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Background: Cognitive impairment and cerebral microbleeds (CMBs) are

long-term side-e�ects of cranial radiation therapy (RT). Previously we showed

that memory function is disrupted in young patients and that the rate of

cognitive decline correlates with CMB development. However, vascular injury

alone cannot explain RT-induced cognitive decline. Here we use resting-state

functional MRI (rsfMRI) to further investigate the complex mechanisms

underlying memory impairment after RT.

Methods: Nineteen young patients previously treated with or without focal

or whole-brain RT for a brain tumor underwent cognitive testing followed

by 7T rsfMRI and susceptibility-weighted imaging for CMB detection. Global

brain modularity and e�ciency, and rsfMRI signal variability within the dorsal

attention, salience, and frontoparietal networks were computed. We evaluated

whether MR metrics could distinguish age- and sex-matched controls

(N = 19) from patients and di�erentiate patients based on RT exposure and

aggressiveness. We also related MR metrics with memory performance, CMB

burden, and risk factors for cognitive decline after RT.

Results: Compared to controls, patients exhibited widespread

hyperconnectivity, similar modularity, and significantly increased e�ciency

(p < 0.001) and network variability (p < 0.001). The most abnormal

values were detected in patients treated with high dose whole-brain

RT, having supratentorial tumors, and who did not undergo RT but had

hydrocephalus. MR metrics and memory performance were correlated

(R = 0.34–0.53), though MR metrics were more strongly related to risk factors

for cognitive worsening and CMB burdenwith evidence of functional recovery.
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Conclusions: MR metrics describing brain connectivity and variability

represent promising candidate imaging biomarkers for monitoring of

long-term cognitive side-e�ects after RT.

KEYWORDS

fMRI, brain connectivity, 7T MRI, radiation therapy, brain tumors, memory, vascular
injury

Introduction

The long-term effects of brain tumor therapies on

neurocognitive function and the development of young patients

are well known. In the years following radiation therapy (RT),

a key contributor to these side-effects, gradual declines in

intelligence quotient have been observed (1–3) with notable

impairments in memory and executive function (4–6). Several

groups have reported more severe impairments in patients

treated with RT at younger ages, higher doses, larger irradiated

volumes, and for specific tumor subtypes, based on whether

they received proton vs. photon RT (1, 2, 4, 5, 7). The

mechanisms underlying neurocognitive decline after RT are not

fully understood but are thought to be related to RT-induced

white matter necrosis, functional changes in neural networks

(8), as well as vascular brain injuries that can be observed on

magnetic resonance imaging (MRI) as early as 1-year following

RT (4, 6, 9).

Previously we leveraged the enhanced spatial resolution and

susceptibility contrast benefits of 7 Tesla (7T) susceptibility-

weighted imaging (SWI) to investigate the relationship between

RT-induced vascular injury and cognitive performance. Vascular

injury, in the form of arterial thinning and tiny hemosiderin

brain deposits called cerebral microbleeds (CMBs), worsened

over time at the same rate with which verbal memory

performance was declining (4, 10). Cross-sectional studies at

lower field strengths have also linked RT-induced CMBs to

cognition (6), which is not surprising as similar pathology

has been shown to be related to the cognitive impairments

experienced by dementia patients and even healthy aging

adults (11, 12). The finding that irradiated patients without

detectable white matter necrosis experience long-term cognitive

deficits further emphasizes this link between vascular injury

and cognition (8), however, vascular injury alone cannot

explain other examples of neurocognitive decline such as in

non-irradiated patients, suggesting a functional abnormality.

While increased alterations in functional connectivity derived

from functional MRI (fMRI) have indeed been associated

with poorer neurocognitive performance before and after

brain tumor therapy (13), there remains little functional

data to explain long-term cognitive outcomes, especially

after RT.

Resting-state functionalMRI (rsfMRI) is a powerful research

tool in clinical neuroscience that can detect network alterations

by way of indirectly measuring spontaneous fluctuations in

brain activity during rest (14). Within millimeter partitions

of the brain, the time-varying amplitude of blood-oxygen

metabolism in response to neural activity is recorded, and the

spatiotemporal synchronicity of the rsfMRI “blood-oxygenation

level dependent” (BOLD) signal between brain areas is typically

evaluated to measure connection strength and define brain

networks. Prior studies have used rsfMRI to demonstrate, for

example, that adult survivors of childhood posterior fossa

tumors have hyperconnected frontal brain areas relative to

controls (15–17). Similarly, task-based fMRI studies involving

neurocognitive testing during image acquisition, have revealed

long-term functional differences in brain tumor patients as a

result of treatment (17) and exposure to cognitive rehabilitative

interventions (16, 18). The ability of fMRI to probe cognition

(19–21) and predict neurocognitive outcomes in diverse patient

groups (22–25) via the detection of network alterations, makes

it especially useful for investigating the complex mechanisms

underlying RT-induced neurocognitive decline. In this study,

we acquired rsfMRI and SWI at 7T in a cohort of 19 patients

previously treated for a brain tumor in order to relate measures

of functional brain network organization and activity tomemory

performance and vascular injury alongside known clinical risk

factors for cognitive decline after RT. Here 7T MRI was

used strategically to achieve increased image spatial resolution,

enhanced tissue susceptibility and BOLD signal contrast, and

ultimately gains in statistical power (26, 27). We also performed

a small reproducibility study to investigate the stability of

our functional imaging metrics with different preprocessing

and analysis parameters, given their known influence on

fMRI reliability.

Methods

Participants

With institutional review board approval and parental or

patient written informed consent, 19 patients (mean age 18

years, range 12–25 years; 47% female) previously treated for

a brain tumor underwent 7T rsfMRI, SWI and T1-weighted
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TABLE 1 Patient demographics.

Patient Sex Race Cancer Type Tumorlocation RT Age (years) RT dose, max (Gy) Surgery Chemo Other Dx

RT 1st MRI

1 M Hispanic Medu p. fossa wb 3 22 37, 53.5 gtr× 4 Vincristine –

2 F White Medu p. fossa wb 18 22 36, 55.8 biopsy Cisplatin, cyclophosphamide,

vincristine

–

3 M White Medu p. fossa wb 14 22 23.5, 54 gtr Carboplatin, CCNU, cytoxan,

VP-16, vincristine

–

4 M White Medu p. fossa wb 6 25 36, 55 gtr Carboplatin, CCNU,

vincristine

Hypertension

5 M White Medu p. fossa wb 7 22 23.4, 55.8 gtr CCNU, cisplatin, vincristine –

6 M White Medu p. fossa wb 12 14 36, 54 str Carboplatin, vincristine –

7 F White Medu p. fossa wb 9 14 23.4, 54 gtr Carboplatin, CCNU, cisplatin,

cyclophosphamide, cytoxan,

vincristine

–

8 M Asian Germ Ventricle wv 9 19 24, 45 ETV, biopsy Carboplatin, VP-16 Diabetes, hydro

cephalus

9 M White Germ Ventricle wv 22 22 18, 30 str Carboplatin, etopside,

ifosfamide

Diabetes

10 F White Germ Ventricle wv 9 22 24, 40.5 biopsy Carboplatin, VP-16 Diabetes

11 F Other Germ Ventricle wv 12 14 18, 30 biopsy Carboplatin, VP-16 Diabetes

12 F Asian Germ Ventricle wv 24 25 18, 33 biopsy Carboplatin, VP-16 –

13* M White PPT p. fossa wb 9 12 23.4, 54.9 gtr, ETV Cisplatin, cyclophosphamide Hydro cephalus,

stroke

14 M White gAnglio Occipital focal 15 17 59.4, 59.4 gtr Vemurafenib –

15 M Black Astro Parietal focal 22 22 59.4, 59.4 gtr – –

16 F White OLIGO Temporal – – 15 – gtr Everolimus –

17 F White JPA p. fossa – – 18 – gtr – –

18 F White JPA p. fossa – – 13 – gtr – Hydro cephalus

19 F Hispanic JPA p. fossa – – 14 – ETV, biopsy – Hydro cephalus

medu, medulloblastoma; germ, germinoma; PPT, pineal parenchymal; ganglio, anaplastic ganglioglioma; astro, pleomorphic xanthoastrocytoma; oligo, oligodendroglioma; JPA, juvenile pilocytic astrocytoma; p.fossa, posterior fossa; wb, whole brain; wv,

whole ventricular; n/a, data affected by motion; gtr, gross total resection; str, sub-total resection; ETV, endoscopic third ventriculostomy.
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imaging [see Table 1 for demographics and our prior work

(4) for further details on the cohort and recruitment criteria].

Compared to 1.5 or 3T MRI, 7T imaging is associated with

heightened risk of claustrophobia and more pronounced patient

bioeffects such as dizziness due to the increased field strength,

nonetheless the technique remains safe and was well-tolerated

by the present cohort. Recruited patients were either non-

irradiated or received RT at least 1 month prior to the MRI.

Of the 19 patients, eight were treated with whole-brain RT

(WBRT) for a medulloblastoma in the posterior fossa, except

for one patient who had a pineal parenchymal tumor in the

same location. Five patients were treated with whole-ventricular

focal RT (WVRT) for a ventricular germinoma; two others were

treated with supratentorial focal RT for gliomas located in the

occipital and parietal lobe. The remaining four control patients

were treated with surgery but not RT for lower-grade gliomas

primarily in the posterior fossa. On average, the WBRT group

(mean age 19.1 years, range 14–25) was treated 9.8 years prior

(range 3.1–19.9); the focal group (including WVRT; mean age

20.1 years, range 14–25) 4.3 years prior (0.1–13); and non-

irradiated controls (mean age 15 years, range 13–18) 3.7 years

prior (range 0.8–8 years). While several patients had a history

of hydrocephalus, a common side-effect of brain tumors linked

to cognitive dysfunction (28), only two patients (#13 and #19

in Table 1) showed evidence of ventricle enlargement on MRI.

A random selection of 19 age- and sex-matched healthy control

data (approx. mean age 19 years, range 11–25; 47% female) from

two publicly available 3T rsfMRI datasets (29, 30) were also

evaluated in this study for comparison with the patient data (full

datasets can be accessed via openneuro.org using data accession

numbers ds000221 and ds000256).

Neurocognitive testing

Prior to the MRI exam, a battery of seven computerized

cognitive tests (Cogstate, Inc.; Newhaven, CT) were

administered (4). In a previous analysis of this cohort we

found the verbal memory test involving recall of items on a

shopping list (International Shopping List; ISL) to be most

useful for distinguishing patients who were treated with vs.

without RT (4). We therefore focused the present work on the

ISL test and corresponding brain networks involved in episodic

memory (31, 32). The total number of correct items recalled was

converted into an age normalized z-score based on mean test

scores of healthy controls from Cogstate’s database.

Imaging protocols

Imaging was performed on a 7T General Electric (GE)

Healthcare scanner equipped with a 2-channel transmit and

32-channel receive head coil. Resting-state fMRI scans were

acquired using an interleaved, gradient-echo sequence with 125

time points [repetition time (TR) = 4 s, minimum echo time

(TE), flip angle = 90, 1.8mm isotropic resolution, 23 cm field-

of-view (FOV)]. TRs for the public fMRI acquired at clinical

field-strengths were 1.4 s (29) and 2.5 s (30). SWI and T1-

weighted images were also acquired; key MR parameters for

these sequences are included in Morrison et al. (4), with a more

in-depth description of the simultaneous MRA-SWI sequence

and reconstruction methods provided in Bian et al. (33).

Data analysis

We investigated aspects of brain network organization and

activity from the rsfMRI data by computing: (1) theoretical

graph metrics representing brain network modularity and

efficiency and (2) measures of BOLD variability thought to

represent the brain’s cognitive flexibility, namely its ability to

efficiently process and respond to unexpected external stimuli

(34). These metrics were chosen as modularity has previously

been shown to predict the efficacy of cognitive rehabilitative

interventions in young adults (35), while efficiency appears

to mediate risk for vascular injury and the development of

cognitive impairments (36) and is linked to cognitive flexibility

in pediatric brain tumor survivors (37).

fMRI preprocessing

Preprocessing was performed using the default pipeline

in CONN (38). Steps included motion estimation and

realignment correction, slice-timing correction, outlier

detection, segmentation of the brain tissue, registration of the

data to an atlas space (Montreal Neurological Institute (MNI)

brain atlas), and spatial smoothing with an 8mm Gaussian

kernel (Figures 1A,B). Bandpass filtering (0.01–0.25Hz) and

linear regression thereafter removed the effects of confounding

covariates including outliers based on>2mm translation (Nmax

= 30), motion parameters (N = 12), and noise components

in regions dominated by the white matter (N = 15) and

cerebrospinal fluid (N = 5). The same denoising parameters

were used for all subjects but adjusted such that each subject’s

whole brain connectivity values were normally distributed after

denoising while maintaining minimum 30 degrees of freedom.

Network modularity and e�ciency

Graph metric analysis was performed using CONN (38)

and the Brain Connectivity Toolbox (BTC) (39). For each

subject, an adjacency matrix representing nondirected, whole

brain functional connectivity was generated by correlating the

mean BOLD signal across pairs of brain regions derived from

132 atlas parcellations (Figure 1C). In this way, the nodes of the

graph represent the brain parcels, while the edges correspond
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FIGURE 1

Functional connectivity matrix generation. Following fMRI data preprocessing (A) and warping of the brain atlas regions-of-interest (ROIs) to

subject space (B), connectivity matrices were generated via Pearson correlations between all pairs of brain ROIs (C).

to connections. A threshold of r > 0.5 was applied to the

subject-level matrices such that only positive, moderate-to-

strong connections were used to compute global modularity and

efficiency. Modularity is a measure of the degree to which the

network is divided into smaller, nonoverlapping subgroups such

that within-group edges are maximized while between-group

edges are minimized, and was computed as

N
∑

i=1

(

eii − a2i

)

(1)

where N is total number of subgroups, ei is the proportion of

edges connecting any two nodes within subgroup i, and aiis the

proportion of edges connecting an individual node in subgroup

i to any other nodes including nodes in other subgroups (40).

Global efficiency is an inverse measure of the average shortest

path length (or smallest number of edges) between all pairs of

nodes, and was computed as

6
(

di (:)
)

(

n2 − n
) (2)

where di is the inverse shortest distance between nodes, and n is

the total number of nodes (41).

Network variability

BOLD variability was computed as the standard deviation

of time series data corresponding to three networks of

interest, isolated via independent component analysis (ICA)

decomposition in CONN (40 components with 64 component

subject-level dimensionality reduction). These networks

included the salience, frontoparietal, and dorsal attention

networks that are commonly engaged during working memory

processes based on a meta-analysis search in neurosynth.org

of 1,091 imaging studies. The networks were identified using a

spatial matching template and if left and right network activity

appeared as two separate components, both components were

used in the analysis. To verify that our cohort of patients

had altered functional connectivity involving nodes of these

networks, we performed an atlas- and voxel- based t-test

comparing connectivity maps for patient vs. control using

seed-based correlations to generate the maps for each network.

Here the mask of the entire atlas-defined network was used
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as the seed. Since ICA decomposition can return different

solutions based on the choice of preprocessing and analysis

parameters, we also performed a small reproducibility study

using data from the present cohort and a separate cohort

of adult patients with Parkinson’s disease imaged at 3T to

evaluate the effects of bandpass filtering (0.008–0.09Hz vs.

0.008–0.06Hz vs. 0.016–0.09Hz), spatial smoothing (none

vs. 4 vs. 8mm) and number of ICA components (20 vs.

40, where 20 is the minimum to extract a complete set of

resting-state networks) on the variability of the dorsal attention

network (DAN).

Statistical analysis

We used Wilcoxon rank sum tests to determine whether

MR metrics could distinguish healthy controls from patients

and amongst patient subgroups: no RT, focal RT (including

supratentorial focal and whole ventricular focal RT), and

WBRT (including low and high dose whole brain RT). Pearson

correlation coefficients were estimated for relationships between

age-normalized MRmetrics and ISL performance scores, as well

as total CMB burden. We used linear regression to test whether

known risk factors for RT-induced neurocognitive impairment,

such as age during RT and time since RT, were related to

ISL performance scores and MR metrics to further evaluate

the potential of modularity, efficiency, and BOLD variability as

markers of cognition.

Results

Reliability of network variability metric

The results of our reproducibility study are shown in

Figure 2. Upon increasing the number of ICA components

from 20 to 40, the DAN was reduced into left and

right hemisphere subnetworks (Figure 2A). Network variability

computed from the DAN time courses corresponding to 20-

vs. 40-component ICA were significantly correlated (Figure 2B).

The left hemisphere subnetwork was more strongly correlated

with the overall DAN variability than the right subnetwork

(L-DAN40 vs. DAN20: R = 0.79, p < 0.0001; R-DAN40

vs. DAN20: R = 0.56, p < 0.0001), while healthy control

data appeared to be more tightly correlated than patient

data. Though not significant, the use of a narrower and

lower frequency bandwidth i.e., 0.008–0.06Hz yielded lower

variability than the use of a wider bandwidth, i.e., 0.008–0.09Hz

(Figure 2C). Unsmoothed data also produced lower variability

values on average, a finding that was significant when compared

to standard 4mm and 8mm kernel smoothing (Figure 2C).

Nonetheless, the overall effect size was small relative to the range

of values typically measured across healthy controls and patients

(see Figure 2B). Taken together, these results reiterate that

the BOLD variability metric derived from ICA-based network

FIGURE 2

Network variability is a reproducible and stable MR metric. Upon

increasing the number of ICA components, the dorsal attention

network (DAN) was reduced to left and right hemisphere

sub-networks (A), with corresponding variability metrics

remaining significantly correlated (B) and relatively stable across

di�erent data filtering bandwidths and spatial smoothing kernels

(C).

time series data is reproducible and stable across different

preprocessing and ICA parameters.

Distinguishing types of RT exposure and
aggressiveness with rsfMRI metrics

Figure 3A shows brain networks of interest averaged

across patients and controls, from which network variability

was computed. Based on a 40-component ICA, a total of

four networks were identified including the left and right

hemisphere DAN, salience network (SN), and frontoparietal

network (FPN). Individual subject networks constructed via

backprojection spatially reflected the total group average;

tumor sites did not overlap with the networks. Comparison

of network connectivity for patients vs. controls using seed-

based correlations confirmed altered patient connectivity,

including hyperconnectivity in medial frontal nodes of the
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FIGURE 3

ICA-derived brain networks for all subjects and seed-based analysis confirming altered networks connectivity in patients. For each patient,

BOLD variability was computed as the standard deviation of network-specific timeseries data (A). Seed-based analysis confirmed that patients

had significantly altered connectivity (relative to controls) involving nodes of the networks of interest (B). In (B), orange corresponds to brain

areas that are hyperconnected to respective network nodes in patients (relative to controls), while purple represents hypoconnected areas.

FIGURE 4

MR metrics can distinguish healthy controls and patient subgroups. Scaled and Fisher transformed functional connectivity (FC) matrices reveal

notable group di�erences in global connectivity (A). MR metrics derived from FC matrices and ICA brain networks show significant group trends

related to group exposure to radiation therapy (RT) and/or the degree of RT treatment aggressiveness (B, C). HC, healthy controls; no RT,

non-irradiated patients; WVRT, whole-ventricular focal RT; Focal, focal RT to the supratentorial brain; WBRT, whole-brain RT.

SN and FPN, and parietal nodes of the FPN and DAN

(Figure 3B). Reduced connectivity was also observed between

lateral frontal areas involved in memory and language,

and the DAN and FPN. Qualitative evaluation of group-

averaged functional connectivity matrices, from which global

efficiency and modularity were computed, revealed noticeable

global connectivity differences (Figure 4A). Compared to

the healthy controls (n = 19), all patients had more

widespread hyperconnectivity. Upon separating patients into

finer group (Supplementary Figure 1), those treated with focal

RT to the supratentorial brain (n = 2) exhibited extensive

hyperconnectivity, followed by those treated with high-dose
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WBRT (n = 4), no RT (n = 4), low-dose WBRT (n = 4), and

WVRT (n= 5).

All imaging metrics except network modularity showed

significant group differences (Figures 4B,C). We expected to

observe trends in imagingmetrics across the groups according to

whether RT was received, followed by treatment aggressiveness

based on the approximate volume, location, and dose of RT.

In this way and to maintain sufficiently sized groups, we first

ranked the groups as follows: healthy controls < no RT <

focal/WVRT RT < WBRT. In a supplementary analysis we

investigated finer groupings: healthy controls< no RT<WVRT

< supratentorial focal < low-dose WBRT < high-dose WBRT.

As seen in Figures 4B,C, global efficiency and local SN and DAN

variability best reflected this expected trend where group-level

RT exposure and increasing treatment aggressiveness appeared

to be associated with higher global efficiency (p < 0.001)

and SN and DAN variability (all p < 0.001). While healthy

controls nearly consistently yielded significantly lower values

than patients, high values were unexpectedly recorded for non-

irradiated patients, often exceeding that of the focal RT patients.

Similar plots in Supplementary Figure 1 with patients separated

into finer groups, showed the same trends plus a consistent effect

of dose whereby high-dose WBRT was associated with higher

MR metrics.

rsMRI metrics and memory performance

Correlation tests between patients’ age-normalized MR

metrics and the ISL test scores, representative of memory

performance, revealed a significant positive correlative

relationship between global modularity and efficiency and

ISL scores (modularity: R = 0.53, p < 0.02; efficiency: R

= 0.49, p < 0.05; Figure 5B). Network variability metrics

similarly showed near significant, positive correlative trends

with ISL scores except for R-DAN variability (Figure 5A).

Division of the MR metrics by age at the time of imaging to

produce age-normalized values, limits direct interpretation of

trend lines in Figure 5 where performance decline appears

to be associated with lower MR values. Nonetheless,

age-normalization here was necessary as ISL test scores

are normalized to age-appropriate healthy control data,

and furthermore functional connectivity and network

variability metrics have shown age-related changes across

the lifespan (20).

Relationship between CMB burden and
rsfMRI metrics and memory performance

In our prior work (4), CMB burden defined as the

total number of CMBs detected on a patient’s SWI images

(Figure 6A), showed only longitudinal correlations with

neurocognitive performance and here our results reiterate that

cross-sectional ISL test scores do not show any clear trend

with CMB burden (Figure 6B, yellow bars). Our approach

of regrouping patients by their CMB burden based on the

distribution of the data allowed for the inclusion of patients

with no CMBs and revealed an interesting trend for L-DAN

variability andmodularity. Notably, L-DAN variability appeared

to follow a parabolic trend where patients with low (0–2 CMBs)

and very high CMB burden (>91 CMBs) averaged low

variability, while patients with moderate CMB counts (4–47)

averaged high variability (Figure 6C, top row). The opposite was

observed for modularity where high modularity was detected

in patients with very low and very high CMB counts, while

low modularity was found in patients with moderate CMB

counts (Figure 6D, top row). Plotting of the individual patient

data points for those who had at least 1 CMB (Figures 6C,D,

bottom rows) showed that the results are largely dependent on

imaging values from the few subjects with >100 CMBs. These

parabolic-like trends for L-DAN variability and modularity can

also be mildly appreciated in Figures 4B,C, despite grouping

patients based on RT exposure and aggressiveness as opposed to

CMB burden.

Association of risk factors for cognitive
decline after RT with rsfMRI metrics and
memory performance

Younger age during RT and increased time elapsed since

RT are known risk factors for neurocognitive decline and

CMB development after radiation exposure (1, 3, 4, 9).

Multiple regression analysis revealed significant associations

between age-normalized imaging metrics and risk factors for

neurocognitive decline, with global efficiency yielding the

strongest association followed by SN variability; ISL test scores

were not significantly associated with the risk factors (Table 2).

Although these results are illustrated in Figure 7 as three-

dimensional scatter plots, normalization of the MR metrics by

age at the time of imaging again limits the direct interpretation

of these trends.

Discussion

This cross-sectional imaging study investigated how rsfMRI

measures of brain connectivity and network variability differ

among patients with varying exposure to RT and degree of

treatment aggressiveness compared to age- and sex-matched

healthy controls. The strength of functional brain connections

as well as variability within certain networks was related to: (1)

neurocognitive measures of memory performance, (2) vascular

injury in the form of CMBs, and (3) known risk factors for

neurocognitive decline after RT, demonstrating that functional
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FIGURE 5

Age-normalized MR metrics and ISL test scores are correlated. Age-normalized network variability (A) and functional connectivity (B) metrics

show a positive correlative trend with the age-normalized International Shopping List (ISL) test scores, representative of neurocognitive memory

performance. As shown in B, only modularity and e�ciency are significantly correlated with ISL. SN, salience network; FPN, frontoparietal

network; L-DAN, left hemisphere dorsal attention network; R-DAN, right hemisphere DAN.

FIGURE 6

MR metrics change parabolically with increasing CMB burden. Degree of cerebral microbleed (CMB) burden detected on SWI (A) reveals

parabolic-like changes in left hemisphere dorsal attention network (L-DAN) variability and modularity (B) with increasing CMB burden (based on

within-group averages). Isolated plots for L-DAN variability and modularity are shown respectively in the top row of (C, D); the bottom rows

show the individual patient data points for CMB counts ranging 1–50 (magnified) and 1–205 (full range). In (B), modularity values have been

reduced by a factor of 5 for visualization purposes. Two of the 19 patients had poor SWI data quality and therefore CMB burden could not be

evaluated. SN, salience network; FPN, frontoparietal network; L-DAN, left hemisphere dorsal attention network; R-DAN, right hemisphere DAN;

Mod, modularity; E�, e�ciency; ISL, International Shopping List test score.
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TABLE 2 Multivariate analysis of risks factors for neurocognitive decline after RT.

Neurocognitive outcome metrica Age during RT Time since RT

Incidence rate ratio [95%

confidence interval]

p-Value Incidence rate ratio [95%

confidence interval]

p-Value

Neurocognitive performance:

International shopping list −0.06 [−0.20, 0.08] NS −0.11 [−0.23, 0.02] NS

Network variability:

Salience −0.001 [−0.0015,−0.0009] <0.0001 −0.001 [−0.0014,−0.0008] <0.0001

Frontoparietal −0.0008 <0.002 −0.0008 <0.002

L-dorsal attention −0.001 [−0.0015,−0.0007] <0.0001 −0.001 [−0.0014,−0.0006] <0.002

R-dorsal attention −0.0015 [−0.0022,−0.0008] <0.002 −0.0013 [−0.0020,−0.0007] <0.002

Functional connectivity:

Modularity −0.0055 [−0.0087,−0.0023] <0.005 −0.0057 [−0.0087,−0.0023] <0.002

Efficiency −0.0017 [−0.0019,−0.0014] <0.0001 −0.0016 [−0.0018,−0.0014] <0.0001

aImaging metrics represent surrogate measures of neurocognitive status and are normalized by age at the time of imaging.

FIGURE 7

Age-normalized MR metrics are strongly associated with risk factors for cognitive decline after RT. Neurocognitive memory performance

measured via the international shopping list (ISL) task is less associated with known risk factors for neurocognitive decline after RT (A) than MR

metrics (B) representing surrogate markers of neurocognitive status.

MR metrics could be useful surrogate markers of cognition in

brain tumor patients for reliable evaluation of the long-term

treatment side-effects.

Reliability of the BOLD signal in patients with brain

tumors has previously been shown to vary with disease

aggressiveness (42). Since BOLD variability has not yet to

our knowledge been investigated as a potential biomarker of

brain tumor features or treatment side-effects, the first aim

of this study was to demonstrate its reproducibility. Overall,

we found that BOLD variability metrics were relatively stable

across fMRI preprocessing and ICA postprocessing parameters,

though unsmoothed data yielded several outliers. Spatial

smoothing is generally considered an essential preprocessing

step to improve data signal-to-noise ratio, with previous

studies having shown stable functional connectivity as a

function of resolution after smoothing (43). However, other

studies have argued that spatial smoothing should be avoided

in network analyses (44). While the results cannot inform

the optimal approach, they do show that BOLD variability

is more reproducible among different smoothing kernels,

and that unsmoothed data significantly reduces the relative

group average.
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By nature of the ICA decomposition method, fMRI

data-driven outputs (spatial brain maps and associated time

courses) vary with each iteration (45). The desired number

of components typically chosen in line with the experimental

hypothesis can also significantly alter the solution, yielding

brain maps of (sub)-networks of different granularity [as

shown in Figure 2A and thoroughly explored by Wang and Li

(46)]. Our finding that 20 and 40 component ICA produces

BOLD variability metrics that are considerably correlated in

patients, provides impetus for proceeding to use these metrics

for biomarker discovery, and demonstrates that while ICA

solutions can appear spatially distinct with increased number

of components, the time courses can look relatively similar.

Compared to the patient data, the control subject data were

even more tightly correlated despite being derived from two

different public datasets, providing further evidence that the

BOLD variability metric is also robust against scanner and

acquisition parameters.

Independent component analysis with 40 components

(twice the minimum to extract a complete set of resting-state

networks) was used to resolve more fine-grained representations

of the network that may better characterize the underlying

neurophysiological complexity of working memory processes.

Seed-based analysis detected significant differences in SN,

FPN, and DAN connectivity between patients and controls,

providing further rationale for their inclusion as networks of

interest to compute BOLD variability. Specifically, the finding of

frontal lobe hyperconnectivity in patients agrees with previous

reports of survivors of childhood tumors exhibiting frontal

hyperconnectivity in the FPN and SN relative to controls, (15)

as well as increased frontal engagement during working memory

tasks (47). In young patients this is not surprising as frontal

regions have been shown to develop post-adolescence and thus

remain highly susceptible to plasticity (48).

On average, with the exception of global brain modularity,

patients exhibited higher functional connectivity metrics than

age- and sex-matched controls, providing further evidence of

functional alterations in patients associated with treatment

related side-effects despite the likely influence of previous

structural changes due to lesion growth. Increased BOLD

variability has previously been detected linearly across the

lifespan and associated with age-related reductions in cognitive

performance (49–51). In adults with Alzheimer’s disease,

Scarapicchia and colleagues also found that during rest whole-

brain BOLD variability was increased in patients relative to

controls and furthermore related to lower memory scores (52).

Functional imaging studies of network efficiency have similarly

shown enhanced efficiency in patients relative to controls

(53). Given that both these metrics capture information about

cognitive flexibility, their elevation in patients with increasing

RT exposure and aggressiveness in this study could reflect

underlying compensatory neural mechanisms directly related

to the severity of their experienced brain injury. It is also

important to note that while structural network efficiency

reflecting impaired white matter architecture is often decreased

in patients (36, 37), fMRI metrics are uniquely advantageous in

that they can capture polysynaptic activity and early neuroplastic

changes that might not be reflected structurally. Although brain

modularity was not as sensitive to patient vs. control differences,

controls on average exhibited slightly higher modularity which

aligns with prior evidence of young individuals with higher

baseline modularity performing better over iterative cognitive

training sessions (35).

Qualitative evaluation of the group averaged functional

connectivity matrices and the inclusion of age- and sex-

matched controls in addition to non-irradiated controls was

especially critical to realizing group trends in the data involving

RT exposure and aggressiveness. Interestingly, no RT visually

exhibited more hyperconnectivity than patients treated with

more aggressive high and low dose WBRT regimens for a

posterior fossa tumor, respectively. This highlights concerns

that non-irradiated patients may not always be suitable controls

for evaluating the impact of RT on brain connectivity, and

that structural changes due to supratentorial lesion growth or

hydrocephalus (detected in 50% of nonirradiated patients) (54)

may have a greater impact on functional connectivity than RT

effects. Patients treated with focal WVRT had the most normal

appearing connectivity profiles, which could be explained by

the location and relatively small size of their pre-treatment

lesions, as well as the fact that some of the patients were treated

as young adults which has previously been associated with a

better prognosis (4). Quantitatively, some of the rsfMRI metrics

mimicked these visual trends, but we also observed instances

in which patients treated with focal RT had more favorable

functional connectivity metrics than the WBRT group. While

individual patient variations likely influenced differences in the

group trends observed across connectivity metrics, the effect

of dose within the WBRT group was one trend that remained

consistent, providing strong evidence that higher whole-brain

doses lead to more functional brain alterations.

Positive correlations observed between the ISL test scores

and rsfMRI metrics reaffirm that functional imaging can indeed

probe cognition in pediatric brain tumor patients. From the

results in Figure 6 relating ISL scores and functional connectivity

metrics with CMB burden, we can appreciate the added value

of rsfMRI metrics which allowed for meaningful trends in the

data to be extracted that otherwise could not be explained by

memory task performance alone. Parabolic trends in modularity

and DAN variability suggest that there may be a process of

functional neural recovery unfolding over the course of years,

simultaneous to the development of CMBs over time (4, 6, 9).

In this way, one might reconsider the relative influence that

vascular injury vs. microstructural and network-level functional

changes have on the cognitive abilities of these patients. While

severe vascular brain injury can independently lead to functional

reorganization, there is evidence for example of re-emergence
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of modular brain networks in stroke patients that are driven by

changes in brain connectivity (55). Given this knowledge, it is

not surprising that patients in this study with upward of 100

CMBs (who are also at high risk for stroke), approached normal

modularity values. Biologically, modular networks have been

proven more functionally efficient than non-modular networks

(56), therefore, it also makes sense that we see a re-emergence

of cognitive flexibility in the DAN as it relates to the brain’s

ability to efficiently process and respond to unexpected external

stimuli (34).

Further emphasizing the utility of rsfMRI for the evaluation

of cognitive side-effects after RT was the finding that risk factors

(i.e., time since RT, age during RT) weremore strongly associated

with rsfMRI metrics than ISL test scores. Although cognitive

testing batteries represent the gold standard for detecting

cognitive impairments, their cross-sectional reproducibility in

young patients is limited (57). Individual performance on a

given task can fluctuate with testing fatigue during the exam

and even the time of day (58). While rsfMRI metrics have

their own limitations with respect to reproducibility (59), our

results demonstrate that despite sources of variation influencing

reliability, consistent and clinically meaningful trends in the data

can still be elucidated using standard preprocessing methods.

There are several limitations to this study, with the

most notable ones being the limited cohort size and patient

heterogeneity with respect to age, tumor location and pathology,

the presence of hydrocephalus, treatment strategy, and time

since treatment. We used 7T MRI to enhance statistical

power, and to minimize within-group variations and allow for

meaningful results to be derived from the limited cohort, we

grouped patients based on the similarity of their treatment

strategy and naturally the alikeness of their tumor type and

location. Nonetheless, factors such as hydrocephalus, although

only mildly present in few patients across the groups, may

have confounded the results given known independent effects

of hydrocephalus on white matter structure and cognition

(54). Especially in the non-irradiated control groups where

two out of four patients presented with hydrocephalus, we

expect that this side-effect significantly influenced the observed

connectivity patterns.

Much of these limitations are largely due to unforeseen

challenges with recruiting patients for a 7T research scan in

addition to their clinical scan, as well as a delay in acquiring

rsfMRI data as part of the study protocol. Specifically, challenges

in recruiting patients who received WBRT for a posterior

fossa tumor >1 year prior resulted in a widening of our

inclusion criteria leading to the recruitment of two patients

treated <1 year before 7T imaging. Consequently, some of

the observed memory impairment and functional alterations in

these patients may be caused by acute as opposed to late RT

effects, which differ in pathophysiology. Otherwise, a delay in

acquiring functional data for this study led to our inability to

collect sufficient longitudinal rsfMRI data which, based on our

prior work (4), may provide better insight into the relationship

between risk factors, cognitive decline, and vascular injury.

One final limitation worth noting was our inability to access

age-appropriate control data acquired at 7T, thus requiring

utilization of public 3T data. Variations in image signal-to-noise

ratio (SNR) caused by the differing field strengths may have

contributed to the distinction of patient and control metrics;

nonetheless, given extensive prior evidence of abnormal brain

activity in patients with neurological conditions, the underlying

biological effects are still thought to be largely influencing the

results. Our control dataset arising from two different studies,

scanners, and sequence parameters further demonstrate that

the imaging metrics are robust against differences in scanning

methods that may affect SNR.

Overall, despite these limitations, the results of this work

demonstrate that cross-sectional measures of functional brain

connectivity and variability derived from rsfMRI may provide

surrogate markers of cognition for monitoring the long-term

effects of RT, including the complex relationship between

vascular injury, network connectivity, and cognition. While

we did not investigate the impact of underlying structural

connectivity changes and presence of white matter pathologies

on patient outcomes in this study, it is the subject of our

ongoing work.

Conclusion

Collectively, the results demonstrate that rsfMRI metrics

describing global brain modularity, efficiency, and local

network variability hold promise for monitoring the long-term

cognitive side-effects of RT in young patients being treated

for a brain tumor. These neuroimaging metrics correlated

with memory performance and were also able to effectively

differentiate patients based on exposure to and aggressiveness

of RT. Compared to memory performance, these functional

connectivity metrics were more strongly associated with risk

factors for cognitive decline and severity of RT-induced

vascular injury.
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SUPPLEMENTARY FIGURE 1 |

MR metrics can distinguish healthy controls and patient subgroups.

Scaled and Fisher transformed functional connectivity (FC) matrices

reveal notable group di�erences in global connectivity (A). MR metrics

derived from FC matrices and ICA brain networks show significant group

trends related to group exposure to radiation therapy (RT) and/or the

degree of RT treatment aggressiveness (B, C). HC, healthy controls; no

RT, non-irradiated patients; WVRT, whole-ventricular focal RT; Focal,

focal RT to the supratentorial brain; WBRT, whole-brain RT.
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