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Aneurysmal subarachnoid hemorrhage is a disease with high mortality and morbidity due

in large part to delayed effects of the hemorrhage, including vasospasm, and delayed

cerebral ischemia. These two are now recognized as overlapping yet distinct entities,

and supportive therapies for delayed cerebral ischemia are predicated on identifying DCI

as quickly as possible. The purpose of this overview is to highlight diagnostic tools that

are being used in the identification of DCI in the neurocritical care settings.
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INTRODUCTION

Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating disease process, with overall
mortality approaching 30% (1). Despite significant advances in diagnosis, treatment, and
management of SAH, delayed cerebral ischemia (DCI) remains an extremely morbid complication
occurring in approximately 30–50% of patients within the first 2 weeks of aSAH (2, 3). The
development of DCI significantly impacts prognosis in aSAH patients, leading to persistent focal
or cognitive neurological deficit. Treatment for DCI remains challenging; however, a successful
strategy begins with early detection and effective monitoring throughout the period of risk.

Although the risk of DCI is associated with the initial volume of cisternal and ventricular
hemorrhage, the complex pathophysiology of this disease process is not exclusive to vasospasm (4).
This is further evidenced by the presence of infarcts that occur outside of territories demonstrating
vessel narrowing on imaging (4). The current definitions of DCI include a clinical component
of a decline in GCS of 2 points or greater not attributed to another pathology, or a radiographic
component of a cerebral infarction on imaging within 6 weeks of SAH, but not present on imaging
within 48 h (5, 6). Neurological examination is the most fundamental modality of identifying
patients with DCI, and frequent neurologic assessments are the most accurate modality for
detection (7). The examination has a high negative predictive value particularly in patients who are
awake, and a good examination will have high accuracy for identifying DCI, with certain studies
advocating multiple assessments a day by a neurocritical care provider (7, 8).

However, the most effective monitoring, especially in patients with difficult to ascertain
neurological examination, likely includes a combination of modalities that allows for the evaluation
of impending temporo-regional ischemia through direct or surrogate measures. The aim of this
overview is to highlight both foundational and emerging tools to assist in the diagnosis and
monitoring of DCI and vasospasm.
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METHODS

A Medline search utilizing PubMed (1966–2021) with a
combination of MeSH terms and non-MeSH keywords was
conducted. MeSH terms included “cerebral vasospasm,”
“imaging, perfusion,” “EEG,” “doppler transcranial
ultrasonography,” “microdialysis,” and “computed
tomography and single photon emission computerized
tomography.” Keywords included “transcranial doppler,”
“near-infrared spectroscopy,” “brain-tissue oxygen,”
“electroencephalography,” “thermal diffusion flowmetry,”
“computed tomography perfusion,” “magnetic resonance
perfusion” and “intraparenchymal pressure monitor.” Keywords
were combined with the terms “Vasospasm” or “delayed cerebral
ischemia.” Abstracts were subsequently reviewed and included
for relevance, based on author experience. Pertinent topics
identified after full text review were also included when possible.
The extent of the topics included in this brief review are mainly
limited to those that somehow provide the ability to diagnose
DCI and vasospasm (Table 1).

MODALITIES

Transcranial Doppler
Transcranial doppler (TCD) ultrasonography remains the
cornerstone of monitoring for vasospasm since its introduction
in the early 1980s (9). This modality remains an inexpensive,
non-invasive measure of intracranial vessel flow waveforms (10).
The flow velocity increases with vasospasm, and thus TCD values
can be utilized to assess likelihood and degree of angiographic
vasospasm (11). The most definitive utility of the modality to
assess vasospasm, with high positive predictive value (PPV),
is velocities > 200 cm/s or high negative predictive value
(NPV) of velocities < 120 cm/s (12). The 2012 American Heart

TABLE 1 | Multimodal monitoring for delayed cerebral ischemia in subarachnoid hemorrhage.

Modality Parameter

measured

Interpretation Benefits Limitations

EEG ADR, AP, RAV ↓ADR, AP, RAV with DCI Available, non-invasive, continuous Requires qEEG software,

experience in interpretation

TCDs MFV, LR ↑MFV and ↑LR with DCI Readily available, low cost,

non-invasive

Poor inter-operator reliability

Perfusion imaging CBV, CBF, MTT Infarct: ↑↑MTT, ↓↓CBF, ↓↓CBV

Penumbra: ↑MTT, ↓CBF, normal

or ↑CBV

Reliable, differentiates infarcted vs.

salvageable tissue, non-invasive

Requires transport to radiology;

Microdialysis Metabolic markers ↑lactate:pyruvate ratio with DCI Available with invasive cerebral

monitoring kits

Invasive; little data for unique

utility; cost of equipment

Jugular venous

sampling

SjvO2 ↓SjVO2 with DCI Available, obtained with CVC blood

draws

Moderately invasive (Requires

central venous catheter)

Cerebral perfusion

flowmetry

CBF/perfusion ↓CBF, ↓perfusion with DCI Available with invasive cerebral

monitoring kits

Calibration issues; cost of

equipment

Cerebral oxygen

monitor

PbtO2 ↓PbtO2 with DCI Available with invasive cerebral

monitoring kits

Invasive; cost of equipment

ADR, alpha/delta ratio; AP, absolute power; CBF, cerebral blood flow; CBV, cerebral blood volume; CVC, central venous catheter; DCI, delayed cerebral ischemia; LR, Lindegaard ratio;

MFV, mean flow velocity; MTT, mean transit time; PbtO2, brain tissue oxygenation; qEEG, quantitative electroencephalography; SjVO2, jugular venous oxygen saturation.

Association/American Stroke Association guidelines report TCD
as a reasonable monitoring modality for development of
vasospasm with Level B evidence to support its use, (though they
also acknowledge perfusion imaging is likely more valuable in
detecting DCI) (13). In addition to these criteria, an increase
in flow velocity of 50% also provides evidence of progressive
vasospasm (14). Additionally, a sudden drop from a high to low
velocity values may be indicate terminally compromised blood
flow as opposed to the resolution of vasospasm.

The literature regarding TCD as a predictive tool for DCI
is less compelling. A pooled analysis of observational studies
established a sensitivity of 90% and NPV of 92%, but a specificity
of 71% and PPV of 57% when establishing a middle cerebral
artery mean velocity of 120 cm/s as a cut-off (15). However,
the severity of TCD indicated vasospasm is associated with
DCI within the evaluated vascular territory (16). This evidence
confirms the modality as a screening tool but conveys the
complexity of DCI as a pathological entity not exclusive to
large vessel vasospasm. The addition of the Lindegaard ratio
(middle cerebral artery/extracranial internal carotid artery mean
velocities) assists in helping to differentiate physiological states
of hyperemia and mostly serves to improve overall sensitivity to
diagnose of DCI (17).

Other limitations exist in the utilization of TCDs (10). Patient
anatomy variances such as hyperostosis or surgical intervention
may make it difficult to obtain the necessary sonographic
windows. Further, operator and interpreter experience level can
create large variability in daily data, thereby making it difficult
to obtain a reliable trend. Another limitation is that TCD can
only be used on an intermittent basis and is not a continuous
monitoringmodality. This will likely evolve, however, as evidence
by robotic TCD which includes a head strap situated on a
patient with automatic adjustments of the ultrasound probe to
continuously monitor flow velocities (18). Finally, prediction of
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vasospasm in the ACA and posterior circulation vessels using
MCF is less accurate (11).

TCDs, despite their accessibility, do demonstrate some
reliability issues. They should be interpreted as a trend in a
patient at risk for vasospasm/DCI and not as isolated values.

Electroencephalography
Electroencephalography (EEG) provides a non-invasive,
continuous, real-time modality useful in monitoring patients
especially with high-grade aSAH, and has been increasingly
utilized in recent years (19). Loss of fast frequency is one of the
earliest signs of ischemia, as seen in aSAH and intraoperative
monitoring for carotid revascularization procedures (20, 21). It
is especially helpful for monitoring of perfusion as EEG records
cortical layers III and V, which are most likely to be affected
by perfusion deficits (22). The use of continuous EEG (cEEG)
and quantitative EEG (qEEG), or the use of numerical analysis
of EEG data to more objectively quantify pattern changes, have
been studied to determine both the indicators and predictors of
DCI, which is especially useful in contexts where DCI is not due
to large-vessel vasospasm, and therefore not adequately assessed
via angiography or TCDs. Importantly, changes in EEG can
also precede vasospasm that can be identified by angiography
(23–25). The most common evaluated criteria for qEEG include
decreasing alpha/delta ratio (ADR), relative alpha variability,
and total power (24, 26). An initial study on qEEG determined
a useful marker as an ADR decrease from baseline of either
1) >10% across 6 consecutive readings or 2) >50% on one
reading (26). A recent study of 34 patients found those with
cerebral infarction demonstrated a greater maximum alpha
power decrease and higher number of total hours of alpha power
decline, and that maximum TCD frequency was correlated with
alpha power reduction (p=0.015) (27). A conducted systematic
review indeed found different parameters, including alpha/delta
ratio, relative alpha variability, and total power, as having the
strongest association depending on the study question (28). In
addition to the specific qEEG parameters, patterns on cEEG have
also been evaluated in the context of SAH. Although not specific
for DCI, changes such as enhanced delta pattern, epileptiform
activity, and non-convulsive status epilepticus (NCSE), are all
associated with poor outcome across two systematic reviews
(28, 29). The benefits of EEG are even greater when combined
with TCDs. A recent study identified that utilizing EEG data
together with TCD MCA peak systolic velocities was better able
to predict DCI than either modality alone (30).

Despite the utility of the advanced capabilities of EEG, the
limitations remain in the necessity for the acquisition of both
software and hardware, as well as the expertise required in
interpreting the acquired data. The availability of this monitoring
modality is increasing but still limited, and its cost, though not
extreme, is still an added consideration in the use of EEG/qEEG.

Microdialysis
Microdialysis is a technique used to monitor the extracellular
environment of the brain parenchyma as a measure of the
metabolic state, and has been increasingly popular within
the last two decades as a tool in neurocritical care (31).

Clinically, cerebral microdialysis (CMD) probes can be used
to measure glucose, lactate, pyruvate, glycerol, and glutamate,
with the lactate/pyruvate ratio (LPR) being used as a surrogate
for anaerobic metabolism and therefore hypoxic conditions;
many groups define a state of metabolic distress as a LPR
either >30 or >40, and a glucose <0.7 mmol/L (32, 33).
Prior studies have even further correlated cerebral perfusion
(CPP) < 70 mmHg to these definitions of metabolic distress,
providing evidence of the specific association with blood
flow (34).

One of the landmark studies that utilized CMD in aSAH
patients was conducted by Veldeman et al. (35). The study
was a single-institution analysis of 180 consecutive high-grade
aSAH patients divided between the time before and after
which the institution implemented invasive neuromonitoring.
The authors found an earlier detection of treatable DCI in
high-grade aSAH as well as reduction in overall DCI-related
infarcts after implementation of invasive neuromonitoring. An
additional study that looked specifically at CMD in 28 high-
grade aSAH patients in a retrospective fashion found that
patients with increased systemic glucose variability were more
likely to enter a state of cerebral metabolic distress, which
the group defined as a LPR>40 (33). This finding was in
turn correlated with in-hospital mortality after adjusting for
age, Hunt Hess, daily GCS and symptomatic vasospasm (P
= 0.03).

The further benefit of CMD is the ability to demonstrate
a predictable change in values prior to the development of
radiographic DCI in high grade aSAH patients. Patet et al.
showed in comatose patients with DCI the increase in LPR and
decrease in glucose over a period of 18 h prior to the development
of hypoperfusion on Perfusion Computed Tomography (CPT)
(36). Helbok et al. found CMD demonstrated metabolic distress
(LPR >40) a median of 13 h prior to the occurrence of
corresponding territory infarcts on CT (37).

An important consideration while conducting CMD in
the context of pre-existing focal lesions is probe placement
given the differential values obtained when evaluating
perilesional vs. normal parenchyma. Expectedly, the perilesional
microenvironment displays values closer to metabolic
impairment more often than normal tissue including lower
glucose and higher LPR (38).

Although often associated with invasive neuromonitoring via
CMD, there has also been work that has assessed jugular bulb
microdialysis as a measure that more closely mirrors the cerebral
metabolic environment than it does the systemic metabolic
environment (39). Although jugular bulb microdialysis in aSAH
patients has not been widely assessed, Forsse and colleagues did
perform a prospective feasibility study in this patient population,
assessing 12 aSAH patients, comparing CMD and jugular bulb
microdialysis measurements. They found the method to be
generally safe, although various parameters observed between
the two measurement devices showed no significant correlations,
which suggests that if jugular bulb microdialysis were to be used
in aSAH multimodality monitoring, significant legwork would
need to be undertaken to determine which metabolic parameters
might point to the development of DCI.
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Invasive Brain Tissue Oxygen (PbtO2) and
Thermal-Diffusion Flowmetry
Apart from surrogate markers of oxygenation and perfusion,
both invasive and non-invasive means are available to
evaluate real-time evaluation of changes. As a companion
to intraparenchymal pressure monitors, both cerebral oxygen
monitors and cerebral thermal-diffusion flowmetry probes
have been used in the setting of high-grade subarachnoid
hemorrhage (40).

With regard to the evaluation of brain tissue oxygen in
subarachnoid patients, there is conflicting evidence as to the
benefit on overall clinical outcomes (41, 42). There is some
evidence that points to the utility or possible correlation of
PbtO2 values and extent of vasospasm, mainly a negative
correlation of PbtO2with degree of angiographic vasospasm (43).
A study evaluating the possible association between PbtO2 and
TCDs, specifically Lindegaard Ratios, found no correlation (44).
However, this study did find a Lindegaard Ratio >/= 3 to have
a high specificity for cerebral hypoxia (PbtO2 < 20 mmHg) (44).
There is also evidence that the combination of these tools may be
useful to monitor treatment to refractory vasospasm (45).

A significant utility of PbtO2 monitoring is the ability to
combine the modality with CMD. This provides an essential tool
with regard to the determination of mitochondrial dysfunction
independent of ischemia, demonstrated as an increase in LPR
with normal Pyruvate as well as normal PbtO2 values (46).
Further, cerebral metabolic distress (LPR > 40) and severe brain
tissue hypoxia (PbtO2 </= 10 mmHg) and more significantly
associated together, even in the setting of normal CPP (47).

Cerebral thermal-diffusion flowmetry provides a measure of
cerebral blood flow through an intraparenchymal catheter (48).
Althoughmuch of the literature evaluates the use of this modality
in traumatic brain injury, an initial study in patients with anterior
circulation aneurysms treated by open surgical clip ligation
demonstrated a cutoff value of 15 ml/100 g/min correlated with a
sensitivity of 100% and Specificity of 75% of DCI (49). The main
limitation of this modality is the highly focal area of perfusion
assessment as well as the susceptibility to artifact depending on
positioning near vascular structures.

Near-Infrared Spectroscopy
Although mainly used as an intraoperative monitoring tool
in cardiac surgery, near-infrared spectroscopy (NIRS) has
gained increasing awareness as a non-invasive modality option
within the intensive care unit (50, 51). The modality can
display regional cerebral oxygen saturation (rSO2) in the frontal
lobes and has previously been validated in stroke patients to
correlate with cerebral blood flow through perfusion imaging
(52). In high-grade subarachnoid hemorrhage patients, a
study by Park et al. found a measurable difference in rSO2
levels in those with DCI compared to those without from
days 6–9 as well as an 85.7% sensitivity and specificity for
detecting DCI when rSO2 decreased by more than 14.7% (51).
Despite this correlation, not all studies have demonstrated
an association between NIRS values and symptomatic
vasospasm (53).

Imaging Perfusion Studies
Despite disadvantages with the lack of temporal monitoring,
advanced imaging allows for an accurate assessment of territory
specific ischemia and infarct, and has been widely implemented
in the diagnosis of DCI (54). Any number of the following
imagingmodalities have been used including Xenon-CT (Xe-CT)
(55). Magnetic Resonance Perfusion (MRP) (56). Single-photon
emission computed tomography (SPECT) (57, 58) and Perfusion
Computed Tomography (PCT) (59).

Among the mentioned techniques, CT perfusion is widely
available. The basis to this imaging modality is the formulation
of time-density curves at specific regions through dynamic
acquisition following a contrast bolus, thus allowing for the
evaluation of microcirculation (60). The resultant qualitative
maps in conjunction with quantitative values provide a
mechanism to evaluate ischemic penumbra and infarct
core volumes.

Traditional parameter values that define ischemia or infarct
were initially validated in studies of thrombolysis in ischemic
stroke. Still, PCT provides a more useful measure than either
CTA or CTH alone (61). Prior studies have demonstrated that
TTP is the most sensitive parameter for vasospasm, however this
is not necessarily in conjunction with DCI as a separate entity
(8, 62, 63). Nevertheless, PCT can be utilized to predict clinical
outcome in response to endovascular rescue therapy in patients
with DCI serving as a potential measure to determine severity
(64). Further, PCT can be helpful in diagnosing DCI in patients
with poor neurological exams (65).

Perfusion-Weighted MRI evaluates parameters similar to
PCT through two available acquisition mechanisms: arterial
spin labeling and dynamic susceptibility contrast imaging, the
latter which is more commonly utilized (66). Further, Changes
in perfusion-weighted MRI parameters correlate well with
neurologic deficits in patients with vasospasm (56).

The disadvantages to this technique are those which limit
MRI in general, mainly the time required to obtain imaging,
which may be pertinent in unstable comatose patients, and the
limitations around cardiac devices and metal fragments.

Two additional modalities have been previously used to
evaluate perfusion but are not commonly used in the clinical
context today: SPECT and Xe-CT. SPECT imaging utilizes
the delivery and subsequent uptake of a radioisotope such as
technitium-99m as a corollary to CBF, mainly evaluating relative
decreases compared to normally perfused areas. Limitations to
this modality include the timely preparation and administration
of the radioisotope and the necessity of a normal area of
perfusion for analysis (66). Although Xe-CT has been a valid
measure to quantify CBF in the past, several limitations
prevent this modality from being widely utilized, mainly
the need to deliver an inhaled agent, acquisition time,
and the susceptibility to artifact from patient motion (66,
67).

Advanced Hemodynamic Monitoring
Traditional practices of “Triple-H-Therapy” have been
supplanted by goal directed approaches to the monitoring
and management of both volume status and blood pressure,
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demonstrating improved outcomes in patients (68). This shift
in practice has given rise to literature evaluating novel methods
of hemodynamic monitoring in this patient population to more
effectively determine cardiac parameters essential for cerebral
perfusion (69). Although these hemodynamic parameters do
not provide a diagnosis of DCI, the need for continuous and
accurate measurements is vital to providing timely care and
adjunctive support.

Prior techniques include arterial and central venous pressure
monitoring. Two advanced invasive modalities increasingly
implemented in the critical care setting include Uncalibrated
Pulse Contour Analysis (FloTrac system including the FloTrac
sensor and Vigileo Monitor, Edwards, Irvine, CA USA)
and calibrated transpulmonary thermodilution (Calibrated TD
PiCCO, Pulsion, Munich, Germany and LiDCO Ltd) which
allow for the calculation and display of additional hemodynamic
parameters specific to the class of device (70).

With regard to the FloTrac system, the obtained values
include Stroke Volume (SV), Stroke Volume Variation (SVV),
Systemic Vascular Resistance (SVR), and Cardiac Output. In
addition to variables obtained from pulse contour analysis,
transpulmonary thermodilution provides both Global End
Diastolic Volume/Index (GEDV/GEDI) and Extravascular Lung
Water Index (ELWI).

The use of transpulmonary thermodilution may elucidate
hemodynamic differences in patients with high grade
subarachnoid hemorrhage, and more importantly patients
with DCI compared to patients without. Yoneda et al. observed
a parameter trajectory that generally included a lower GEDI
and CI, in conjunction with increased SVRI during the initial
half of the vasospasm period in patients with DCI compared
to those without (71). Although pooled data do not suggest
necessarily a benefit to routine advanced hemodynamic

monitoring, the techniques allow for a nuanced and patient
specific approach (72).

Finally, there has been some effort placed into assigning risk
scores for DCI by analysis of more routinely collected vital sign
changes. A recent study by Megjhani and colleagues created a
classification/risk stratification model for DCI based on the vital
sign data on an hourly basis of 310 aSAH patients (73). Based
on the classification they created, when applied to 2 external
institutional datasets, they were able to predict 64% and 91% of
DCI events as early as 12 h before clinical detection, with 2.7 and
1.6 true alerts for every false alert.

CONCLUSION

This brief review provides an overview on the current methods
used to assist in the diagnosis and monitoring of DCI and
vasospasm. Given the relative advantages and limitations of
each modality, the most beneficial approach is a combination
of the aforementioned techniques. More importantly, established
protocols for the interpretation and subsequent treatment of
findings assist in the consistent regimented approach to this
complex patient population.
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