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Background: Stroke is the second leading cause of death worldwide, causing

a considerable disease burden. Ischemic stroke is more frequent, but

haemorrhagic stroke is responsible for more deaths. The clinical management

and treatment are di�erent, and it is advantageous to classify their risk as

early as possible for disease prevention. Furthermore, retinal characteristics

have been associated with stroke and can be used for stroke risk estimation.

This study investigated machine learning approaches to retinal images for risk

estimation and classification of ischemic and haemorrhagic stroke.

Studydesign: A case-control studywas conducted in the Shenzhen Traditional

Chinese Medicine Hospital. According to the computerized tomography scan

(CT) or magnetic resonance imaging (MRI) results, stroke patients were

classified as either ischemic or hemorrhage stroke. In addition, a control group

was formed using non-stroke patients from the hospital and healthy individuals

from the community. Baseline demographic and medical information was

collected from participants’ hospital medical records. Retinal images of both

eyes of each participant were taken within 2 weeks of admission. Classification

models using a machine-learning approach were developed. A 10-fold cross-

validation method was used to validate the results.

Results: 711 patients were included, with 145 ischemic stroke patients,

86 haemorrhagic stroke patients, and 480 controls. Based on 10-fold

cross-validation, the ischemic stroke risk estimation has a sensitivity and a

specificity of 91.0% and 94.8%, respectively. The area under the ROC curve

for ischemic stroke is 0.929 (95% CI 0.900 to 0.958). The haemorrhagic

stroke risk estimation has a sensitivity and a specificity of 93.0% and 97.1%,

respectively. The area under the ROC curve is 0.951 (95% CI 0.918 to 0.983).
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Conclusion: A fast and fully automatic method can be used for stroke subtype

risk assessment and classification based on fundus photographs alone.

KEYWORDS

stroke subtypes classification, retinal image analysis, ischemic stroke, haemorrhagic

stroke, machine-learning method

Background

Stroke is one of the most important causes of morbidity and

mortality worldwide. It is the second leading cause of death,

accounting for 6.3 million deaths in 2015 worldwide (1). Despite

the decreasing trend in China for stroke prevalence since the

1990s, the absolute number of deaths and the loss of disability-

adjusted life-years keep increasing (2). Stroke has become

the leading cause of mortality (3), with an age-standardized

mortality rate of 114.8/100 000 person-years in 2013 (4). The

overall stroke burden is exceptionally high in rural areas where

medical resources are limited (4).

As therapeutic options are limited, especially in rural

areas, feasible and effective screening strategies are needed

to identify high-risk stroke patients. Traditional methods to

assess stroke risk include ultrasound, computed tomography

angiography (CTA), and magnetic resonance angiography

(MRA). Ultrasound can evaluate vascular stenosis and assess

blood flow velocity in the carotid artery. Yet, some research

has reported that carotid stenosis is not a good enough tool

for stroke screening since most stroke patients do not have

moderate or high stenosis that could have been detected before

an incidence of stroke (5, 6). CTA andMRA can detect extensive

cerebrovascular abnormalities (7). These techniques are valid

with high accuracy, yet the relatively high cost and invasive

quality made them impossible to be used as screening tools.

Recently, there are digital solutions to assess stroke risk for the

purpose of prevention (8). However, these tools were derived

from the Framingham Stroke Risk Score prediction algorithm

and were enhanced to include additional lifestyle risk factors

shown to be important for stroke and CVD occurrence. The

additional factors may be a helpful indication of risk or a

response to the outcome. The advantage is that the algorithm

is easy to use but the accuracy remains a question. More study

is needed to find better factors to raise the predictive accuracy.

Therefore, there is an urgent need for additional techniques to

detect the subtle changes, ideally at an early stage before the

incidence occurs, so that prevention can be considered to avoid

the damage.

Retinal vessels are the only visible vessels accessible by

simple fundus photography (9). They have the same embryo

origin and histological structure as cerebral vessels (10–

13). Retinal microvascular damages can reflect damage to

cerebral microvasculature and neurons (14). It provides us

with a convenient way to assess cardiovascular conditions.

Previous studies have demonstrated that retinal characteristics

contain valuable information for stroke risk assessment and

conventional clinical variables (15–20). In addition, retinal

microvasculature may provide adequate information to explain

the underlying pathophysiological changes of various stroke

subtypes (21).

In addition to finding indicators to establish a model

for stroke risk estimation, identifying stroke subtypes is also

vital for guiding clinical treatment and management. Ischemic

stroke is due to a lack of blood flow and accounts for about

80% of strokes. Haemorrhagic stroke is due to bleeding and

accounts for about 20% of strokes (22). Stroke subtyping can

have different purposes. First, classifying patients is needed for

therapeutic decision-making in clinical practice. An ischemic

stroke may be treatable with a medication that can break down

the clot, such as aspirin. While a haemorrhagic stroke may

benefit from surgery (23). Haemorrhagic stroke has a much

higher death rate than ischemic stroke (24). The strategies for

preventing haemorrhagic and ischemic stroke are similar but

not the same due to different disease pathology (25). Ischemic

stroke prevention requires a comprehensive approach to the

variety of stroke risk factors a patient may encounter. Similarly,

prevention for haemorrhagic stroke will have to target efforts

against the vascular risk factors significant in the haemorrhage’s

etiology. For preventing ischemic stroke, platelet antiaggregant

and anticoagulant medications are usually required. In contrast,

some degree of avoidance of these same medications is an issue

in preventing haemorrhagic stroke (25).

This study aimed to establish risk estimation models for

ischemic and haemorrhagic stroke patients and contribute

to the early classification of the two-stroke subtypes with

retinal characteristics.

Study subjects

The stroke cases for this study were obtained from

the Shenzhen Traditional Chinese Medicine (SZTCM)

Hospital. Cases were defined as ischemic stroke patients

and haemorrhagic stroke patients. Control subjects included

patients with hypertension, dyslipidemia, or diabetes at the

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2022.916966
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Qu et al. 10.3389/fneur.2022.916966

TABLE 1 Comparison of clinical characteristics between control, ischemic and hemorrhagic stroke.

Control Ischemic stroke Hemorrhagic stroke

(N = 480) (n = 145) (N = 86)

Age, mean (95% CI)1 42.74 (41.52–43.96) 58.90 (57.08–60.73) * 52.12 (49.63–54.60) *

BMI, mean (95% CI)1 24.01 (23.68–24.34) 23.58(23.02–24.15) 23.68 (22.97–24.39)

SBP, mean (95% CI)1 123.05 (121.42–124.68) 131.04(128.06–134.02) * 131.27 (131.09–136.29) *

DBP, mean (95% CI)1 75.53 (74.35–76.71) 80.85(78.82–82.87) * 82.02 (79.12–84.93) *

Male, N (%)2 244 (50.8%) 118(81.4%) * 71 (80.6%) *

Hypertension, N (%)2 83 (56.5%) 122 (84.1%) * 80 (93.0%) *

Smoker, N (%)2 50 (10.4%) 19(8.4%) 9 (10.5%)

1Independent sample t test.
2Chi-square test.
*P < 0.001 compared to control.

same hospital. In addition, we have increased the number of

control subjects with healthy subjects from the community. The

participants’ inclusion criteria included good health status and

ability to sit on a chair for retinal image taking; having clear basic

information and disease diagnosis; having appropriate blood

pressure measures, blood glucose, and blood lipids. Subjects

with any of the following conditions were excluded from the

study: cataracts or other eye diseases that affected retinal image

taking, requiring close clinical monitoring, being too weak

to comply with the research, and being unable or unwilling

to comply with disease examination. For this study, we have

obtained clinical research ethics approval from the Shenzhen

Traditional Chinese Medicine Hospital Ethics Committee

(Ref. No.: K2019-005-01) and the Joint Chinese University of

Hong Kong—New Territories East Cluster Clinical Research

Ethics Committee (Ref. No.: 2020.093). Baseline information,

including age, sex, smoking, drinking, and medical history,

was collected by trained doctors upon admission. Trained

nurses measured patients’ height, weight, and blood pressure

on the first day of admission. Body mass index (BMI) was

calculated as the weight (kg) divided by the square of the height

(m). The blood samples were collected in the morning. A

fully automatic analyser measured blood lipid levels of total

cholesterol (TC), triglycerides (TG), high-density lipoprotein

(HDL) cholesterol, low-density lipoprotein (LDL) cholesterol,

fasting blood glucose level, glycated hemoglobin test (HbA1c),

coagulation index levels of activated partial thromboplastin time

(APTT), prothrombin time (PT), fibrinogen (FIB), thrombin

time (TT.); and blood routine examination results including

white blood cell (WBC), hemoglobin, blood platelet (PLT), and

plateletcrit (PCT). Hypertension was defined as a systolic blood

pressure of ≥ 140 mmHg or diastolic blood pressure of ≥ 90

mmHg or hypertension history. Diabetes mellitus was defined

as fasting plasma glucose ≥ 6.1 mmol/L or HbA1c ≥ 5.8% or

having a diabetes history. Dyslipidemia was defined as total

cholesterol (TC) ≥ 240 mg/L, triglyceride (TG) ≥ 200 mg/dL,

HDL <40 mg/dL, low-density lipoprotein cholesterol (LDL-c)

≥ 160 mg/dL, or as patients with a history of dyslipidemia.

All patients underwent detailed radiographic evaluations,

including a cranial magnetic resonance imaging (MRI) scan

and a duplex color Doppler ultrasound or contrast-enhanced

cranial magnetic resonance imaging angiography (MRA) (26).

In addition, retinal photography was taken within 2 weeks of

hospital admission.

Methods

Quantitative variables were expressed as the mean ±

standard deviation, and categorical variables were expressed as

counts with percentages. For univariate analysis, independent

t-tests were conducted to compare continuous data between

groups, and the chi-square tests were conducted for categorical

data analysis. A fully automatic retinal image analysis for

stroke subtypes was developed using R and Matlab computer

software to estimate retinal microvascular characteristics and

incorporate machine-learning techniques to estimate risks of

ischemic and haemorrhagic strokes. The detailed methods of the

automatic retinal imaging analysis method have been reported

previously for studies related to cerebral magnetic resonance

imaging (27–29).

The odds ratios (OR) and 95% confidence interval (CI) were

reported for variables in the model. To ensure the consistency

of the models and to avoid overfitting, we have conducted a

10-fold cross-validation analysis. The sensitivity, specificity, and

area under the receiver operating characteristic curve (AUC of

ROC) were reported for each model. The Delong method was

used to compare the difference between AUCs (30). P < 0.05

was considered as statistical significance.

For the classification models, we used machine-learning

and deep learning techniques. Using Matlab, we first applied

a transfer net “ResNet50” convolutional neural network with

retinal images as input. The outputs were features generated

based on pixels associated with stroke subtype status. We also

extracted the texture/fractal/spectrum-related features (such as

high order spectra and fractal dimensions) associated with
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TABLE 2 Comparison of retinal characteristics between control and

ischemic stroke.

Characteristics Control Ischemic P value

(N = 480) (N = 145)

Retinal characteristics

lCRAE 13.155 (13.052–13.258) 11.336 (11.279–11.393) <0.001

lCRVE 20.240 (20.127–20.354) 18.239 (18.167–18.311) <0.001

lMBCA 1.626 (1.618–1.634) 1.613 (1.604–1.623) 0.056

lMBCV 1.308 (1.302–1.314) 1.215 (1.209–1.220) <0.001

lMVangle 70.903 (70.678-71.128) 73.936 (73.672–74.199) <0.001

lMAangle 74.062 (73.877-74.247) 75.249 (74.966–75.532) <0.001

lMAasymmetry 0.826 (0.825–0.828) 0.847 (0.845–0.850) <0.001

lMVasymmetry 0.771 (0.769–0.773) 0.742 (0.740–0.745) <0.001

lTortuosity 0.264 (0.256–0.271) 0.293 (0.283–0.304) <0.001

lNipping 0.250 (0.239–0.261) 0.310 (0.300–0.320) <0.001

lHemorrhage 0.254 (0.241–0.267) 0.303 (0.285–0.321) <0.001

lAocclusion 0.097 (0.089–0.105) 0.137 (0.121–0.153) <0.001

lExudates 0.170 (0.161–0.180) 0.247 (0.234–0.260) <0.001

lAVR 0.649 (0.647–0.651) 0.622 (0.619–0.624) <0.001

rCRAE 12.853 (12.753–12.953) 11.104 (11.060–11.147) <0.001

rCRVE 19.958 (19.850–20.065) 18.176 (18.109–18.243) <0.001

rMBCA 1.600 (1.592–1.608) 1.606 (1.596–1.617) 0.345

rMBCV 1.286 (1.281–1.291) 1.199 (1.195–1.203) <0.001

rMVangle 71.677 (71.419–71.936) 75.008 (74.710–75.306) <0.001

rMAangle 73.402 (73.154–73.649) 76.370 (76.101–76.639) <0.001

rMAasymmetry 0.834 (0.833–0.836) 0.842 (0.840–0.845) <0.001

rMVasymmetry 0.778 (0.776–0.779) 0.756 (0.754–0.758) <0.001

rTortuosity 0.302 (0.296–0.309) 0.329 (0.317–0.341) <0.001

rNipping 0.272 (0.265–0.279) 0.320 (0.309–0.331) <0.001

rHemorrhage 0.254 (0.245–0.263) 0.353 (0.335–0.370) <0.001

rAocclusion 0.071 (0.066–0.076) 0.114 (0.097–0.132) <0.001

rExudates 0.138 (0.130–0.146) 0.240 (0.226–0.254) <0.001

rAVR 0.643 (0.641–0.645) 0.611 (0.609–0.614) <0.001

stroke subtypes using the automatic retinal image analysis

(ARIA) algorithm written in Matlab (31). We then used the

glmnet approach to select the most important subset of features

based on the penalized maximum likelihood using R and

Matlab. These refined features are highly associated with stroke

subtypes. Finally, we translated the features extracted from the

above machine-learning approaches to commonly used retinal

characteristics measured from the images using ImageJ. This

part of the analysis, performed with SPSS, helped enhance our

understanding of retinal characteristics that contribute to the

classification and identification of specific stroke subtypes.

Retinal parameters estimation

Canon non–mydriatic retinal camera (Canon-CR2) was

used to capture the retinal color image using a 45◦ field of view

TABLE 3 Comparison of retinal characteristics between control and

hemorrhagic stroke.

Characteristics Control Hemorrhagic strokeP Value

(N = 480) (N = 86)

Retinal characteristics

lCRAE 13.155 (13.052–13.258) 11.325 (11.257–11.393) <0.001

lCRVE 20.240 (20.127–20.354) 18.227 (18.142–18.311) <0.001

lMBCA 1.626 (1.618–1.634) 1.622 (1.608–1.636) 0.730

lMBCV 1.308 (1.302–1.314) 1.212 (1.205–1.220) <0.001

lMVangle 70.903 (70.678–71.128) 73.798 (73.425–74.170) <0.001

lMAangle 74.062 (73.877–74.247) 75.299 (74.899–75.698) <0.001

lMAasymmetry 0.826 (0.825–0.828) 0.848 (0.845–0.851) <0.001

lMVasymmetry 0.771 (0.769–0.773) 0.746 (0.742–0.749) <0.001

lTortuosity 0.264 (0.256–0.271) 0.290 (0.275–0.305) 0.001

lNipping 0.250 (0.239–0.261) 0.308 (0.293–0.323) <0.001

lHemorrhage 0.254 (0.241–0.267) 0.300 (0.279-0.322) <0.001

lAocclusion 0.097 (0.089–0.105) 0.136 (0.113–0.159) <0.001

lExudates 0.170 (0.161–0.180) 0.237 (0.220–0.254) <0.001

lAVR 0.649 (0.647–0.651) 0.622 (0.618–0.625) <0.001

rCRAE 12.853 (12.753–12.953) 11.131 (11.069–11.193) <0.001

rCRVE 19.958 (19.850–20.065) 18.227 (18.125–18.329) <0.001

rMBCA 1.600 (1.592–1.608) 1.606 (1.592–1.621) 0.540

rMBCV 1.286 (1.281–1.291) 1.200 (1.194–1.206) <0.001

rMVangle 71.677 (71.419–71.936) 75.349 (74.964–75.734) <0.001

rMAangle 73.402 (73.154–73.649) 76.453 (76.112–76.794) <0.001

rMAasymmetry 0.834 (0.833–0.836) 0.841 (0.838–0.843) <0.001

rMVasymmetry 0.778 (0.776–0.779) 0.757 (0.755–0.760) <0.001

rTortuosity 0.302 (0.296–0.309) 0.328 (0.312–0.344) 0.003

rNipping 0.272 (0.265–0.279) 0.323 (0.308–0.337) <0.001

rHemorrhage 0.254 (0.245–0.263) 0.359 (0.335–0.383) <0.001

rAocclusion 0.071 (0.066–0.076) 0.116 (0.096–0.136) <0.001

rExudates 0.138 (0.130–0.146) 0.229 (0.212–0.247) <0.001

rAVR 0.643 (0.641–0.645) 0.611 (0.608–0.614) <0.001

centered on the fovea. The retinal characteristics measurement

tools previously developed as part of the ARIA algorithm were

used to estimate the parameters of retinal vessels. The retinal

characteristics measurement previously developed as part of the

Automatic Retinal Image Analysis (ARIA) algorithmwas used to

estimate the parameters of retinal vessels (31, 32). The following

is a brief description:

Retinal vessel measurements: Our estimates were based

on the formula developed by Knudtson et al. (33) to describe

the retinal vessel measurements into the central retinal artery

equivalent (CRAE) and central retinal vein equivalent (CRVE).

Arteriole-venous nipping and arteriole occlusion: The sign of

arteriole-venous nipping was marked as the narrowing of the

venule at the crossing point of arteriole. The arteriole occlusions

(Aocclusion) were presented as thread-like arterioles when the

blood inside the arterioles was stopped by emboli.Hemorrhages
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TABLE 4 The distribution of estimated Clinical risk factors for the three classes of control, Ischemic stroke and Hemorrhagic Stroke.

Clinical factors Control Hstroke Istroke P P1 P2 P3

Gender (Male) 35.0% 84.9% 81.4% <.001 <.001 <.001 .496

Hypertension (Yes) 61.8% 90.7% 87.6% <.001 <.001 <.001 .469

DM (Yes) 18.7% 18.6% 46.9% <.001 .986 <.001 <.001

Current smoking (Yes) 9.8% 9.3% 11.7% 0.804 0.913 0.605 .567

Current drinking (Yes) 12.2% 8.1% 6.9% 0.304 0.347 0.137 0.727

CHD (Yes) 0.0% 3.5% 10.3% <.001 0.037 <.001 0.060

AF (Yes) 0.0% 7.0% 8.3% 0.006 0.003 0.001 0.722

Hyperlipidemia (Yes) 66.7% 60.5% 64.1% 0.655 0.358 0.665 0.577

Lacunar infarction (Yes) 0.0% 33.7% 31.7% <.001 <.001 <.001 0.754

Carotid atherosclerosis (0 vs. 1, 2) 48.8% 74.4% 91.7% <.001 <.001 <.001 <.001

Age (Mean) 51.44 53.76 58.75 <.001 0.260 <.001 0.001

BMI (Mean) 24.60 23.29 24.11 0.003 0.004 0.356 0.090

P is the p-value for the chi-square test comparing all three groups; P1 is the p-value for comparison between the control group and Hstroke (hemorrhagic stroke) group, P2 is the p-value

for comparison between the control group and Istroke (ischemic stroke) group, P3 for comparison between Hstroke group and Istroke group.

and exudates: Status of hemorrhages and exudates were

recorded as either present or absent. Hemorrhages and exudates

were key determinants for the severity of diabetic retinopathy

as they were found to be associated with stroke in other

studies. Tortuosity: Tortuosity was assessed by visual grading

of one fovea-centered and one disc-centered fundus image from

each image. The grading levels for retinal arterial tortuosity

were either predominantly straight arteries or mild to severe

tortuosity with at least one inflection of at least one major artery.

Bifurcation coefficients (BC): Bifurcation coefficient (BC) is the

ratio of the sum of the cross-sectional areas of the daughter

vessels of a bifurcation to that of the parent stem. The means

of the bifurcation coefficient of arterioles (BCA) and venules

(BCV) were used. Asymmetry of branches and bifurcation

angles: Asymmetry index (AI) is the ratio of diameters of two

daughter branches. The AI was calculated as AI=D1/D2, where

D1 and D2 were smaller and larger branches, respectively.

The mean of the three sets of AI of arterioles (Aasymmetry)

and venules (Vasymmetry) was used. The angle between two

daughter branches of the same branches studied in the BC was

measured. The centerline of two branches was drawn, and the

angle was calculated to represent the branching angle. The mean

of the bifurcation angles of arterioles (Aangle), and mean of

bifurcation angles of venules (Vangle) from the three sets of

vessels in one retinal image were used for the analysis.

Clinical risk factors estimation

In addition to the retinal microvascular characteristics, we

usedmachine-learning techniques to estimate important clinical

risk factors and distinguish stroke subtypes. Previous studies

reported several clinical characteristics differences between

haemorrhagic stroke and ischemic stroke (34). For example,

Zhang et al. (35) reported that ischemic stroke patients are

significantly older (p < 0.001), have a higher proportion of

family history of stroke (p = 0.01), obesity (p < 0.001), diabetes

(p= 0.004), TIA (p= 0.017), atrial fibrillation (p= 0.002), lower

level of HDL (p = 0.001), and carotid atheroma (p = 0.002).

At the same time, haemorrhagic stroke patients have a higher

proportion of males (p = 0.023), alcohol drinking (p = 0.003),

hypertension (p = 0.003), and increased WBC (p < 0.001).

Our study would use retinal images to estimate the clinical risk

factors and compare the control, haemorrhagic, and ischemic

stroke groups to provide further insight into the retinal image

analysis for stroke subtypes classification.

Results

Seven hundred eleven patients were enrolled, including

145 ischemic stroke patients, 86 haemorrhagic patients, and

480 controls. Among the 480 controls, 123 came from the

Shenzhen TCMHospital and 357 from healthy volunteers in the

community. Descriptive statistics for stroke subtype (ischemic

stroke / haemorrhagic stroke) and control related to baseline

information and cardiovascular risk factors are shown in Table 1.

For the comparison between ischemic stroke and control groups,

age, systolic and diastolic blood pressure, and hypertension were

significantly higher, but the proportion ofmales was significantly

smaller. The same pattern occurred for the haemorrhagic stroke

compared to the control group, except that significantly more

males were in the haemorrhagic stroke group.

For the retinal characteristics, CRAE and CRVE, AVR,

and bifurcation coefficients were significantly smaller in

both the ischemic and haemorrhagic stroke groups. The

other retinal characteristics such as bifurcation angles,
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FIGURE 1

Flowchart of the method for the development of the classification model.

asymmetry, tortuosity, nipping, hemorrhages, occlusion,

and exudates have significantly larger values in the stroke-

subtype groups than in control (Tables 2, 3). These results

show many differences in retinal characteristics among

the control group and the ischemic and haemorrhagic

stroke groups.
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FIGURE 2

ROC curves of the model using only clinical characterisitics and

model using only retinal characteristics for ischemic stroke risk

estimation.

FIGURE 3

ROC curves of the model using only clinical characteristics and

model using only retinal characterisitcs for haemorrhagic stroke

risk estimation.

Table 4 shows the risk factors for control, ischemic

stroke and haemorrhagic stroke. Comparing the three groups

concerning clinical characteristics estimated from retinal images

is to demonstrate that the retinal images contain information

for the classification of stroke subtypes based on known

significant clinical variables. In our study, we found that

ischemic stroke patients who are older (p = 0.001) have more

diabetes (p < 0.001) and carotid atherosclerosis (p < 0.001)

than haemorrhagic stroke. In addition, both haemorrhagic

and ischemic strokes have significantly more males, a higher

proportion of patients with hypertension, atrial fibrillation (AF),

lacunar infarct, and carotid atherosclerosis.

For the classification analysis, Figure 1 shows the flow

chart for the methods. We have analyzed the classification

FIGURE 4

Box plot for the probability of ischemic stroke.

FIGURE 5

Box plot for the probability of haemorrhagic stroke.

performance between using retinal characteristics alone vs.

clinical characteristics using logistic regression. Delong’s method

was used to compare the AUCs of models. The results show that

retinal characteristics performed significantly better than clinical

characteristics alone (p < 0.001). The AUC for ischemic stroke

based on clinical and retinal variables was 0.88 (95% CI of 0.84,

0.92) and 0.98 (95% CI of 0.97, 0.99), respectively (Figure 2).

The AUC for haemorrhagic stroke based on clinical and retinal

variables were 0.91(95% CI 0.87, 0.95) and 0.98 (95% CI of 0.97,

1.00), respectively (Figure 3).

For the ischemic stroke classification model, the 10-fold

cross-validation gives sensitivity and specificity of 91.0% and

94.8%, respectively. The area under the ROC for ischemic stroke

based on the 10-fold cross-validation analysis was 0.929 (95%

CI of 0.900–0.958). The box plot for the probability of ischemic

stroke is shown in Figure 4. For haemorrhagic stroke, the

sensitivity and specificity were 93.0% and 97.1%, respectively.

The area under the ROC for haemorrhagic stroke based on the

10-fold cross-validation was 0.951 (95% CI of 0.918–0.983). The
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FIGURE 6

Scatter plot for both ischemic and haemorrhagic strokes.

TABLE 5 Ten-fold cross-validation of all three groups.

Results of

classification

Control Ischemic stroke Hemorrhagic stroke

(n = 480) (n = 145) (n = 86)

Control 451 9 4

Ischemic stroke 28 133 11

Hemorrhagic

stroke

1 3 71

% Correct 94% 91.7% 82.6%

box plot for the probability of haemorrhagic stroke is shown in

Figure 5. Since there is an age difference between the control

and the stroke groups, we carried out further investigation.

Among the 480 controls in this study, 123 came from the

same SZTCM hospital and 357 from healthy volunteers in the

community. The average age of the 123 controls from SZTCM

hospital was 52.13, similar to the haemorrhagic stroke patients.

If we only use these 123 controls as the control group, the risk

estimation models also perform well. The classification model

for ischemic stroke vs. control had a sensitivity of 90.63%, a

specificity of 91.56%, and an AUC of 0.98. The classification

model for haemorrhagic stroke vs. control had a sensitivity

of 92.97%, a specificity of 85.56%, and an AUC of 0.98. This

result demonstrated the robustness of the models regardless

of age. Both the sensitivity and the specificity of the two-

stroke subtypes have high accuracy. Still, it is also essential

to know if they can discriminate the two-stroke subtypes. We

demonstrated these classification models for stroke subtypes

have good discrimination power using the 30% validation

portion of the data. In the scatter-plot, the classification models

discriminate the probability of ischemic stroke, haemorrhagic

stroke and control subjects in three apparent clusters, as shown

in Figure 6. The figure can be divided into four quadrants

if we draw a horizontal line for the ischemic stroke (y-

axis) and a vertical line for haemorrhagic stroke (x-axis). The

ischemic stroke patients were clustered in the top left-hand

quadrant, with a high probability of ischemic stroke but a low

probability of haemorrhagic stroke. The haemorrhagic stroke

patients clustered in the lower right-hand quadrant, with a high

probability of haemorrhagic stroke but a low probability of

ischemic stroke. The control subjects clustered around the origin

in the lower left-hand quadrant, with a low probability for both

ischemic and haemorrhagic strokes.

When we evaluated the stroke subtypes together, the error

rates for all three groups are shown in Table 5. For ischemic

stroke patients, 9/145 (6.2%) were misclassified to control, and

3/145 (2.1%) were misclassified to haemorrhagic stroke. For

haemorrhagic stroke, 4/86 (4.7%) were misclassified to control,

and 11/86 (12.8%) were misclassified to ischemic stroke. For

the control, the error rate was 29/480 (6%), with 28/480 (5.8%)

misclassified as ischemic stroke and 1/480 (0.2%) misclassified

as haemorrhagic stroke.

Discussion

The performance of the risk estimation models for

ischemic and haemorrhagic strokes was excellent. We have a

sensitivity and specificity of 91.0% and 94.8% for ischemic

stroke classification and 93.0% and 97.1% for haemorrhagic

stroke classification, respectively. These results showed that

retinal characteristics were highly efficient in classifying stroke

subtypes. In addition, we can now evaluate both risks of stroke

subtypes longitudinally to study how they are related during

their development.

The retinal characteristics are of significant interest as

markers of stroke since they can be directly visualized via

ophthalmoscopy (27). Previous studies have shown that retinal

vascular changes vary according to stroke subtypes (17, 36–

38). Clinical risk factors provide general associations for

stroke risk estimation, but they do not classify ischemic and

haemorrhagic stroke separately. However, stroke prevention

and clinical management rely on accurate risk estimation

and classification. Many routine preventive treatments for

ischemic stroke, including antiplatelet therapy, anticoagulants,

and statins, have been noted to generate a higher risk for

haemorrhagic stroke. For example, aspirin for platelet therapy

would increase haemorrhagic stroke risk (39–42). Study on the

use of clopidogrel for antiaggregant yielded a similar result (43).

Anticoagulation such as warfarin for stroke prevention also

increases the risk of intracerebral hemorrhage (34, 44–46). As

a result, knowing the risk of stroke subtypes at an early stage is

highly advantageous.
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We further employed the machine-learning method to

estimate clinical risk factors using retinal images and showed the

differences between control, ischemic stroke, and haemorrhagic

stroke agree with previous literature for stroke subtypes based

on clinical risk factors. This analysis demonstrated that the

retinal image contains information on the clinical variables that

contributed to themodel classification (35). Other investigations

using retinal image information for clinical application are

starting to appear. For example, a recent study shows that

multifractals of the retinal vessel can be used to predict pial

collateral status for patients with ischemic stroke (47).

Finally, we can use the estimated stroke subtypes risks as a

target for designing a health and wellness plan from a prevention

point of view. Prevention trials or lifestyle intervention studies

are now feasible with the retinal image analysis approach.

Limitations

There are several limitations to this study. First, we

did not have a separate data set for model validation in

this research. Thus, we have conducted the 10-fold cross-

validation, and the results showed that the performance of

the models was stable on the training data set and the cross-

validation data set. Second, the sample size was relatively small,

which may affect the statistical power of the classification.

Third, the haemorrhagic stroke cases in this study are

mainly intracerebral hemorrhages. We have no subarachnoid

hemorrhage sample in this study. Therefore, the classification

may not apply to subarachnoid haemorrhagic stroke cases.

Finally, since this is a case-control study, we cannot establish the

temporal relationship if the retinal changes before the onset of

the stroke.

Future direction

This study is a pioneer study with a potential future clinical

application where we can apply the results from retinal imaging

to the hospital Accident and Emergency (A&E) Department as

a screening tool for stroke risk including subtypes classification.

The management of ischemic and hemorrhagic strokes is very

different. Retinal imaging is fast and convenient, it will provide

crucial information for the A&E operation and help prioritize

patients’ specific needs for CT or MRI confirmation in a

timely fashion.
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