To

decrease noise, the data were filtered to a 0.01–0.08 Hz range.

Degree centrality and functional connectivity
analysis

Degree centrality (DC) parameters were calculated using

RESTplus. The algorithm for DC has been reported previously

(39) and can be summarized as follows. First, the time series

were extracted from the preprocessed resting-state fMRI data

to calculate a correlation matrix using the temporal Pearson’s

correlation of the time series between certain voxels. Then,

fully connected binary graphs were built with a threshold

of correlation r = 0.25; the selection of this parameter was

consistent with our previous study (20). When the correlation

between two voxels was greater than the threshold, the binary

graph was 1, otherwise, it was 0. According to the adjacency

matrix of the graph, the DC parameters were calculated for each

voxel by the addition of the correlations of each voxel. The values

in each voxel were transformed to z-values using the Fisher z-

transformation to improve normality. Then, we used RESTplus

to smooth DC values as a 6-mm (FWHM) Gaussian kernel.

The peak point in the results of the DC analysis was defined

as the coordinates of the seed area, in which the radius was set

to 6mm. After defining the seed area, we performed functional

connectivity (FC) analysis based on the seed area. We computed

Pearson’s correlation coefficients between the seed area and the

remaining brain voxels. Then, a Fisher r-to-z transformation was

displayed to improve normality. Finally, we obtained z-FC maps

of each individual for further analysis.

Statistical analyses

Demographic and clinical data

These statistical analyses were performed using the SPSS

software package (version 26.0). First, the Kolmogorov–Smirnov

test was used to determine whether the data were normal.

The two-sample t-test was used to assess the normalized

data. For non-normalized data, we used the Mann–Whitney

nonparametric tests. Gender and other categorical variables

were utilized to find differences using the Chi-Squared test.

P<0.05 was used as the statistical significance level.

Cortical thickness

The analyses of cortical thickness imaging were compared

between the patients with T2DM and HCs using two-sample

t-tests in CAT12 with age, gender, and education as covariates.

Family-wise error (FWE) correction was performed to correct

for multiple comparisons; P < 0.05 was considered statistically

significant. Then, we reported the surviving clusters in the

Desikan–Killiany (DK40) atlas (40), which presented an atlas for

subdividing the human cerebral cortex into standard gyral-based

neuroanatomical regions.

Degree centrality and functional connectivity

To analyze DC and FC differences, we performed a

two-sample t-test between the two groups in the SPM12. Age,

gender, education, and head movement parameters were set as

covariates. To correct the DC result for multiple comparisons,

we used the Gaussian random field (GRF) (two-tailed, voxel-

level P < 0.005, cluster-level P < 0.05) method in the RESTplus.

The corrected cluster size threshold was 95 voxels.

The analysis of FC was also performed in the SPM12

statistical module. The statistical methods used were consistent

with DC. To improve the credibility of FC results, the result was

presented at the statistical threshold of P< 0.01 using voxel-level

FWE correction.

Results

Demographic, clinical, and cognitive
characteristics

Table 1 shows the demographic, clinical, and cognitive data

of all the subjects. In terms of age, gender, and education

level, there was no statistically significant difference between the

two groups.

TABLE 2 Comparison of cortical thickness between T2DM and HCs

groups.

Atlas regions Peak MNI Cluster-size T

L Pars opercularis −53 15 8 305 −5.04

Transverse temporal −48 −21 8 184 −4.87

R Superior temporal 51 −11 −2 111 −4.76

T2DM, type 2 diabetes mellitus; HCs, healthy controls; MNI, Montreal Neurological

Institute; L, left; R, right.
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FIGURE 2

Comparison of DC values between the two groups. Two-sample t-test, Gaussian random field correction (two-tailed, voxel-level P < 0.005,

cluster-level P < 0.05). DC, degree centrality; L, left. *P < 0.05.

There were no significant differences in the MoCA, MMSE,

GPT (R), GPT (L), AVLT (immediate), AVLT (5min), AVLT

(20min), and DSST scores between the two groups on

the cognitive exam. Table 1 summarizes the results of the

cognitive tests.

Cortical thickness

Compared with HCs, patients with T2DM exhibited thinner

cortical thickness, including the left pars opercularis and left

transverse temporal and right superior temporal gyri (Figure 1;

Table 2).

Degree centrality

After GRF multiple comparison correction, only

one cluster in the T2DM group with decreased

DC survived after intergroup comparison (Figure 2;

Table 3), involving the cuneus and precuneus, compared

with HCs.
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TABLE 3 Comparison of DC and FC between T2DM and HCs groups.

Atlas regions Peak MNI Number

of voxels

T

DC

R Precuneus

Cuneus

6 −66 51 112 −4.089

FC

R ParaHippocampal

Hippocampus

22 −33 −9 201 −7.877

L ParaHippocampal

Hippocampus

−27 −33 −6 173 −7.707

L Precuneus −9 −57 51 35 −7.356

L Frontal Sup −18 −3 63 54 −6.566

T2DM, type 2 diabetes mellitus; HCs, healthy controls; DC, Degree Centrality; FC,

Functional Connectivity; MNI, Montreal Neurological Institute; L, left; R, right.

Functional connectivity

The right parahippocampal, right hippocampal, left

fusiform, left parahippocampal, left hippocampus, left

precuneus, and left frontal sup areas were shown to have

decreased FC in the T2DM group, according to the hub-based

FC analysis (Figure 3; Table 3).

Discussion

According to this study, the best of our knowledge is focused

on the morphological indicator of cortical thickness. We found

that middle-aged patients with T2DM have reduced cortical

thickness of the left pars opercularis, left transverse temporal,

and right superior temporal gyri compared with HCs. Cortical

thickness partly characterizes the development of brain tissue

and is associated with diseases such as neurodegeneration. In

addition, the version of understanding is that T2DM accelerates

the aging of the brain, and this cortical aging accelerates the

transformation of cognitive impairment (41–43). A predictive

change that accelerated cortical thinning is a feature of cognitive

impairment and dementia may have occurred before clinical

diagnosis (44). Despite no significant difference in cognitive

testing between middle-aged patients with T2DM and HCs,

significant changes were found in cortical thickness, indicating

that the change in brain structure was a more sensitive biological

marker that could provide more powerful evidence for brain

damage caused by T2DM.

A previous study of T2DM in the elderly found that long-

term adiposity might have a detrimental impact on the volume

of brain regions (45). The results included the area of pars

opercularis, which is the part of the inferior frontal gyrus that

overlies the insular cortex (46). The results of resting-state fMRI

indicated that the enhanced functional connectivity of the left

hippocampus with the left inferior frontal gyrus significantly

correlated with disease severity. Our study found that the

cortical thickness of the left pars opercularis in middle-aged

T2DM decreased significantly, which might be an important

cause of accelerated brain atrophy.

Meanwhile, compared with HCs, middle-aged T2DM

patients showed significantly reduced cortical thickness in the

left transverse temporal gyrus. The transverse temporal gyrus

plays an important role in auditory processing (47). Previous

research reported cortical thickness reductions in the temporal

gyrus in patients with T2DM (48). The findings indicated that

T2DM probably caused brain damage in specific regions. Graph

theory analysis suggested that the brain function network of

patients with T2DM has changed in the temporal lobe (49). The

results provided a theoretical basis for diabetic pathophysiology

and clinical presentation. To sumup, the evidence suggested that

morphology changes in the temporal lobe of middle-aged T2DM

may link to diabetes-related brain damage.

The right superior temporal gyrus is mainly responsible for

processing objects and spatial information (50). A meta-analysis

confirmed that the right superior temporal gyri had resting-

state function alterations in T2DM relative to healthy people

(51). VBM analysis found that gray matter volume in patients

with T2DM was decreased in the right superior temporal gyrus

(52). However, the relationship between the structural and

functional changes of the right superior temporal gyrus is not

clear, emphasizing the need for further research.

Our study also found that in the cuneus and precuneus,

the DC value of brain function in T2DM decreased. DC

is a local (direct) network connectivity of indicator, which

shows that the higher-order cortical correlation regions are

important (39). Precuneus is an important part of the default

mode network (DMN). DMN plays an important role in

primary perceptual control and advanced cognitive processing,

in which the precuneus is the core node of DMN (53).

Similar alteration patterns in the brain can be observed in

T2DM patients, in which the population at risk for AD

show altered brain activity in the DMN before cognitive

dysfunction (54). Another study of neurological changes in

patients with T2DM found reduced brain activity in the

left precuneus (55). Moreover, it is reported that memory

impairment in patients with early AD could be improved with

stimulation to the precuneus in AD subjects by high-frequency

repetitive transcranial magnetic stimulation (56). Together with

the observations of the decrement DC value in cuneus and

precuneus regions among middle-aged patients with T2DM, the

results emphasized the importance of cuneus and precuneus in

fundamental cognitive functioning and the DMN architecture

of T2DM and functional changes in those regions may serve

as sensitive imaging biomarkers for early monitoring of the

progress of brain damage in T2DM.

Subsequently, we found, in the FC analysis based on

the precuneus as the ROI, a decreased functional connection
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FIGURE 3

Di�erences in precuneus-based functional connectivity between the T2DM group and HCs group. Two-sample t-test, FWE corrected P <0.01.

T2DM, Type 2 diabetes mellitus; HCs, healthy controls; FWE, Family-wise error; L, left; R, right. *P < 0.05.
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between the anterior cuneate lobe and the bilateral hippocampus

and parahippocampal gyrus in T2DM. Previous studies showed

that hippocampal damage was related to the severity of

diabetes and cognitive impairment (57–61). Some studies

used the hippocampus as the seed region (59, 60, 62) and

found that the FC between the hippocampus and DMN

was weak, which was related to memory and cognitive

ability. Another study segmented hippocampal subregions

and found that several hippocampal subfield volumes were

significantly associated with memory scores, highlighting

the key role of the hippocampus in memory decline

(63). In T2DM subjects included in the present study,

hippocampal functional declines were already initiated despite

no cognitive impair manifestations. The hippocampus is

an important structure for proper functional cognition.

However, most studies were cross-sectionally designed, and

those continuous alterations are inaccessible. Long-term

modification in the hippocampus should be an important topic

in future investigations.

We also found a decrease in the functional connection

between the precuneus and the left superior frontal gyrus in

T2DM. Few studies were conducted on the left frontal sup in

T2DM. One study on diabetic retinopathy reported a decrease in

the DC value of the right superior frontal gyrus (64). A study of

transcranial direct current stimulation (tDCS) in treating MCI

found (65) that the intensity and synchronization of bilateral

frontal lobe activity improved after tDCS. Nonetheless, evidence

is still limited on the left superior frontal gyrus aberrant among

T2DM. Therefore, further studies can be performed on the

frontal lobe in T2DM to enhance the understanding of diabetes-

related brain damage.

Several limitations also need to be illustrated in this

study. First, we use a relatively small sample size. Hence,

a sample size of more patients qualified for this study is

urgently needed. Second, causal relationships or structural

progression and functional changes cannot be shown in

the cross-sectional design. Therefore, the longitudinal design

should be used in future studies. Third, our results should be

comprehended cautiously. Due to the strict threshold, only a

few regions are analyzed in this manuscript. Multimodal MRI

can better demonstrate the reliability of the results and requires

further exploration.

Conclusion

Cortical thickness, DC, and FC levels were shown to be

reduced in middle-aged patients with T2DM in our preliminary

study. These parameters could potentially serve as biomarkers

for predicting brain atrophy progression. Especially, we found

that SBM could be able to provide more information about

the diversification of cortical morphology in T2DM. To

summarize, our findings in the neuroimaging field suggested

that middle-aged patients with T2DM had undergone abnormal

changes in brain structure and function. The cortical thickness,

DC, and FC might serve as promising indicators to reflect and

enhance our understanding of diabetes-related brain damage.
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