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Objective: Sudden unexpected death in epilepsy (SUDEP) is the leading cause of

epilepsy-related mortality. Although lots of effort has been made in identifying clinical

risk factors for SUDEP in the literature, there are few validated methods to predict

individual SUDEP risk. Prolonged postictal EEG suppression (PGES) is a potential

SUDEP biomarker, but its occurrence is infrequent and requires epilepsy monitoring unit

admission. We use machine learning methods to examine SUDEP risk using interictal

EEG and ECG recordings from SUDEP cases and matched living epilepsy controls.

Methods: This multicenter, retrospective, cohort study examined interictal EEG

and ECG recordings from 30 SUDEP cases and 58 age-matched living epilepsy

patient controls. We trained machine learning models with interictal EEG and ECG

features to predict the retrospective SUDEP risk for each patient. We assessed

cross-validated classification accuracy and the area under the receiver operating

characteristic (AUC) curve.

Results: The logistic regression (LR) classifier produced the overall best performance,

outperforming the support vector machine (SVM), random forest (RF), and convolutional

neural network (CNN). Among the 30 patients with SUDEP [14 females; mean age (SD),

31 (8.47) years] and 58 living epilepsy controls [26 females (43%); mean age (SD) 31

(8.5) years], the LR model achieved the median AUC of 0.77 [interquartile range (IQR),

0.73–0.80] in five-fold cross-validation using interictal alpha and low gamma power ratio
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of the EEG and heart rate variability (HRV) features extracted from the ECG. The LR

model achieved the mean AUC of 0.79 in leave-one-center-out prediction.

Conclusions: Our results support that machine learning-driven models may quantify

SUDEP risk for epilepsy patients, future refinements in our model may help predict

individualized SUDEP risk and help clinicians correlate predictive scores with the clinical

data. Low-cost and noninvasive interictal biomarkers of SUDEP risk may help clinicians

to identify high-risk patients and initiate preventive strategies.

Keywords: SUDEP, biomarker, machine learning, EEG, ECG

INTRODUCTION

Sudden unexpected death in epilepsy (SUDEP) is the leading
cause of epilepsy-related mortality (>3, 000 deaths/year in
the US), and the second leading neurological cause of
lost patient life-years (1–4). Usually, SUDEP occurs during
sleep and death is unwitnessed (5, 6). Treatment-resistant
patients have the highest SUDEP risk. There are currently
no validated biomarkers to predict individual SUDEP risk.
Risk reduction strategies include convulsive seizure control
and nocturnal monitoring (3, 7, 8). Generalized tonic–
clonic seizure (GTCS) frequency and nocturnal convulsions
are leading SUDEP risk factors (9–12). Supervision during
sleep may reduce SUDEP risk. Prolonged postictal EEG
suppression (PGES) is a potential SUDEP biomarker (13–
16) but requires epilepsy-monitoring unit admission. The cost
and potential risk limit PGES, which is available in <5% of
epilepsy patients (4). Furthermore, nonseizure SUDEP cases can
occur (17), supporting, the need for interictal biomarkers of
SUDEP risk.

Resting-state functional MRI (fMRI) (18, 19) may detect
activity in brainstem cardiopulmonary centers and their cortical
connections. Altered resting-state functional connectivity
between cortical-subcortical brain regions is implicated in
SUDEP (20). Large-scale functional brain networks may alter
neuronal dynamics, detectable on interictal EEG. Furthermore,
heart rate variability (HRV) is a biomarker of autonomic
dysfunction and potentially SUDEP risk (21–25). We recently
demonstrated altered HRV in SUDEP cases compared with
the matched controls (23). Combining both the EEG and
ECG measures might improve the efficacy of prediction
models. Critically, interictal EEG and ECG are low cost and
widely available.

Machine learning has strong predictive power and promising
potentials for applications of medical and neurological disorders
(26–28), and has been increasingly applied to clinical diagnosis
and prognosis. Machine learning methods are used for EEG-
based seizure detection (29), but infrequently to predict SUDEP
risk (30–33). We applied machine learning methods to analyze
interictal EEG and ECG recordings to assess individualized
SUDEP risk. We aimed to identify biomarkers of SUDEP risk
and correlate the classification score with clinical variables.
We conducted data-driven SUDEP classification and survival
analyses and verified the machine-learning models using a
retrospective multicenter data cohort.

MATERIALS AND METHODS

Study Population and Cohort
This multicenter, retrospective, case–control study identified
SUDEP cases among patients admitted to eight tertiary epilepsy
monitoring units (EMUs) of the MS-BioS Study Group,
including the Royal Melbourne Hospital, Austin Hospital, St.
Vincent’s Hospital, Melbourne, Australia; NYU Langone Health,
NY Presbyterian Hospital/Columbia University, New York;
University of Cincinnati, Cincinnati; Yale New Haven Hospital,
New Haven; and Johns Hopkins Medical Center, Baltimore).
Patients underwent video EEG monitoring (VEM) with ≥ 21
scalp electrodes using the 10–20 system and lead II of a standard
12-lead ECG.

Each center identified patients aged 6 months to 65 years with
≥1 electroclinical seizure recorded over a 2–11-year consecutive
period (25). All the patients were followed for≥5 years. Epilepsy-
related deaths were reviewed with available records, medical
examiner/coronial, and autopsy findings to determine the cause
of death. We included definite and probable SUDEP cases based
on the current criteria (34).

For each SUDEP case, two living epilepsy controls were
matched according to admission age (±4 years), sex, and EMU
admission year (±1 year) from the EMU cohort at each center.
Epilepsy controls had documented contact in the medical record
within 6 months of screening or were identified as not deceased
from national death records.

Demographical and Clinical Data
For all the cases, demographical and clinical data including
epilepsy and seizure classification; seizure frequency; the age
of onset; antiseizure medications (ASMs), epilepsy surgery or
neuromodulation; other medications; and medical history (e.g.,
cardiovascular and psychiatric disorders) were obtained from
medical record review at EMU admission.

Recording Selection
Electroencephalogram sampling rates ranged between 256 and
512Hz. We identified 10-min interictal segments from nonrapid
eye movement (NREM) sleep and 10-min segment from
wakefulness during VEM for each case, typically from the first
24 h of VEM. For most of the studies, we were limited to
review of archived EEG which did not include the complete
recording and just snippets that were selected for archiving
by the clinician. Sleep segments were chosen at random that
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preceded at least 1 h before or after a nonconvulsive seizure or
6 h before or after a convulsive seizure. During wakefulness, EEG
was collected when subjects were free of muscle and movement
artifact. These artifact-free segments were chosen by a well-
trained epileptologist or a research scientist, but were done
without the knowledge of any hypothesis. We excluded the
immediate postictal period, which was defined as ≥6 h following
tonic–clonic seizures (TCSs) and ≥1 h for all other seizure types.
EEG and ECG recordings were converted from the proprietary
formats to the ASCII format using Persyst 13 (Prescott, Arizona,
USA). Similarly, 10-min interictal segments of stable ECG were
selected from both the NREM sleep and wakefulness (exactly the
same time of EEG recordings) for each subject (25).

Offline EEG and ECG Feature Computation
For each EEG group signal, we performed bandpass filtering
(1–100Hz) and then calculated the relative power ratio at six

frequency bands: delta (1–4Hz), theta (4–8Hz), alpha (8–15Hz),
beta (15–30Hz), low gamma (30–50Hz), and high gamma (50–
100Hz). The spectral power was calculated using fast Fourier
transform (FFT) with amultitaper estimator on the entire 10-min
recordings. To account for the measurement variability between
subjects or centers, we used the relative power percentage and
power ratio to calibrate. For instance, the feature derived from
the low gamma band was defined as:

Relative_low_gamma_power =
low gamma power (30− 50 Hz)

broad band power (1− 100 Hz)
,

Low_gamma_power_ratio =
relative_low_gamma_power (SLEEP)

relative_low_gamma_power (WAKE)

We used the EEG power ratio for the between-subject EEG power
calibration purpose. To reduce the feature dimensionality and
avoid overfitting, we clustered scalp EEG electrode channels into

FIGURE 1 | (A) Clustering scalp electroencephalography (EEG) electrodes (10–20 International System) into nine channel groups (G1–G9). (B) Comparison of

channel-averaged EEG low gamma sleep/wake power ratios between SUDEP Patients and age-matched living epilepsy controls (SUDEP vs. control 1, **p = 0.0033,

paired t-test; SUDEP vs. control 2, *p = 0.0251). (C) Comparison of subject-averaged EEG low gamma sleep/wake power ratios between SUDEP patients and

age-matched living epilepsy controls (****, p < 0.0001, paired t-test). (D,E) Similar to panels (B,C) except for the alpha band [panel (D): n.s., p = 0.258 and p =

0.719; panel (E): **p = 0.009 and *p = 0.039, paired t-test]. (F) Comparison of EEG low gamma sleep/wake power ratios between SUDEP patients and age-matched

controls in nine EEG channel groups (**, p = 0.0012, two-way ANOVA test; error bar denotes SEM). (G) Similar to panel F, except for the alpha band (**, p = 0.048,

two-way ANOVA test).
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nine groups (Figure 1A and Supplementary Methods). In total,
we had 6 × 9 = 54 (frequency × group) power ratio features
for an individual subject. To further reduce the number of
power ratio features, we ranked these EEG features using a linear
support vector machine (SVM) classifier (i.e., polynomial kernel
with degree 1). The SVM weights associated with individual
features determined their relative importance (35). We further
selected the most discriminative features (“alpha_power_ratio”
and “low_gamma_power_ratio”) among specific channel groups
(Figures 1B–E).

To analyze ECG recordings, we calculated a set of
standardized linear (time and frequency-domain) and nonlinear
ECG features (a total of 24 ECG-HRV features per subject, see
Supplementary Methods and Supplementary Figure S1) and
then optimized features. For the sake of feature calibration,
we again calculated each HRV feature’s sleep/wake ratio, so
that the actual feature was dimensionless. While using the
EEG and ECG feature ratios, we did not impose any statistical
independence criterion and resorted on an unbiased feature
selection procedure. The flowchart of EEG/ECG data analytics is
shown in Supplementary Figure S2.

Machine Learning Methods
We tested multiple standard machine learning methods,
including the logistic regression (LR) classifier, linear SVM, and
random forest (RF). In all the classification methods, the binary
label 0/1 represents the non-SUDEP/SUDEP identity in this
retrospective study. To alleviate overfitting, simpler models were
preferred because of small sample size.

Feature Selection
In offline classification task, we considered frequency-specific
power ratio features in sleep and wake EEG; and sleep ECG-HRV
features. For combined EEG and ECG features, we conducted
two systematic approaches to select features. We trained all
features with an LR, SVM, and RF classifiers with an L1 norm
sparsity constraint, and identified relevant features associated
with nonzero regression coefficients after 1,000 runs. Next, we
retrained the classifier with fewer features without the L1 norm.

To assess online SUDEP risk, we adopted a sliding window
to extract features of the EEG during sleep and then applied
the standard machine learning classifiers to the data from
each moving window. We employed a parametric CNN
architecture (Supplementary Figure S3) with one-dimensional
convolutional filters to model the power, frequency, and phase
relationships between EEG channels (36).

It is noted that we did not include any clinical measurement as
the predictive features for two reasons. First, we would provide an
unbiased analysis without using the clinical diagnostics; instead,
we only correlated the predicted risk probability with the clinical
variables in the post-hoc analysis. Second, missing data of clinical
variables were present in many subjects in this study.

Survival Analysis
The clinical variable EMU-to-SUDEP interval (ranged between
0.5 and 10 years) defined the time from EMU recording to the
SUDEP incident. To characterize the EMU-to-SUDEP risk in

the SUDEP group, we used Cox proportional hazards model
with an imposed an L1 norm sparsity constraint: λ (t|Xi) =

λ0 exp(Xiβ), where λ0 is baseline hazard, Xi are covariates for
i-th subject, and β is the regression parameter. The survival
analysis was aimed to predict the EMU-to-SUDEP interval with
both EEG and ECG features. We used the LASSO method to
select the candidate EEG and ECG features (37). Because of
missing data in some SUDEP patients, no other clinical variable
was used in the survival analysis. The sparsity constraint on
β improved the survival model generalization. The regularization
parameter α was estimated by a grid search followed by five-
fold cross-validation. We used the concordance index (range
0–1) as the goodness-of-fit assessment, where 1 implies the
perfect prediction.

Performance Evaluation
The sensitivity, specificity, accuracy, and the area under the
receiver operating characteristic (AUC) curve were calculated for
all themachine learning classifiers.MedianAUC and IQR (25 and
75% percentiles) were calculated using five-fold cross-validation
with 1, 000 random repeats. In leave-one-center-out prediction,
we used the data from 7 centers to train the model and one center
to test the model.

Statistical Analysis
Data were analyzed with custom software written in
MATLAB and Python. Statistical significance of parametric
or nonparametric tests used in all analyses was set at P <

0.05. Multiple comparisons were corrected using Bonferroni
correction. To promote rigor and reproducibility, the data
analytic software is shared online (https://github.com/
aaronh314/SUDEP).

RESULTS

Study Population
Table 1 presents demographical and clinical data on
the study population (for individual center data, see
Supplementary Table S1) (25). Data for cases and controls were
collected at EMU admission, except for surgical intervention(s)
and Engel outcome, collected at last follow-up. The interval
between VEEG and SUDEP was 0.5–10 years.

We analyzed EEG recordings from 30 patients with SUDEP
and 58 living epilepsy controls. A subset of 83 subjects had
10-min interictal sleep EEG recordings (in one SUDEP case
and four controls, interictal EEG recordings during sleep were
unavailable). Furthermore, 76 subjects (26 SUDEP and 50
controls) from this subset had both the interictal sleep and
wake EEG recordings and 70 of these 76 subjects had clean
ECG recordings.

Feature Selection, Classification, and
Survival Analysis
We calculated three sets of features: (i) EEG frequency-
power ratios during sleep and wake states; (ii) ECG-HRV
features, and (iii) sliding window-based sleep EEG features
only. For each set, we ranked individual features to compare
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TABLE 1 | Demographical and clinical characteristics of the study population

[modified from Ref. (25)].

Characteristic SUDEP

cases

(n=30)

Living epilepsy

controls

(n=58)

P-value

Age—yr, median [IQR] 34 [24, 40] 34 [25, 40] 1.0

Male gender, n (%) 16 (53.3%) 29 (50%) 0.176

Race, n (%) 0.447

White 25 (83.3%) 43 (74.1%)

Black/African American 3 (10%) 6 (10.3%)

Asian 1 (3.3%) 3 (5.2%)

Other 1 (3.3%) 4 (6.9%)

Unknown 0 (0%) 2 (3.4%)

Epilepsy classification, n (%) 0.527

Focal 25 (83.3%) 48 (82.8%)

Generalized 4 (13.3%) 9 (15.5%)

Combined focal and generalized 1 (3.3%) 1 (1.7%)

Unknown 0 (0%) 0 (0%)

Etiology, n (%) 0.583

Structural/Metabolic 15 (50%) 24 (41.4%)

Genetic/Presumed Genetic 3 (10%) 8 (13.8%)

Unknown 12 (40%) 26 (44.8%)

Antiseizure medications on admission, n (%) 0.847

None 0 (0%) 2 (3.4%)

Monotherapy 4 (13.3%) 11 (19%)

Polytherapy (≥2) 26 (86.7%) 45 (77.6%)

Age of onset ‡–yr, median [IQR] 10 [2, 16] 12 [3, 21] 0.571¶

Disease duration—yr, median [IQR] 17 [12, 33] 14 [5, 29] 0.083¶

EMU to SUDEP time—yr, median [IQR] 2 [4, 6] n/a n/a

Lifetime tonic-clonic seizure (TCS) frequency§, n (%)

None 3 (10%) 15 (25.9%) 0.231*

≥1, but <6 3 (10%) 15 (25.9%) 0.231*

≥6, but <50 5 (16.7%) 5 (8.6%) 0.273*

≥50 7 (23.3%) 2 (3.4%) 0.016*

Unknown 12 (40%) 21 (36.2%) n/a

Outcome of surgical intervention, n (%)

Engel I 1 (3.3%) 8 (13.8%) 0.264*

Engel II 1 (3.3%) 5 (8.6%) 0.624*

Engel III 3 (10%) 2 (3.4%) 0.566*

Engel IV 3 (10%) 1 (1.7%) 0.324*

Unknown 4 (13.3%) 1 (1.7%) n/a

Cardiovascular disease, n (%)

Hypertension 3 (10%) 4 (6.9%) 0.696

Cardiac arrhythmia 1 (3.3%) 0 (0%) 0.356

Structural heart disease 3 (10%) 0 (0%) 0.042

Sleep apnea 0 (0%) 1 (1.7%) 1.0

Psychiatric comorbidity, n (%)

Anxiety disorder 0 (0%) 7 (12.1%) 0.047

Depression 2 (6.7%) 16 (27.6%) 0.015

Medication for psychiatric disorder, n (%)

Antipsychotic 3 (10%) 2 (3.4%) 0.343

IQR, interquartile range; EMU, epilepsy monitoring unit.
‡
Age of onset unknown in two (3.4%) epilepsy controls.

¶P-value calculated with a two-sample Wilcoxon rank-sum test.
§ Includes both focal-to-bilateral tonic-clonic seizures (TCSs) and generalized tonic-clonic

seizures (GTCSs).

*Statistical significance corrected p-value following Holm-Bonferroni adjustment for

multiple comparisons. Bold font indicates statistical significance (p < 0.05).

classification utility. From the combined features (i) and (ii),
we identified an optimal subset and compared cross-validated
accuracy (Supplementary Figure S4). The optimal set of EEG
+ ECG features varied between 2 and 5 and we reported the
statistics using 3. We trained classifiers using single or combined
features separately. For the L1 regularized LR classifier using
features (i)+(ii), the significant coefficients include alpha power
ratio, high gamma power ratio, and HRV lf/hf power ratio
(Supplementary Figure S5).

In offline classification, the LR and SVM classifiers achieved
comparable or nonsignificantly different results. The best five-
fold randomized cross-validated AUC [median 0.77, interquartile
range (IQR) 0.73–0.80; 1, 000 Monte Carlo runs] was based on
the LR classifier (Figure 2A and Table 2). Combining EEG and
ECG features slightly improved performance for most classifiers,
suggesting features are complementary. The low gamma power
ratio was significantly higher in the SUDEP patients (especially
for EMU-to-SUDEP <5 years) than controls; most significant
in temporal lobes (i.e., EEG groups 4–6; Figure 1F). The alpha
power ratio was significantly lower in SUDEP cases vs. controls
(Figure 1G). Therefore, low gamma and alpha power ratio
from specific regions were the most discriminative SUDEP
risk features. As a comparison, we also trained ML classifiers
using ECG features alone (n = 70, based on the same feature
selection procedure). After feature ranking, we selected the most
discriminative four ECG-HRV features (“lfnu,” “hfnu,” “sd1,”
and “ratio_sd2_sd1”) for classification analysis, and the cross-
validated AUC results were as follows: LR median 0.65 (IQR
0.61–0.69), SVM median 0.55 (IQR 0.47–0.62), and RF median
0.58 (IQR 0.52–0.65).

We performed simulated “online” classification based on
sleep EEG recordings and found classification accuracy degraded
compared with the offline classification. We optimized the
window size and features (Supplementary Figure S6), and
achieved the best five-fold cross-validated AUC 0.64 from the
LR classifier. The CNN achieved a median AUC 0.60 (IQR 0.57–
0.64), sensitivity 0.45 (IQR 0.38–0.52), specificity 0.66 (IQR 0.59–
0.73), and accuracy 0.55 (IQR 0.52–0.57). The simple LR classifier
achieved the overall best AUC performance. To test the model
stability in sleep EEG signal nonstationarity, we trained the LR
classifier with the first half of sleep EEG and tested the second
half; results were comparable, mean cross-validated AUC 0.74
(Supplementary Figure S7).

In the leave-one-center-out prediction setting, only data from
seven centers were used to train the model, followed by the
validation on the held-out data from the remaining one center.
In this case, the LR classifier had mean AUC of 0.734 (minimum:
0.5, maximum: 1.0) and mean accuracy of 0.55 (minimum:
0.25, maximum: 0.9) (Supplementary Table S2). Thus, the
mean AUC result was comparable with the standard five-fold
cross-validation analysis, suggesting moderate generalization at
different settings.

In survival analysis within the SUDEP at-risk patients,
we obtained the averaged concordance index of 0.687 from
five-fold cross-validation (minimum: 0.44, maximum: 0.90)
from the regularized Cox proportional hazard model with a
sparsity constraint. This result was comparable to the SUDEP
group classification accuracy. The significant coefficients include
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FIGURE 2 | (A) Mean receiver operating characteristic (ROC) curve [mean area under the curve (AUC) = 0.77, interquartile range (IQR): 0.73–0.80; LR classifier]

obtained from SUDEP vs. non-SUDEP classification based on combined EEG and ECG features. Diagonal line shows the chance level (AUC = 0.5). (B) The mean

SUDEP prediction score correlated negatively with the EMU-to-SUDEP time among the SUDEP group (Pearson’s correlation ρ =-0.38, n = 26). Color-coded points

represent patients from 8 different centers. (C) Visualization and projection of two pairs of convolutional filters in the CNN onto the brain topographies of spatial

patterns. The spatial patterns of “amplitude map” indicate the importance at specific channels, whereas the spatial patterns of “phase shift map” indicate the relative

phase lagging.

TABLE 2 | Comparison of model performance [median interquartile range (IQR)] in five-fold cross-validation.

Feature set # SUDEP +

control

Model AUC Sensitivity Specificity Accuracy

(i)+(ii)

(i)

(iii)

70 = 24 + 46

76 = 26 + 50

83 = 29 + 54

LR 0.77 [0.73, 0.80]

0.75 [0.73, 0.78]

0.64 [0.60, 0.67]

0.63 [0.59, 0.67]

0.64 [0.60, 0.70]

0.73 [0.65, 0.79]

0.69 [0.66, 0.72]

0.68 [0.64, 0.72]

0.39 [0.29, 0.49]

0.65 [0.62, 0.69]

0.66 [0.64, 0.69]

0.55 [0.50, 0.59]

(i)+(ii)

(i)

(iii)

70 = 24 + 46

76 = 26 + 50

83 = 29 + 54

SVM 0.74 [0.70, 0.78]

0.74 [0.68, 0.78]

0.61 [0.53, 0.66]

0.65 [0.57, 0.71]

0.70 [0.59, 0.79]

0.73 [0.59, 0.79]

0.64 [0.58, 0.71]

0.59 [0.53, 0.64]

0.40 [0.29, 0.49]

0.64 [0.60, 0.68]

0.63 [0.58, 0.68]

0.53 [0.50, 0.57]

(i)+(ii)

(i)

(iii)

70 = 24 + 46

76 = 26 + 50

83 = 29 + 54

RF 0.71 [0.66, 0.76]

0.61 [0.57, 0.66]

0.59 [0.54, 0.64]

0.67 [0.62, 0.72]

0.58 [0.54, 0.62]

0.52 [0.45, 0.59]

0.66 [0.59, 0.71]

0.61 [0.54, 0.66]

0.63 [0.58, 0.69]

0.66 [0.62, 0.70]

0.59 [0.55, 0.63]

0.57 [0.53, 0.62]

(iii) 83 = 29 + 54 CNN 0.60 [0.57, 0.64] 0.45 [0.38, 0.52] 0.66 [0.59, 0.73] 0.55 [0.52, 0.57]

relative alpha power, the mean heart rate (HR) and the low
frequency (LF) power of HRV.

Interpretation of Classification Results
The AUC statistic can assess diagnostic ability with dichotomous
outcomes. Our best offline AUC performance was 0.74–0.77,
acceptable considering the small sample size (38). Clinically,
the sample size is crucial to interpret statistical significance
(39, 40). Among the patients with SUDEP, the median prediction
score showed a negative trend by correlating with the EMU-
to-SUDEP time (Figure 2B, Pearson’s correlation ρ =-0.38, n

= 26, p = 0.054, SVM; ρ = −0.36, p = 0.07, LR). Patients
with SUDEP with short latency (EMU-to-SUDEP time <5 years)
were more accurately classified than those with long latency
(≥5 years). Furthermore, epilepsy patients with SUDEP with
EMU-to-SUDEP time >7 years were misclassified (i.e., treated
as false negatives), suggesting that they were closer to living
epilepsy controls than other patients with relatively lower SUDEP
risk. Epilepsy controls misclassified by LR had low/high gamma
power higher in all the channels. In addition, 16.7% of the false
positive group, had depression and 6.7% of the true positive
group had depression; 33% of the true negative group had
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depression. A third of the false positive group hadDevelopmental
Delay/Static Encephalopathy, and 40% of the true positive
group had Developmental Delay/Static Encephalopathy; 18% of
true negatives had Developmental Delay/Static Encephalopathy
(Supplementary Table S3).

The CNN can extract informative spatio-spectral features
from multichannel EEG data. As the epileptic brain often
shows synchronized sleep EEG patterns across brain regions,
convolutional filters (2–4 pairs) in the CNN aimed to capture
the cross-spectral (amplitude and phase) features between
EEG electrodes. To help visualize these filters, we projected
the respective amplitude and phase shift at the same central
frequency onto the brain topographies of spatial patterns. The
spatial patterns of “amplitude map” indicates the importance
at specific channel, whereas the spatial patterns of “phase
shift map” indicates the relative phase lagging (Figure 2C and
Supplementary Methods). At the low frequency (∼12.5Hz),
the peak amplitude was grouped around the frontal-temporal
lobe electrodes, where the frontal electrodes had a phase lead
compared with the central/parietal/occipital electrodes. At the
gamma frequency (∼33.4Hz), the peak amplitude was around
the temporal lobe, where the occipital electrodes had a phase lag
with respect to other electrodes.

DISCUSSION

This study demonstrates that machine learning tools using
interictal EEG and ECG can help distinguish high-risk from
low-risk patients with SUDEP. Our feature selection procedure
identified key interictal EEG or ECG-HRV features in assessing
individual SUDEP risk. The CNN extracted complex nonlinear
spatiospectral features in sleep EEGs. We plan to refine our
model on prospectively ascertained SUDEP and control cohorts.
Development of SUDEP biomarker-informed preventive
strategies will be the subject of future investigation.

Recently, it has been suggested that ictal biomarkers for
PGES/SUDEP based on the seizure generation and termination
(41, 42). It is possible that the ictal episodes may carry the
most predictive power for SUDEP risk assessment. However, it
remains uncertain if SUDEP risk can be predicted from interictal
epileptiform discharges (IEDs) in sleep (43, 44). We identified
robust differences in EEG sleep/wave power ratio features in
low gamma, high gamma, and alpha bands between SUDEP and
control patients. The effect was pronounced over frontotemporal
regions in the scalp EEG recordings, which may correlate with
seizure-onset regions; however, detailed investigations are still
required to unravel their relationship. An intracranial EEG
study has shown that gamma oscillations precede seizure onset
zone IEDs (45); relative high sleep/wake gamma power ratio
may reflect the more frequent IED activity in the SUDEP
group. Cross-frequency coupling (e.g., delta-gamma phase-
amplitude coupling) may improve prediction (46). Future studies
by integration of multistage and multimodal neuroimaging
might reveal mechanisms of SUDEP. Furthermore, systematical
investigations of the EEG relationship between ictal seizure
episodes and interictal episodes will be valuable to understand

their contributions to SUDEP. Challenges remain for collection
such dataset and development of proper data analytics.

Abnormalities in HRV are linked to sudden cardiac death
and SUDEP risk. Patients with drug-resistant epilepsy have more
autonomic dysfunction, lower awake HRV and greater variances
between wake and sleep states than drug-responsive patients
(23). We found reduced LF HRV power was reduced in SUDEP
cases and predicted SUDEP latency (25). LF reflects sympathetic
and parasympathetic activity. Combining EEG and ECG, it
improved predictive power over EEG. Analyses combining
interictal EEG and new ECG features may improve individual
SUDEP prediction (47). Large sample size can greatly improve
machine learning.

Advancing machine learning models of SUDEP risk will
benefit from integration of clinical, imaging, and interictal
physiological data. Seizure pathways change on circadian and
slower timescales (48), suggesting that analyzing multiple
timescales may provide improve individualized SUDEP
prediction, and potentially peak periods of SUDEP risk within
circadian or ultradian cycles. Multimodal data fusion techniques
can reveal how data modalities interact (49) and improve SUDEP
prediction (50). Greater sample size would greatly improve
clinical prognosis and decision (51–53).

Finally, it is also worth pointing out the limitations of this
study. Our sample size was relatively small, which may lead to
overfitting and limits interpretation. In addition, the selected
EEG and ECG segments were relatively short, and did not
cover multiple-day or multiple-session recording samples. We
did not assess postictal EEG suppression nor correlate their
features with interictal EEG-derived features. Although we have
conducted leave-one-center-out validation, this study did not
validate methods on an external patient population. Finally, our
retrospectively acquired cohort prevents validating the classifiers
using continuous video-EEG recordings.

CONCLUSION

The results of this analysis suggest that machine learning
methods can identify the risk of SUDEP in individual patients
in a retrospective multicenter cohort study based on interictal
EEG recordings. Combining interictal EEG and ECG-HRV
features improves the classification performance. A simple LR
classifier produces the overall best classification performance
in randomized five-fold cross-validation and leave-one-center-
out prediction settings. The CNN can potentially extract
multichannel sleep EEG features used for online SUDEP risk
assessment. Further studies are warranted to validate the
results in larger and more diverse cohorts. The incorporation
of other parameters associated with SUDEP (e.g., respiratory
measurements and electrodermal activity) may improve the
accuracy of models for individual prediction of SUDEP risk.
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APPENDIX

TABLE A1 | MS-BioS study group.

Name Location Role Contribution

Dale C. Hesdorffer, PhD Columbia University, New York, United States Principal investigator Contributed to the acquisition of data.

Sylwia Misiewicz, Ed.M Columbia University, New York, United States Research coordinator Contributed to the acquisition of data.

Lucy Mendoza, CCRP University of Cincinnati, Cincinnati, United States Research coordinator Contributed to the acquisition of data.
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