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Gut microbial alteration is closely associated with brain disorders including cognitive

impairment (CI). Gut microbes have the potential to predicate the development of

diseases. However, the gut microbial markers for CI remain to be elucidated. In this study,

the gut microbial alterations were assessed using16S rRNA sequencing, and identified

the gut microbial markers using a random forest model. The results showed that there

were significant gut microbial differences between the control and CI groups based on

beta diversity (p < 0.002). Patients with CI had higher abundances of Actinobacteria

and Proteobacteria but lower proportions of Bcateroidetes and Firmicutes vs. that in

the control group. Patients had 39 special genera and the control subjects had 11

special genera. Furthermore, 11 genera such as Blautia, Roseburia, and Lactococcus

and 18 genera such as Lactobacillus, Ruminococcus 2, and Akkermansia were the

differential taxa in the control and CI groups, respectively. Gene functions related to

nutrient metabolisms were upregulated in patients with CI. This suggested that the huge

differences in gut microbes between the two groups and gut microbiota had the potential

to predicate the development of CI. Based on machine learning results, 15 genera such

as Lactobacillus, Bifidobacterium, and Akkermansiawere selected as the optimal marker

set to predicate CI with an area under curve (AUC) value of 78.4%. The results revealed

the gut microbial markers for CI and provided a potential diagnosis tool to prevent the

development of CI in the elderly.
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INTRODUCTION

Cognitive impairment is closely associated with the development of psychiatric illnesses such as
hypertension, depression, and Alzheimer’s disease (1–3). Age is an important factor for cognitive
impairment (CI) and there is increasing prevalence with the development of aging worldwide (4).
Furthermore, educational degree, sleep disorder, and vitamin D intake are the risk factors for CI
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in elderly people (5–7). In the elderly, gastrointestinal tract and
brain functions are gradually declining, and these factors are
inevitable challenges for them. CI is the high-risk factor for
dementia in elderly people, 10–30% of patients with mild CI and
20–66% of them convert into dementia within 1 and 2–4 years,
respectively (8, 9). Dementia is difficult to reverse and there are
no effective ways to treat it (10). CI leads to a huge burden for
family and society. Therefore, the early prevention of CI is a key
window to reduce the prevalence of dementia in the elderly.

Gut microbial alteration is closely associated with the
development of aging in the elderly and affects their physiology
functions including CI. The “Gut-brain” axis has been reported
to solve the function barrier related to the brain and
suggests bacteria play a key role in the development of
neurodevelopmental disorders (11). Bacterial species such as
Limosilactobacillus reuteri, Bifidobacterium pseudolongum, and
Lactobacillus johnsonii are reduced in the maternal high-fat-diet
offspring and negatively affect offspring social behavior (12).
Verrucomicrobiaceae and unclassified Firmicutes are increased
but Prevotellaceae and Erysipelotrichaceae are decreased, and
they affect the β-glucuronate and tryptophan metabolism in
the patients with Parkinson’s disease (13). These results suggest
that gut microbiota and their metabolism influence deeply the
brain function and manipulate the host’s emotion and behavioral
intentions. Fecal microbiota transplant from aged donor mice
into young recipients leads to impaired spatial learning and
memory (14). This implies that gut microbiota is an important
cause to induce CI symptoms.

In recent years, microbial marker severs as a non-invasive
diagnosis tool for some diseases such as hepatocellular
carcinoma, colorectal cancer, and type 2 diabetes (15–17). Gut
microbial marker has the potential to predict the development
of CI and may be an effective target tool to prevent CI in the
elderly. In this study, a total of 60 fecal samples were collected
from the patients with CI and control subjects. Combined 16S
rRNA sequencing with machine learning revealed microbial
biomarkers that predicted the development of CI and provided a
potential diagnosis tool to prevent CI for the elderly.

MATERIALS AND METHODS

Study Subjects
Patients (n = 33) with CI and controls (n = 27) aged more
than 68 years were enrolled in the Xin’an community in Wuxi
city. The study protocol was approved by the Ethics Committee
of the Wuxi People’s Hospital. Each subject provided written
informed consent.

CI Assessment
Mini-mental state examination (MMSE) index was used to assess
the mental state and degree of CI for the subjects (27–30, normal
cognitive function; <27, CI). The activities of daily living (ADL)
index was used to evaluate the ability of daily living in family
and the community in the elderly people (100, self-care; >60,
basically self-care; 41–60, need assistance; 21–40, rely on others;
<20, completely dependent on others).

Baseline Clinical Characteristic Collection
Baseline clinical characteristics including gender, age, height,
weight, education level, sleep duration, and occupation were
collected during the clinical interview. Fecal samples were stored
at−80◦C until for use.

16S rRNA Amplicon Sequencing
Using the FastDNA Spin Kit (MP Biomedicals, Santa Ana,
CA, USA), DNA was extracted for feces according to the
instructions. The V3–V4 region was amplified with the
primers (forward, 5′-CTCCTACGGGAGGCAGCA-3′; reverse,
5′-GGACTACHVGGGTWTCTAAT-3′). PCR products were
purified by TIANgel Mini Purification Kit (TIANGEN, Beijing,
China). After determination for DNA concentration and library
construction, the amplified fragment was sequenced on an
Illumina MiSeq PE300 platform (Illumina, Santiago, CA, USA).
Sequencing results were analyzed using the QIIME2 pipeline.
Non-metric multidimensional scaling (NMDS) was performed
to evaluate change in beta diversity of gut microbiota based on
the Bray-Curtis distance (18). Differential taxa were identified
using the linear discriminant analysis effect size (LEfSe) (19).
Phylogenetic investigation of communities by reconstruction of
unobserved states (PICRUSt) was employed to predict the gene
function of gut microbiota based on the Kyoto Encyclopedia
of Genes and Genomes (KEGG) Orthology database between
groups with and without CI (20). A random forest model was
used to explore the microbial markers for CI (21). Sequence
data were deposited in the Sequence Read Archive database as
BioProject PRJNA789994.

Statistical Analysis
The SPSS software version 20 (Chicago, Illinois, USA) and R
software version 4.0.5 (open access, https://www.r-project.org/)
were used to perform statistical analysis. The comparison was
performed using an unpaired t-test between the control and CI
groups. A p < 0.05 was indicated statistically significant.

RESULTS

Baseline Characteristics of Subjects
In this trial, 33 patients with CI and 27 healthy controls
were enrolled. As shown in Figure 1, there was no significant
difference in gender, height, and weight between the two groups.
Compared to the control group, patients with CI had lower
MMSE and ADL indices but had higher age, education duration,
and sleep duration per day in the CI group. Furthermore, patients
in the CI group were all retirees but the farmer was the major
occupation (74.07%) in the control group. The results showed
that people with older age had a higher risk to suffer the CI
symptoms although they had higher education duration and
sleep duration in the CI group.

Alteration of Gut Microbial Diversity
To assess the alteration of gut microbial diversity including alpha
and beta diversities in subjects, 16S ribosomal RNA sequencing
was performed. For alpha diversity of gut microbes, there were
no significant differences in evenness, observed_otus, and the
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FIGURE 1 | Baseline clinical characteristics (unpaired t-test, ns, no significance, **p < 0.01, ****p < 0.0001).

Shannon indices except for the faith_pd index (Figure 2A).
Compared to the control group, the faith_pd index was
significantly higher. Furthermore, there was a difference in
the beta diversity of gut microbiota between the two groups
[Figure 2B, stress = 0.25, p < 0.002, permutational multivariate
ANOVA (PERMANOVA)], and the development of CI was
associated with alterations of gut microbial composition. The
results showed that alpha diversity of gut microbiota was
no significant alteration between the two groups but beta
diversity representing gut microbial structure and composition
had remarkable changes in the CI group vs. the control group.

Changes in Gut Microbial Composition
At the phylum level, patients had shown higher abundances
of Actinobacteria and Proteobacteria but lower proportions of
Bacteroidetes and Firmicutes in the CI group vs. that in the
control group (Figure 3A). There were no significant differences
in the abundances of Verrucomicrobia and Tenericutes between
the two groups. Fusobacteria was enriched in the control group
but Euryarchaeota was higher in the CI group. At the genus
level (relative abundance >0.005 in any group), Bifidobacterium,

Alistipes, Lactobacillus, Streptococcus, (Ruminococcus) torques
group, Ruminococcus 2, Escherichia-Shigella, and Klebsiella were
enriched in the CI group (Figure 3B). The relative abundances
of Bacteroides, Prevotella 9, Lachnospiraceae_g, Anaerostipes,
Fusicatenibacter, Lachnoclostridium, Roseburia, Tyzzerella 4,
(Eubacterium) hallii group, Fusobacterium, and Akkermansia
were higher in the control group. Venn diagram showed that
there were 121 common genera in both groups, 11 special genera,
and 39 special genera in the control group and the CI group,
respectively (Figure 3C). The results showed that there were
significant differences in gut microbial composition between the
two groups.

Differential Taxa Between Groups
To explore the differential taxa between the control
and CI groups, LEfSe analysis was performed. The
results showed that based on the alteration of relative
abundances, 11 genera including Blautia, Roseburia,
Fusicatenibacter, Anaerostipes, Phascolarctobacterium,
Lachnospiraceae_g, RuminococcaceaeUCG_013,
Paraprevotella, Lactococcus, Bilophila, and Tyzzerella 3 were
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FIGURE 2 | Changes in the alpha and beta diversities of gut microbes. (A) Alteration of alpha diversity (unpaired t-test, ns, no significance, **p < 0.01). (B) Beta

diversity alteration based on non-metric multidimensional scaling (NMDS) analysis.

FIGURE 3 | Alterations of gut microbial composition. (A) Changes in gut microbes at the phylum level. (B) Changes in gut microbes at the genus level. (C) The special

genera in the control and cognitive impairment (CI) groups.

enriched in the control group (Figure 4A). Hungatella,
Desulfovibrio, RuminococcaceaeUCG_005, EC_Eubacterium_
xylanophilumgroup, FamilyXIIIAD3011group, Sutterella,

Slackia, ChristensenellaceaeR_7group, Eubacterium,
RuminococcaeaeUCG_004, Butyricimonas, Akkermansia,
Methanobrevibacter, Streptococcus, Ruminococcus2, and
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FIGURE 4 | Differential taxa in the control and CI groups. (A) Linear discriminant analysis effect size (LEfSe). (B) Comparisons of 4 genera between groups (unpaired

t-test, ns, no significance, *p < 0.05).

Lactobacillus were the differential taxa in the CI group. For
instance, Sutterella and Butyricimonas were higher in the
CI group and Roseburia was higher in the control group.
Lactobacillus was enriched in the CI group than that in the
control group although there was no significant statistical
significance (p > 0.05, Figure 4B).

Gene Functions of Gut Microbiota Between
Groups
Gut microbial alterations lead to differences in gene functions.
Therefore, to evaluate the changes in gene functions of gut
microbiota, PICRUSt analysis was performed based on gene
function prediction. There were 33 gene functions with
significant alterations in both groups (Figure 5, two-sided,
Welch’s t-test with Benjamini-Hochberg FDR multiple test
correction). The abundances of photosynthesis proteins,
photosynthesis, germination, oxidative phosphorylation,
sporulation, cyanoamino acid metabolism, phenylpropanoid
biosynthesis, bacterial chemotaxis, beta-lactam resistance,
progesterone-mediated oocyte maturation, and antigen
processing and presentation were upregulated in the control
group. However, gene functions related to nutrient metabolisms
such as glycolysis/gluconeogenesis, retinol metabolism, fatty acid
metabolism, D-alanine metabolism, and pyruvate metabolism
were upregulated in patients with CI. The results showed that
gut microbial alteration induced significant differences in gene
functions and this might be one of the causes for CI.

Identification of Microbial Markers for CI
To explore gut microbial markers for CI, a random forest
classifier model was used to identify the control samples from
CI samples. To detect unique microbial markers of CI, a random
forestmodel between 27 healthy samples and 33 CI samples in the
discovery phase. As shown in Figure 6A, 15 microbial markers
such as Lactobacillus, Bifidobacterium, and Akkermansia were
selected as the optimal marker set. An area under curve (AUC)
value of 78.4% was received in the ROC curve based on these
selected genera and implied a high diagnosis efficacy for patients
with CI (Figure 6B). The results showed that 15 genera contained
more information for CI predication and might be the microbial
markers for CI.

DISCUSSION

In the present study, gut microbiota from the patients with CI
and control subjects was comprised using 16S rRNA sequencing.
Gut microbial microecology is important for maintaining
physiological functions in the host and contributes to the
regulation of immune responses. Dysbiosis of gut microbiota
leads to changes in metabolisms and results in the onset of
diseases, especially including central nervous system diseases
(22). Many studies have shown that modulating gut microbiota
has been considered an effective target to alleviate emotional
and behavioral disorders, such as depression, stroke, and autism
(23–25). The increase in Fusobacterium and reduction of
short-chain fatty acids have been revealed to be associated with
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FIGURE 5 | Alterations of gene functions of gut microbiota.

post-stroke cognitive impairment (26), and this suggests the
potential clinical diagnosis and treatment values of gut microbes
for brain disorders.

Cognitive impairment (CI) is a common disease for the
elderly, and the development of CI induces a decline in the ability
of daily living to bring a huge burden to the family and society.
Compared to the control group, patients with CI had a lower

ADL and MMSE, although this might be partly attributed to the
older age (Figure 1, p < 0.001). Furthermore, although in the CI
group education duration was significantly higher than that in
the control, that seemed to be no improvement for CI symptoms.
Some studies have been shown education is negatively associated
with CI performance, and more education duration time leads
to an advantage of 0.2–0.4 SD in cognitive performance (27, 28).

Frontiers in Neurology | www.frontiersin.org 6 February 2022 | Volume 13 | Article 834403

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Lu et al. Intestinal Biomarkers for Cognitive Impairment

FIGURE 6 | Identification of gut microbial markers for CI by random forest model. (A) Microbial markers were predicated using a random forest model. (B) ROC curve

evaluation.

Increasing evidence has demonstrated that sleep disturbance is
closely associated with the development of CI in the elderly. Long
sleep latency leads to a decrease in the chance of reversion to
normal cognition but long sleep duration is related to the decline
of risk for cognition (29). However, patients with CI in this study
had amore sleep duration time vs. the control subjects (Figure 1).
This might be associated with the deficiency of assessment for
sleep-related parameters such asmidsleep time, sleep latency, and
daytime dysfunction in this trial. Sleep duration did not mean
good sleep quality for subjects. The sleep-wake cycle is important
for brain aging and is a potential way to improve CI symptoms
(30). Therefore, these results suggested that the older age, the
higher risk for CI it was, and it was not related to education
duration under ignoring education degree.

There were differences in gut microbiota between the
control and CI groups. In the CI group, the Faith_pd
index was significantly higher than that in the control
but other characteristics related to alpha diversity had no
significant differences (Figure 2A). Furthermore, gut microbial
beta diversity had a significant difference between the two
groups (p < 0.002, Figure 2B) and this suggested that patients
with CI had a distinct structure and composition of gut
microbes. Actinobacteria and Proteobacteria were increased but
Bacteroidetes and Firmicutes were reduced in the CI group
(Figure 3A). Patients with Alzheimer’s disease had an increase
in the abundance of Bacteroidetes but decreases in Firmicutes
(31). Furthermore, Bifidobacterium, Alistipes, Lactobacillus,
Streptococcus, [Ruminococcus] torques group, Ruminococcus 2,
Escherichia-Shigella, andKlebsiellawere increased in the CI group
(Figure 3B). The proportions of Bifidobacterium, Butyricicoccus,
and Clostridium XIVb were negatively correlated with the
presence of CI in patients with Parkinson’s disease (32).
This was not consistent with our results. Lactobacillus and

Bifidobacterium are common beneficial bacteria and have been
demonstrated to involve in the synthesis of neurotransmitters
such as acetylcholine, serotonin, and gamma-aminobutyric acid
(32). Escherichia-Shigella is a conditional pathogen and is related
to some diseases such as intestinal disorder and CI. An increase
in the proportion of Escherichia-Shigella has been revealed to be
associated with a peripheral inflammatory state in patients with
CI and brain amyloidosis (33). Furthermore, patients with post-
stroke CI had higher abundances of Enterococcus, Bacteroides,
and Escherichia-Shigella and a lower Faecalibacterium vs.
patients with stroke (34). Venn diagram showed there were
special taxa in the control and CI groups and displayed
the distinct gut microbial composition from each other
(Figure 3C). Therefore, based on the differences in gut microbial
composition, microbial markers might be explored for CI in
the elderly.

Linear discriminant analysis effect size (LEfSe) revealed
the differential taxa including Desulfovibrio, Sutterella,
Eubacterium, Butyricimonas, Akkermansia, Streptococcus,
and Lactobacillus in the CI group (Figure 4A). Compared to
the control group, Sutterella, Butyricimonas, and Lactobacillus
significantly increased in the CI group. APOE4 is a risk
factor for Alzheimer’s disease and APOE4 carrier has an
increased rate of cognitive decline. A study has shown the
abundance of Sutterella was significantly increased in male
EFAD transgenic mice (35). Compared to the patients with
Parkinson’s disease having normal cognition, the proportions
of Blautia and Ruminococcus were reduced (36). Our results
also showed a low abundance of Blautia in the CI group.
In a cohort trial study, Parabacteroides, Verrucomicrobia,
Akkermansia, Butyricimonas, Veillonella, Odoribacter,
Mucispirillum, Bilophila, Enterococcus, and Lactobacillus
were significantly enriched in patients with Parkinson’s disease
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than in controls (37), and some increased genera such as
Akkermansia, Butyricimonas, and Lactobacillus were same to
our findings.

We evaluated changes in gene functions of gut microbiota
using PICRUSt analysis. The results showed that nutrient
metabolisms such as glycolysis/gluconeogenesis, retinol
metabolism, fatty acid metabolism, D-alanine metabolism,
and pyruvate metabolism were upregulated in the CI group
(Figure 5). The reduction of cognitive function is related
to changes in brain glucose utilization (38). Compared to
rats with normal cognition, significant differences in protein
expression were demonstrated vs. the rats with CI and this
was associated with the glycolysis/gluconeogenesis pathway.
Supplement with ω-3 docosahexaenoic acid is an important
way to prevent brain aging and the development of Alzheimer’s
disease (39), and thus increased fatty acid metabolism might
be positively related to the development of CI. Furthermore,
pyruvate has been reported to improve neuron survival and
eliminate reactive oxygen species to alleviate CI symptoms in
rats with Alzheimer’s disease (40). Therefore, these studies were
consistent with our findings, and upregulated metabolisms
were positively related to CI symptoms. There were huge
differences in gut microbial composition and gene functions,
and thus gut microbiota had great potential to apply to
microbial markers to diagnose the CI development. A random
forest model was used to identify gut microbial markers for
CI and the results showed that 15 genera were selected to
predict the development of CI with an AUC value of 78.4%
(Figure 6). Gut microbial markers have been applied to predict
and diagnose early colorectal cancer and early hepatocellular
carcinoma (15, 16). Prevention of CI is necessary for the elderly
because it is difficult to reverse. Therefore, gut microbiota as a
biomarker contributed to the diagnosis and prevention of CI in
the elderly.

CONCLUSION

Collectively, the abnormal gut microbial composition is
associated with CI. A random forest model reveals the gut
microbial markers of CI, and they have the potential to predict

the development of CI and prevent CI based on gut microbial
sequencing for the elderly.
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