AUTHOR=Martinez Helard Becerra , Cisek Katryna , GarcĂa-Rudolph Alejandro , Kelleher John D. , Hines Andrew TITLE=Understanding and Predicting Cognitive Improvement of Young Adults in Ischemic Stroke Rehabilitation Therapy JOURNAL=Frontiers in Neurology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2022.886477 DOI=10.3389/fneur.2022.886477 ISSN=1664-2295 ABSTRACT=
Accurate early predictions of a patient's likely cognitive improvement as a result of a stroke rehabilitation programme can assist clinicians in assembling more effective therapeutic programs. In addition, sufficient levels of explainability, which can justify these predictions, are a crucial requirement, as reported by clinicians. This article presents a machine learning (ML) prediction model targeting cognitive improvement after therapy for stroke surviving patients. The prediction model relies on electronic health records from 201 ischemic stroke surviving patients containing demographic information, cognitive assessments at admission from 24 different standardized neuropsychology tests (e.g., TMT, WAIS-III, Stroop, RAVLT, etc.), and therapy information collected during rehabilitation (72,002 entries collected between March 2007 and September 2019). The study population covered young-adult patients with a mean age of 49.51 years and only 4.47% above 65 years of age at the stroke event (no age filter applied). Twenty different classification algorithms (from Python's