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Objective: For patients with drug–resistant focal epilepsy, intracranial

monitoring remains the gold standard for surgical intervention. Focal cortical

dysplasia (FCD) is themost common cause of pharmacoresistant focal epilepsy

in pediatric patients who usually develop seizures in early childhood. Timely

removal of the epileptogenic zone (EZ) is necessary to achieve lasting seizure

freedom and favorable developmental and cognitive outcomes to improve

the quality of life. We applied brain network analysis to investigate potential

biomarkers for the diagnosis of EZ that will aid in the resection for pediatric

focal epilepsy patients with FCD type II.

Methods: Ten pediatric patients with focal epilepsy diagnosed as FCD type

II and that had a follow–up after resection surgery (Engel class I [n = 9]

and Engel class II [n = 1]) were retrospectively included. Time–frequency

analysis of phase transfer entropy, graph theory analysis, and power spectrum

compensation were combined to calculate brain network parameters based

on interictal epileptiform discharges from ECoG.

Results: Clustering coe�cient, local e�ciency, node out–degree, and

node out–strength with higher values are the most reliable biomarkers

for the delineation of EZ, and the di�erences between EZ and margin

zone (MZ), and EZ and normal zone (NZ) were significant (p < 0.05;

Mann–Whitney U-test, two–tailed). In particular, the di�erence between

MZ and NZ was significant for patients with frontal FCD (MZ > NZ;

p < 0.05) but was not significant for patients with extra–frontal FCD.
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Conclusions: Brain network analysis, based on the combination of

time–frequency analysis of phase transfer entropy, graph theory analysis, and

power spectrum compensation, can aid in the diagnosis of EZ for pediatric

focal epilepsy patients with FCD type II.

KEYWORDS

identification of epileptogenic zone, graph theory analysis, phase transfer entropy,

power spectrum compensation, time-frequency analysis

Introduction

Focal cortical dysplasia (FCD), a subgroup of malformations

in cortical development, is characterized by dysmorphic

neurons, cortical dyslamination, and differentiation. FCD type

II is usually seen in children and is the most common

cause of intractable focal epilepsy. In pharmacoresistant focal

epilepsy, resection surgery is the most reliable treatment after

delineating cerebral areas responsible for seizure generation

(1). Ictal patterns are usually associated with the seizure onset

zone (SOZ), while interictal epileptiform discharges (IEDs)—

generated by a population of neurons in a synchronous state—

are a reliable indicator of in vivo epileptic tissue. Multiple

previous studies have focused on network analysis of ictal

and pre–/post–ictal events; however, there are limitations.

Determination of resection margins of SOZ from ECoG data

alone is not sufficient to achieve seizure freedom (2) and some

patients may not have seizure activity during the recording

period, making it difficult for the event selection.

IEDs feature a high signal–to–noise ratio and less

contamination produced by artifacts, as is commonly

seen during ictal events, and are easily captured during

electroencephalography (EEG) recording sessions (3, 4).

IEDs consist of spike or sharp wave discharges, abnormal

slowing waves of the background EEG signal, and high–

frequency oscillations (HFOs) (5). HFOs are a promising

biomarker for the diagnosis of the epileptogenic zone (EZ),

potentially by improving the surgical success of patients with

pharmacoresistant epilepsy without the need to record seizures.

However, a recent multicenter study revealed that EZ was not

correctly identified by HFOs in 31% of patients (6). Roehri et al.

found that HFOs or any variants were not statistically better

biomarkers for EZ than IED spikes (7). Thus, additional efforts

are required to evaluate clinical importance of HFOs based

on prospective clinical trials (8). Abnormally slow waves are

usually markers of lesion area. Interference can be introduced

during electrode insertion or when the electrode is inserted near

the resection cavity, causing iatrogenic artifacts (5). Spike or

sharp wave discharges are conventional markers of epilepsy that

localize the EZ to facilitate targeted surgery (9). In a quantitative

iEEG study, 56% patients had a good concordance between

spike density and SOZ; a higher rate (75%) was observed in

patients with FCD (5).

EZ can be adequately localized by non–invasive multi–

modal studies such as the semiology of the signs and symptoms

of ictal events, neurophysiological examination, magnetic

resonance imaging (MRI), single–photon emission computed

tomography (SPECT), subtraction ictal SPECT coregistered to

MRI, positron emission tomography (PET), scalp video EEG,

etc. (10). However, when the findings regarding the delineation

of the region responsible for seizure generation are inconclusive

or when the SOZ cannot be precisely localized non–invasively,

ECoG should be considered (11). The most common approach

for the diagnosis of EZ is visually inspecting the ECoG,

however, it is time–consuming and requires a specifically

trained neurophysiologist. More sophisticated methods should

be further investigated to aid in the localization of EZ because

of the high rate of failure in resection surgery, especially for

extra–temporal epilepsy patients. Recently, a new interictal

marker for seizure localization called source–sink connectivity

was applied on 65 adult patients using sEEG. The source–sink

metrics (SSMs) predicted outcomes with an accuracy of 79%,

much higher than the clinicians’ prediction. Additionally, they

identified the brain regions with high SSMs were untreated in

the failed outcomes (12).

The anatomical structure of the brain supports dynamic

neuronal oscillation—a physiological activity that can cross

several distinct brain regions and build up a functional network

(13), which can be extracted, derived, and statistically evaluated

based on time–series data (14), such as EEG. This contributes

to the understanding of the organization of the human brain

network and makes it possible to diagnose EZ (4) since epilepsy

is a network disease.

In this study, brain network analysis, based on a

combination of time–frequency analysis of phase transfer

entropy, graph theory analysis, and power spectrum

compensation, was used for the identification of EZ for

pediatric focal epilepsy patients with FCD type II. Additionally,

several brain network parameters were calculated to explore

potential biomarkers to differentiate EZ, MZ, and NZ.
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FIGURE 1

Illustration of the confirmed FCD on fluid attenuation inversion recovery images with either axial or coronal planes (red arrow). Patient 1,

Cortical thickening; Patient 2, Cortical thickening and blurring of gray–white matter junction; Patient 3, Cortical thickening; Patient 4, Cortical

thickening; Patient 5, Cortical thickening and blurring of gray–white matter junction; Patient 6, Cortical thickening; Patient 7, Cortical

thickening, blurring of gray–white matter junction, and subcortical white matter hyperintensity; Patient 8, Cortical thickening and blurring of

gray–white matter junction; Patient 9, Destruction on brain gray–white matter on both occipital (Lt>Rt); Patient 10, Cortical thickening and

blurring of gray–white matter junction; Patient 11, Cortical thickening and blurring of gray–white matter junction; Patient 12, Cortical

thickening and blurring of gray–white matter junction; Patient 13, Cortical thickening, blurring of gray–white matter junction, and subcortical

white matter hyperintensity; Patient 14, Cortical thickening and blurring of gray–white matter junction; Patient 15, Cortical thickening and

subcortical white matter hyperintensity; Patient 16, Blurring of gray–white matter junction; Patient 17, Subcortical white matter hyperintensity

with transmantle sign; Patient 18, Cortical thickening and blurring of gray–white matter junction.

Materials and methods

Patients

This retrospective study was approved by the Institutional

Review Board of Yonsei University, College of Medicine, Seoul,

South Korea. Eighteen patients were selected from our database

(Supplementary Table 1), who had undergone resection surgery

at Severance Children’s Hospital from 2016 to 2020 under the

following inclusion criteria: (1) patients who were diagnosed

with focal epilepsy with FCD type II and were drug–resistant to

at least two or three anti–seizure medications; (2) patients who

had undergone grid and depth electrode insertion with video

EEG recording; (3) patients who had good surgical outcomes

with Engel class I or II; (4) patients who had undergone

imaging studies such as MRI, computed tomography, and

PET. A neuropathologist made the pathological diagnosis from

resected brain specimen. FCD type II was diagnosed by the

microscopic findings with cortical lamination disruption and the

presence of dysmorphic neurons and/or balloon cells (15). All

the eighteen patients have confirmed FCD on fluid attenuation

inversion recovery images with the diagnosis demonstrated in

Figure 1. Of these, eight patients were excluded owing to the

following exclusion criteria: (1) patients with shorter ECoG

recordings (5 days or less), which limited the selection of

sufficient epochs for analysis; and (2) patients who had more

than one resection surgery.

ECoG data acquisition and processing

ECoG data were obtained using a combination of subdural

grid electrodes (1 × 4, 1 × 8, 2 × 8, 3 × 8, 4 × 8, 2 × 5, and

4 × 5 matrices with 1 cm spacing between electrode contacts)

and depth electrodes (8 channels with 1 cm spacing between

electrode contacts) with a digital EEG acquisition system

(Grass Telefactor, Astro–Med Inc, and Xltek NeuroWorks,

Natus Medical Inc., Wisconsin, USA). Owing to individualized

circumstances from presurgical evaluation to different system

settings, the number of electrodes varied from 64 to 128, and

the sampling rate ranged from 200 to 2,048Hz. The average

recording value of all electrodes was set as the reference because

this method provides biased estimates of reference–independent

potentials (16). Then, channels that contained artifacts such
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as electrical interference were removed, data were down–

sampled to 200Hz, a bandpass filter was used to provide cut–off

frequencies between 0.5 and 66.7Hz (high–cutoff filter 66.6Hz

was set to one–third sampling rate to avoid aliasing), and a notch

filter was used to provide a cut–off frequency of 60 Hz.

Time–frequency analysis of phase
transfer entropy, graph theory analysis,
and power spectrum compensation

Phase transfer entropy

Communication between neurons, which is presented by

signal synchrony and is widely assumed to be non-linear, is

the basic mechanism behind information processing inside the

brain. Early studies have demonstrated that non-linear analysis

can aid in the localization of EZ using IEDs (17), ictal activity

(18), or interictal to ictal transition (19, 20). Furthermore,

various studies have found non-linearity in large–scale brain

networks in resting states, Parkinson’s disease, and in patients

with epilepsy (21). To evaluate the non-linear causality, transfer

entropy was proposed by measuring the extent to which the

lagged variable (additional information) reduces the uncertainty

in the residuals of the model (22). More information can

be found in the section of phase transfer entropy from the

Supplementary material.

Analysis window selection for graph theory
analysis and power spectrum compensation

The phase can easily be derived from a broadband signal

using the Hilbert transform or wavelet convolution. However,

to obtain a clear physical meaning of the phase and power

spectrum, filtration should be used to extract the narrow–

band frequency from the background brain activity (23). Time–

frequency analysis of the phase transfer entropy was performed

to find a point that has the highest value of phase transfer

entropy with a specific frequency and time point. For each

patient, 100 epochs (IEDs) in ECoG were strictly selected (IEDs

pattern for each patient has a similar duration of discharges)

for the time–frequency analysis of phase transfer entropy with

a frequency range of 3–65Hz and a step of 2Hz. A FIR filter

was used to prevent the phase distortion. As Figure 2 illustrates,

a time–frequency plot was calculated from a 10–sec long epoch

using a sliding window with a width of 500–msec, and the phase

transfer entropy reached the highest level at point A (enlarged

picture; maximum = 1) during the IEDs, where point A is

located at a specific time point and a given frequency. The

extracted time and frequency information was used to build

an adjacency matrix from a 500ms analysis window, where the

selected point Awas located in the center of the analysis window,

and a 70% threshold was applied to the matrix, as this value

provides a good balance for calculating betweenness centrality

(BC), node out–degree (OD), and node in–degree (ID) based on

our analysis experience. For more information about the results

of different thresholds, refer to Supplementary Table 3 and

Supplementary Figures 2–11. Simultaneously, the maximum

power spectral values of each electrode were extracted from the

analysis window for the latter power spectrum compensation.

Later, graph theory analysis (13) was used to calculate seven

parameters of each electrode: BC, clustering coefficient (CC),

local efficiency (LE), OD, node out–strength (OS), ID, and

node in–strength (IS), which were further averaged from one

hundred epochs. Finally, the power spectrum compensation was

introduced by multiplying the averaged power spectral value

with all seven averaged parameters, one by one, and electrode

by electrode.

Information on electrodes and statistical
analysis

The information on the ECoG location and the number

of electrodes in the EZ, MZ, and NZ can be seen in

Supplementary Figure 1 and Supplementary Table 2. Within

each zone, the values of each electrode are listed in the column,

and the Mann–Whitney U-test (p < 0.05; two–tailed) was

applied to the statistical analysis between EZ, MZ, and NZ.

Additionally, logistic regression was used for the probability

calculation of EZ vs. MZ and EZ vs. NZ using all brain

parameters. A cut–off probability for classification was set as 0.5:

above 0.5 is classified as EZ and below 0.5 is classified as MZ

or NZ.

Results

Five patients each with frontal and extra–frontal FCD

were evaluated. The IED types processed in this cohort can

be found in Supplementary Table 1, where polyspike–wave

complexes were used for patients no. 1 and no. 4, and

sharp–wave discharges were used for the rest of patients. The

two–tailed Mann–Whitney U-test (p < 0.05) was applied to

evaluate EZ–MZ, EZ–NZ, and MZ–NZ for each parameter, as

presented in Table 1. We observed that the parameters CC,

LE, OD, and OS had the most significant differences among

all ten patients. According to the Supplementary Table 4, and

Supplementary Figures 12, 13, predictive accuracy from logistic

regression is 65.44± 36.93% for EZ and 74.35± 29.77% for MZ

from EZ vs. MZ, and 73.19 ± 10.45% for EZ and 92.86 ± 4.24%

for NZ from EZ vs. NZ. Seven parameters were divided into

three groups for a detailed evaluation with the inclusion of

relevant figures according to their definitions in subsections

Local segregation, Direct interaction, and Centrality. In this

study, 100 epochs (IEDs) for each patient were strictly selected

and used for analysis.
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FIGURE 2

Illustration of the process of selection of point A in a time–frequency plot (Each time–frequency point in the plot represents the level of phase

synchrony at a specific time point and a given frequency; ECoG data was illustrated with a bandpass filter to provide cut–o� frequencies

between 0.5 and 66.6Hz and with a notch filter to provide cut–o� frequency at 60Hz).

Local segregation

CC and LE are common parameters for local segregation

(24). CC measures the connection density between a node and

its neighborhood. A node with a high CC value represents a

strong connection with its neighbors, and together they form

a cluster. LE measures the average efficiency of a node within

its neighbors; thus, it is related to CC. In Figures 3, 4, for

evaluating EZ–MZ and EZ–NZ, CC and LE were stable among

all patients (EZ > MZ and EZ > NZ) except for patient 1

in EZ–MZ for both CC and LE (p = 0.16). For evaluating

MZ–NZ, results were divided into two groups according to

the location of FCD (frontal FCD: patients no. 1–5; extra

frontal FCD: patients no. 6–10): patients no. 1, 2, 4, and 5

had significantly higher values of MZ (MZ > NZ) for both

CC and LE, except for patient no. 3 in CC and LE (p =

0.11), while patients 6–10 who had extra–frontal FCD did not

show any significant difference, which may imply an underlying

anatomical cause.

Direct interaction

For a directed connectivity network, OD/ID represents the

number of outward/inward edges of a node. Similarly, OS/IS

represents the summation of the weights of the outward/inward

edges of a node. As demonstrated in Figures 5, 6, all patients had

EZ>MZ and EZ>NZ for OD and OS. For evaluatingMZ–NZ,

results were divided into two groups according to the location of

FCD (frontal FCD: patients no. 1–5; extra frontal FCD: patients

no. 6–10): Patients no. 1, 2, 4, 5 showed MZ > NZ for both OD

and OS, whereas patients no. 6–10 did not exhibit this finding.

According to Table 1, parameters of ID and IS showed fewer

significant differences, and the relationships among these zones

were complicated. ID showed EZ > MZ in patients no. 3, 7, 9,

and 10; EZ > NZ in patients no. 2, 3, 6, 9, and 10; MZ > NZ in

patient no. 6; EZ < MZ and EZ < NZ in patient no. 4; and MZ

< NZ in patient no. 1. Patients no. 5 and 8 had no significant

differences in any comparison group. IS showed EZ > MZ in

patients no. 3, 9, and 10; EZ > NZ in patients no. 2, 3, 6, 9, and
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TABLE 1 Mann–Whitney U-test (two–tailed) for comparative analysis between EZ, MZ, and NZ for each parameter.

p < 0.05 CC LE OD OS ID IS BC

P1 EZ–MZ 0.16 0.16 0.04⋆ 0.04⋆ 0.58 0.64 0.16

EZ–NZ <0.001⋆⋆
<0.001⋆⋆

<0.001⋆⋆
<0.001⋆⋆ 0.54 0.54 0.89

MZ–NZ <0.001⋆⋆⋆
<0.001⋆⋆⋆

<0.001⋆⋆⋆
<0.001⋆⋆⋆

<0.001## 0.006# 0.04#

P2 EZ–MZ 0.003⋆ <0.001⋆⋆
<0.001⋆⋆

<0.001⋆⋆ 0.13 0.13 0.01⋆

EZ–NZ <0.001⋆⋆
<0.001⋆⋆

<0.001⋆⋆
<0.001⋆⋆ 0.03⋆ 0.03⋆ 0.006⋆

MZ–NZ 0.008⋆ 0.007⋆ 0.005⋆ 0.006⋆ 0.12 0.13 0.13

P3 EZ–MZ <0.001⋆⋆
<0.001⋆⋆

<0.001⋆⋆
<0.001⋆⋆ 0.008⋆ 0.008⋆ 0.26

EZ–NZ 0.003⋆ 0.003⋆ 0.007⋆ 0.007⋆ <0.001⋆⋆
<0.001⋆⋆ 0.91

MZ–NZ 0.11 0.11 0.04# 0.03# 0.71 0.66 0.26

P4 EZ–MZ 0.002⋆ 0.002⋆ 0.003⋆ 0.003⋆ 0.02# 0.022# 0.99

EZ–NZ <0.001⋆⋆
<0.001⋆⋆

<0.001⋆⋆
<0.001⋆⋆ 0.003# 0.003# 0.34

MZ–NZ 0.001⋆ 0.001⋆ 0.002⋆ 0.002⋆ 0.90 0.79 0.09

P5 EZ–MZ <0.001⋆⋆⋆
<0.001⋆⋆⋆

<0.001⋆⋆⋆
<0.001⋆⋆⋆ 0.28 0.26 0.04#

EZ–NZ <0.001⋆⋆⋆
<0.001⋆⋆⋆

<0.001⋆⋆⋆
<0.001⋆⋆⋆ 0.23 0.30 0.003#

MZ–NZ 0.03⋆ 0.03⋆ 0.04⋆ 0.04⋆ 0.44 0.50 0.25

P6 EZ–MZ 0.01⋆ 0.01⋆ 0.02⋆ 0.02⋆ 0.16 0.17 0.34

EZ–NZ <0.001⋆⋆⋆
<0.001⋆⋆⋆

<0.001⋆⋆⋆
<0.001⋆⋆⋆

<0.001⋆⋆⋆
<0.001⋆⋆⋆ 0.82

MZ–NZ 0.45 0.47 0.46 0.43 0.04⋆ 0.05 0.31

P7 EZ–MZ <0.001⋆⋆
<0.001⋆⋆

<0.001⋆⋆
<0.001⋆⋆ 0.04⋆ 0.05 0.79

EZ–NZ <0.001⋆⋆
<0.001⋆⋆

<0.001⋆⋆
<0.001⋆⋆ 0.27 0.27 0.42

MZ–NZ 0.75 0.75 0.70 0.67 0.49 0.47 0.70

P8 EZ–MZ <0.001⋆⋆
<0.001⋆⋆

<0.001⋆⋆
<0.001⋆⋆ 0.22 0.33 0.18

EZ–NZ <0.001⋆⋆⋆
<0.001⋆⋆⋆

<0.001⋆⋆⋆
<0.001⋆⋆⋆ 0.08 0.13 <0.001##

MZ–NZ 0.75 0.77 0.84 0.82 0.99 0.96 0.17

P9 EZ–MZ 0.01⋆ 0.01⋆ 0.01⋆ 0.01⋆ 0.04⋆ 0.04⋆ 0.98

EZ–NZ <0.001⋆⋆
<0.001⋆⋆

<0.001⋆⋆
<0.001⋆⋆ 0.02⋆ 0.02⋆ 0.40

MZ–NZ 0.21 0.22 0.24 0.24 0.28 0.28 0.35

P10 EZ–MZ <0.001⋆⋆
<0.001⋆⋆ 0.001⋆ 0.001⋆ 0.003⋆ 0.004⋆ 0.82

EZ–NZ <0.001⋆⋆⋆
<0.001⋆⋆⋆

<0.001⋆⋆⋆
<0.001⋆⋆⋆

<0.001⋆⋆⋆
<0.001⋆⋆⋆ 0.23

MZ–NZ 0.38 0.41 0.97 0.92 0.21 0.22 0.22

P1, patient 1; EZ, epileptogenic zone; MZ, margin zone; NZ, normal zone; BC, betweenness centrality; CC, clustering coefficient; LE, local efficiency; OD, out–degree; OS, out–strength;

ID, in–degree; IS, in–strength;⋆ represents p < 0.05 with EZ > MZ, EZ > NZ, or MZ > NZ;⋆⋆ represents p < 0.001 with EZ > MZ, EZ > NZ, or MZ > NZ;⋆⋆⋆ represents p <

0.00001 with EZ > MZ, EZ > NZ, or MZ > NZ; # represents p < 0.05 with EZ < MZ, EZ < NZ, or MZ < NZ; ## represents p < 0.001 with EZ < MZ, EZ < NZ, or MZ < NZ.

10; EZ < MZ and EZ < NZ in patient no. 4; and MZ < NZ in

patient no. 1. Patients no. 5, 7, and 8 did not demonstrate any

significant difference in any comparison group.

Centrality

The BC of a selected node is defined as the fraction of all

shortest paths in the network that a particular node participates

in. A network with a lower short path length means that each

node can be reached from any other node with fewer edges. The

destruction of a node with a high BC value would significantly

impact the network because it is at the intersection ofmany short

paths (24). The results of BC are presented in Table 1, where we

observe EZ > MZ and EZ > NZ in patient no. 2, EZ < MZ in

patient no. 5, EZ < NZ in patient no. 5 and 8, and MZ < NZ in

patient no. 1. Patients no. 3, 4, 6, 7, 9, and 10 did not demonstrate

any significant difference in all the comparison groups.

Discussion

Here, we demonstrated that brain network analysis—

based on the combination of time–frequency analysis of

phase transfer entropy, graph theory analysis, and power

spectrum compensation—could aid in the identification of EZ.

Furthermore, we proved that four brain network parameters,

CC, LE, OD, and OS, could be potential biomarkers for

differentiating EZ fromMZ and NZ (EZ > MZ and EZ > NZ).
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FIGURE 3

Box plot of CC of all ten patients for EZ, MZ, and NZ (P1 represents patient 1; ⋆ represents p < 0.05 with EZ > MZ, EZ > NZ, or MZ > NZ; ⋆⋆

represents p < 0.001 with EZ > MZ, EZ > NZ, or MZ > NZ; ⋆⋆⋆ represents p < 0.00001 with EZ > MZ, EZ > NZ, or MZ > NZ; Mann–Whitney

U-test [two–tailed]). CC, clustering coe�cient; EZ, epileptogenic zone; MZ, margin zone; NZ, normal zone.

FIGURE 4

Box plot of LE of all ten patients for EZ, MZ, and NZ (P1 represents patient 1; ⋆ represents p < 0.05 with EZ > MZ, EZ > NZ, or MZ > NZ; ⋆⋆

represents p < 0.001 with EZ > MZ, EZ > NZ, or MZ > NZ; ⋆⋆⋆ represents p < 0.00001 with EZ > MZ, EZ > NZ, or MZ > NZ; Mann–Whitney

U-test [two–tailed]). LE, local e�ciency; EZ, epileptogenic zone; MZ, margin zone; NZ, normal zone.
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FIGURE 5

Box plot of OD of all ten patients for EZ, MZ, and NZ (P1 represents patient 1; ⋆ represents p < 0.05 with EZ > MZ, EZ > NZ, or MZ > NZ; ⋆⋆

represents p < 0.001 with EZ > MZ, EZ > NZ, or MZ > NZ; ⋆⋆⋆ represents p < 0.00001 with EZ > MZ, EZ > NZ, or MZ > NZ; # represents p <

0.05 with EZ < MZ, EZ < NZ, or MZ < NZ; Mann-Whitney U test [two–tailed]). OD, out–degree; EZ, epileptogenic zone; MZ, margin zone; NZ,

normal zone.

Methodology of brain network analysis
based on IEDs

Frequency, power spectrum, and phase are the three

components of neuronal oscillation (25). Different frequency

bands are responsible for specific roles, as neuronal oscillation

generates synchrony across distinct brain regions to realize

different cognitive functions (26) or to support epileptiform

activity (27). A previous study reported that higher spectral

power of a periodic discharge pattern was associated with a

higher risk of seizures in time–frequency analysis, emphasizing

the importance of the power spectrum as an indicator of

epileptogenesis (28). However, the frequency or power spectrum

cannot reflect the coordination behind neurons across different

brain regions (25). Contrarily, the phase, which shows the

position of a signal at a specific time point within a given

oscillation cycle, plays a crucial role in coordinating the

communication between anatomically distributed brain regions

(25). Instead of using cross–frequency coupling, we extracted

the phase and power spectrum in the same frequency band

for analysis.

Although the morphology of a generalized seizure visually

represents a highly synchronized pattern, analysis reveals that

synchrony during this ictal activity is imperfect (29). Ortega

et al. found that phase synchronization and linear correlation

performed better in the analysis of synchronization clusters

from interictal activity in patients with temporal lobe epilepsy.

Receiver operating characteristic analysis indicated that seizure

control was achieved by removing the brain cortices that

produce synchronized sharp clusters (30). Meesters et al.

introduced a framework to model the network interactions

behind the IEDs. Independent component analysis was

performed to determine the interdependency of brain regions

using synchronized spikes. They found that this approach could

aid the visual review of ECoG and promises an increased success

rate of resection surgery (31). Using time–frequency analysis

of phase transfer entropy with a sliding window of 500ms, we

found that the phase synchrony value reached its peak at point

A with a specific time point and a given frequency (Figure 2)

during the IED period. Point A was used to select an analysis

window that was fed for brain network analysis.

Epilepsy is a network disease of the brain; therefore, with

graph theory analysis of functional and effective connectivity

networks, it is possible to derive from the interaction and

analyze the causal relationship between signals during different

events. By selecting and analyzing IEDs during the awake

state, Keller et al. found that IEDs in patients with epilepsy

reflect a complex and dynamic network presentation, resulting

from a heterogeneous population of synchronous neurons (32).

Based on the analysis results of IEDs, Ortega et al. found that

synchronization analysis could be used to functionally map

patients with temporal lobe epilepsy, as the synchronous ECoG
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FIGURE 6

Box plot of OS of all ten patients for EZ, MZ, and NZ (P1 represents patient 1; ⋆ represents p < 0.05 with EZ > MZ, EZ > NZ, or MZ > NZ; ⋆⋆

represents p < 0.001 with EZ > MZ, EZ > NZ, or MZ > NZ; ⋆⋆⋆ represents p < 0.00001 with EZ > MZ, EZ > NZ, or MZ > NZ; # represents p <

0.05 with EZ < MZ, EZ < NZ, or MZ < NZ; Mann-Whitney U test [two–tailed]). OS, out–strength; EZ, epileptogenic zone; MZ, margin zone; NZ,

normal zone.

was highly different between specific brain regions and the

temporal lobe (EZ) (30). Several brain parameters can be divided

into local segregation, global integration, centrality, etc., and

each parameter carries either a single value of a network, or the

value of each node (24). We selected some parameters that have

individual values for all nodes, and, we divided the electrodes

into EZ, MZ, and NZ for comparison.

Spike–wave discharges, polyspikes, polyspike–wave

complexes, beta/gamma oscillations, and HFOs are the

common IEDs types. Cuello–Oderiz et al. defined the typical

IEDs that show either spike or polyspike above 2Hz or spike or

polyspike interrupted by a flat period below 2Hz (33). Hu et al.

mentioned that the shape of IEDs could impact their results,

and thus, they used spike–wave discharges since this type

has the greatest potential to influence the calculation of brain

connectivity (34). In our study, polyspike–wave complexes were

used for patients no. 1 and no. 4, who had FCD in the primary

functional cortices (motor and sensory) and sharp–wave

discharges were used for the rest of patients, who had FCD with

motor and sensory cortices spared. We think polyspike–wave

complexes have correlated with the FCD location since this

pattern both exits in the ictal (35) and interictal events (36)

from the motor and sensory cortices. In our analysis, wavelet

convolution was used to extract the information from narrow

bands. Compared to the spike–wave discharges, the slow wave

component from polyspike–wave complexes has more effects

during the convolution process. According to the analysis

results, we think both patterns are typical IEDs, which carry the

information about underlying pathological activity and have the

greatest potential to be used for analysis.

With the occurrence of digital EEG, data recorded with

high sampling rate are preferred to support the pre–surgical

evaluation in the identification of two biomarkers: <inlinelist>

(1) low voltage fast activity at the start of ictal events; (2)

HFOs during interictal events </inlinelist> (37). Since our

patients’ ECoG data have different sampling rates (200Hz to

2,048Hz), we down–sampled the data with a higher sampling

rate and kept the sampling frequency of 200Hz among

all patients to make sure the 500 msec analysis window

will contain the same time point for the later analysis.

According to the Nyquist sampling theorem, a continuous–

time signal can be perfectly reconstructed from its sampling

points, given that the waveform is sampled at least twice as

quickly as its highest frequency component (38). Additionally,

a high–cutoff filter 66.6Hz was set to one–third sampling

rate (200Hz) to avoid aliasing. In our analysis, rather than

beta/gamma oscillations or HFOs, polyspike–wave complexes

and spike–wave discharges are used, and both can be sufficiently

reconstructed and analyzed with a sampling frequency rate of

200 Hz.
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Brain network parameters as biomarkers
for di�erentiating EZ

A high CC value was observed in patients with mesial

temporal lobe epilepsy using sEEG during the interictal period

(39). In a comparison study that used electrical source imaging

(ESI) and directed functional network from low–density EEG,

ESI, summed outflow, and efficiency were concordant in 76%

of patients within the presumed EZ from the interictal spike

(40). In our study, CC and LE were stable among all patients

for evaluation of EZ–MZ and EZ–NZ (EZ > MZ and EZ >

NZ), except for patient no. 1 in EZ–MZ (p = 0.16 for both

CC and LE). In a stereo–EEG study of epilepsy patients with

FCD type II, significantly higher OD values in the gamma

band helped differentiate the EZ from other brain regions

during interictal, preictal, and ictal events (41). Higher total

and OS values from the resected brain tissue were found in

the gamma and ripple bands in patients with a good outcome

(42). We found that OD and OS were the best parameters

for differentiating EZ from MZ and NZ, with all patients

demonstrating significant differences in the comparison groups;

ID and IS did not demonstrate this feature. Electrodes with a

high BC value are hubs, which may play an important role in

inhibiting or terminating seizures during interictal and post–

ictal states, and resection of these nodes is not necessary to

achieve seizure freedom (43). According to our results, BC was

the worst parameter to differentiate EZ from MZ and NZ, with

most patients demonstrating no significant differences in all

comparison groups. In a stereotactic–EEG study on the EZ,

propagation zone (PZ), and non–involved zone, Lagarde et al.

found that functional connectivity is stronger within the EZ and

PZ during the interictal event, indicating a reinforced network

within epileptic cortices (EZ and PZ) with a gradual organization

(44). We found that there is a significant difference for EZ–MZ

(EZ > MZ) and EZ–NZ (EZ > NZ) in CC, LE, OD, and OD

(except for patient no. 1 for EZ–MZ in CC and LE). According

to Figures 3–6 that show higher CC and LE values in the EZ,

representing strong interconnections with its neighbors; and

higher OD and OS values in the EZ, indicating dense and strong

connections pointing outside the EZ. Thismay imply that during

the IED period, the epileptogenic brain cortex is more likely to

build a strong and dense connection not only with its neighbors,

which have a direct and close relationship with the EZ, but also

between distant regions, which have network connections with

the EZ.

Limitations

Several experimental parameters influence the analysis and

should be tuned and used with caution. The threshold applied

to the adjacency matrix affects the results as we tried 30, 50,

and 70%, and found 70% worked the best. Although this value

may not be optimal, further exploration is required. The width

of the sliding window is another influential parameter. 250 msec

and 1 sec is not suggested since the former was unstable during

the calculation due to the limited window length and the latter

would introduce bias to the power spectrum compensation if

IEDs have after–going slow waves containing high amplitude.

Owing to the inadequate knowledge about the role of IEDs in

human epilepsy, questions regarding IEDs continue to persist,

for example, whether the underlying cellular and network

mechanisms are different, regardless of the similar morphology

of IEDs in EEG (45). IEDs types used for analysis are polyspike–

wave complexes for patients no. 1 and no. 4, and spike–wave

discharges for the rest of patients. Analysis results based on the

other IEDs types, especially those for the high frequency activity

(beta/gamma oscillations and HFOs) require future exploration

with data recorded using a high sampling rate (19, 20). From

the 100 epochs of each patient, most frequencies extracted at

point A (Figure 2) have a fixed value. Others have fluctuations

within a reasonable range (±4Hz). Patient selection bias is the

most important limitation of this study, given that most patients

had frontal FCD, and all the patients had good surgical outcomes

(9 Engel class I and 1 Engel class II). Additionally, more

centers are moving toward sEEG, which can target deep brain

structures with anatomical accuracy from both hemispheres.

Further exploration and analysis are required on this topic with

more patients included from Engel class I to IV. We proved

that four brain network parameters, CC, LE, OD, and OS, are

useful for differentiating EZ from MZ and NZ (EZ > MZ and

EZ>NZ). However, the differentiation ofMZ and NZ is beyond

the scope of the current work, and future studies are needed to

further explore this difference.

Conclusion

In this study, based on the analysis of IEDs, we combined

frequency, power spectrum, and phase for investigating

potential biomarkers for the identification of EZ in pediatric

focal epilepsy patients with FCD type II by using time–frequency

analysis of phase transfer entropy, graph theory analysis,

and power spectrum compensation. The current information

regarding IEDs is sometimes ambiguous, and its clinical

significance (role of IEDs in seizure and epilepsy) is unclear. A

more comprehensive and deeper understanding of the cellular

and network mechanisms underlying IEDs is required; further

research should focus on the development of more complete

models and more effective methods for epilepsy treatment.
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